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Abstract—This paper presents a novel compact passive
modeling technique for high-performance RF passive and
interconnect circuits modeled as high-order resistor–inductor–
capacitor–mutual inductance circuits. The new method is based
on a recently proposed general s-domain hierarchical modeling
and analysis method and vector potential equivalent circuit model
for self and mutual inductances. Theoretically, this paper shows
that s-domain hierarchical reduction is equivalent to implicit
moment matching at around s = 0 and that the existing hierar-
chical reduction method by one-point expansion is numerically
stable for general tree-structured circuits. It is also shown that
hierarchical reduction preserves the reciprocity of passive circuit
matrices. Practically, a hierarchical multipoint reduction scheme
to obtain accurate-order reduced admittance matrices of general
passive circuits is proposed. A novel explicit waveform-matching
algorithm is proposed for searching dominant poles and residues
from different expansion points based on the unique hierarchi-
cal reduction framework. To enforce passivity, state-space-based
optimization is applied to the model order reduced admittance
matrix. Then, a general multiport network realization method
to realize the passivity-enforced reduced admittance based on
the relaxed one-port network synthesis technique using Foster’s
canonical form is proposed. The resulting modeling algorithm can
generate the multiport passive SPICE-compatible model for any
linear passive network with easily controlled model accuracy and
complexity. Experimental results on an RF spiral inductor and
a number of high-speed transmission line circuits are presented.
In comparison with other approaches, the proposed reduction is
as accurate as passive reduced-order interconnect macromodeling
algorithm in the high-frequency domain due to the enhanced
multipoint expansion, but leads to smaller realized circuit models.
In addition, under the same reduction ratio, realized models by
the new method have less error compared with reduced circuits by
time-constant-based reduction techniques in time domain.

Index Terms—Behavioral modeling, circuit simulation, determi-
nant decision diagrams, model order reduction, realization.
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I. INTRODUCTION

A S VERY large scale integration (VLSI) technology ad-
vances with increased operating frequency and decreased

feature size, parasitics from on-chip interconnects and off-chip
packaging will detune the performance of high-speed circuits in
terms of slew rate, phase margin, and bandwidth [2]. Reduction
of design complexity especially for those extracted high-order
resistor–inductor–capacitor–mutual inductance (RLCM) net-
works is important for efficient VLSI design verification.

Compact modeling of passive RLC interconnect networks
has been a research-intensive area in the past decade due to
increasing signal integrity effects and interconnect dominant
delay in current system-on-a-chip (SOC) design [22]. Existing
approaches can be classified into two categories. The first
category is based on subspace projection [11], [12], [20], [26],
[28], [37]. The projection-based method was pioneered by the
asymptotic waveform evaluation (AWE) algorithm [28], where
explicit moment matching was used to compute dominant poles
at low frequency. Pade via Lanczos (PVL) [11] and the Arnoldi
transformation method [37] improved the numerical stability
of AWE, and the congruence transformation method [20] and
passive reduced-order interconnect macromodeling algorithm
(PRIMA) [26] can further produce passive models. However,
reduced circuit matrices by PRIMA are larger than direct pole
marching (having more poles than necessary) [1], and PRIMA
does not preserve certain important circuit properties like reci-
procity [12]. The latest development by structured projection
can preserve reciprocity [12], but it does not realize the reduced
circuit matrices. An efficient first few order moments matching-
based realization for interconnect RLC circuit is proposed in
[19]. In general, no systematic approach has been proposed for
realizing order-reduced circuit matrices.

Another quite different approach to circuit complexity re-
duction is by means of local node elimination and realiza-
tion [3], [10], [31], [34], [35]. The major advantage of these
methods over projection-based methods is that the reduction
can be done in a local manner, no overall solution of the
entire circuit is required, and reduced models can be easily
realized using RLCM elements. This idea was first explored
by selective node elimination for RC circuits [10], [34], where
time-constant analysis is used to select nodes for elimination.
Node reduction for magnetic coupling interconnect (RLCM)
circuits has recently become an active research area. Gener-
alized Y−∆ transformation [31], RLCK circuit crunching
[3], and branch merging [35] have been developed based on
nodal analysis (NA), where inductance becomes susceptance
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in the admittance matrix. Since mutual inductance is coupled
via branch currents, to perform nodal reduction, an equivalent
six-susceptance NA model is introduced in [31] to reduce two
coupling current variables and template matching via geomet-
rical programming is used to realize the model order reduced
admittances, but its accuracy depends heavily on the selection
of templates and only one-port realization has been reported.
Meanwhile, RLCK circuit crunching and branch merging
methods are first-order approximations based on nodal time-
constant analysis. The drawbacks for this first-order approxima-
tion are as follows: 1) Error is controlled in a local manner and
will be accumulated; hence, it is difficult to control the global
error due to reduction. 2) Not too many nodes can be reduced if
the elimination condition is not satisfied.

Another way to model and characterize complex interconnect
structures in high frequency (in RF or even microwave ranges)
is by means of rational approximation based on direct measure-
ments or rigorous full-wave electromagnetic simulation [1], [7],
[9], [13], [14], [24], [33]. Many of those methods have been
used in RF and microwave circuit modeling as they are very
flexible to be applied to different interconnect structures and
wideband modeling.

In this paper, we focus on the realizable modeling ofRLCM
circuits. We propose a new passive reduction and realization
framework for general passive high-order RLCM circuits. Our
method starts with large RLCM circuits that are extracted
by existing geometry extraction tools like FastCap [25] and
FastHenry [17] under some relaxation conditions of full-wave
Maxwell equations (like electro-quasi-static for FastCap or
magneto-quasi-static for FastHenry) instead of measured or
simulated data. It is our ultimate goal to obtain compact models
directly from a complex interconnect geometry without mea-
surement or full-wave simulations. The new modeling method
is based on the general s-domain hierarchical model reduction
algorithm [39], [41] and an improved vector potential equiva-
lent circuit (VPEC) [44] model for self and mutual inductance,
which can be easily sparsified and are hierarchical reduction
friendly.

On the theoretical side, we show that the s-domain hierar-
chical reduction is equivalent to the implicit moment matching
at around s = 0 and that the existing hierarchical reduction
method by one-point expansion [39], [41] is numerically stable
for general tree-structured circuits. We also show that the
proposed hierarchical reduction preserves the reciprocity of
passive circuit matrices. Practically, we propose a hierarchical
multipoint reduction scheme to obtain accurate-order reduced
admittance matrices of general passive circuits. A novel explicit
waveform-matching algorithm is proposed for searching dom-
inant poles and residues from different expansion points based
on the unique hierarchical reduction framework. To enforce
passivity, a state-space-based convex programming optimiza-
tion technique [7] is applied to the model order reduced admit-
tance matrix. To realize the passivity-enforced admittance, we
propose a general reciprocity-preserving passivity-preserving
multiport network realization method based on the relaxed
one-port network synthesis technique using Foster’s canonical
form in an error-free manner. The resulting modeling algorithm
can take, in general, RLCM SPICE netlists and generate

out SPICE netlists of passive multiport models for any linear
passive network with easily controlled model accuracy and
complexity.

The rest of this paper is organized as follows. Section II
reviews the hierarchical reduction algorithm. Section III
shows some theoretical results regarding hierarchical reduction.
Section IV proves that hierarchical reduction can preserve the
reciprocity. Section V presents a new hierarchical multipoint
expansion scheme and a novel explicit waveform-matching
algorithm for searching dominant poles and residues from
different expansion points. Section VI briefly reviews the VPEC
model and the comparison with nodal susceptance-based in-
ductance models. Section VII presents the state-space-based
convex programming for enforcing the passivity of the order
reduced admittance circuit matrices. In Section VIII, we will
describe the general n-port network realization method. Exper-
imental results on an on-chip spiral inductor, high-speed partial
electrical equivalent circuit (PEEC)-modeled bus circuits, and
comparison with existing reduction approaches will be pre-
sented in Section IX. Section X concludes this paper.

II. REVIEW OF HIERARCHICAL CIRCUIT

REDUCTION ALGORITHM

Assume that the modified NA (MNA) is used for circuit
matrix formulation. With this, the system equation setMX = b
can be rewritten in the form (Schur’s decomposition)


 M II

MBI

0

M IB

MBB

MRB

0
MBR

MRR





 xI

xB

xR


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
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bB

bR


 . (1)

The matrix M II is the internal matrix associated with the
internal variable vector xI .

Hierarchical reduction is used to eliminate all the variables
in xI and transform (1) into the reduced set of equations

[
MBB∗

MRB
MBR

MRR

] [
xB

xR

]
=

[
bB∗

bR

]
(2)

whereMBB∗ = MBB −MBI(M II)−1M IB and bB∗ = bB −
MBI(M II)−1bI . Suppose that the number of internal variables
is t and the number of boundary variables is m. Then each ma-
trix element in MBB∗ and bB∗ can be written in the expanded
forms

aBB∗
u,v = aBB

u,v − 1
det(M II)

m∑
k1,k2=1

aBI
u,k1

∆II
k2,k1

aIB
k2,v (3)

where u, v = 1, . . . ,m. We call aBI
u,k1

∆II
k2,k1

aIB
k2,v/det(M II) a

composite admittance due to MNA formulation and

bB∗
u = bBu − 1

det(M II)

m∑
k1,k2=1

aBI
u,k1

∆II
k2,k1

bIk2
(4)

where u = 1, . . . ,m and ∆u,v is the first-order cofactor of
det(M) with respect to au,v .
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The hierarchical node reduction algorithm computes the new
admittance aBB∗

u,v and new right-hand side element bB∗
u in terms

of order-limited rational functions of s hierarchically.
One critical issue during hierarchical reduction is cancel-

lation. Two types of cancellations have been observed [39],
namely: 1) symbolic term cancellation, where two product
terms consisting of composite admittances cancel out and
2) symbolic common-factor cancellation, where the numerator
and the denominator of the resulting product term consist
of composite admittances having a common symbolic factor,
which happens when at least two first-order cofactors exist
in a product term. A general s-domain reduction algorithm
based on MNA was proposed in [39] and [41], where graph-
based decancellation is carried out numerically in the frequency
domain (s-domain). The hierarchical reduction algorithm is as
that in [39] and [41].

III. HIERARCHICAL REDUCTION VERSUS

MOMENT MATCHING

In this section, we first discuss how the s-domain hierarchical
reduction is related to implicit moment matching. Then, we dis-
cuss the numerical stability and reciprocity-preserving property
of the hierarchical reduction process.

A. Moment Matching Connection

Consider a linear system with n state variables in vector
x, i.e.,

sx = Ax+ b (5)

where A is an n× n system matrix and b is the input vector
to the circuit. Then we can obtain x = (Is−A)−1b. Let us
consider single-input single-output (SISO) systems where we
have only one input bj and we are interested in the state
response at node i. In this case, we have

xi(s) = Hij(s)bj =
∆ij

det(Is−A)
bj (6)

where ∆ij is the first-order cofactor of matrix M = (Is−A)
with respect to the element at row i and column j, andHij(s) is
the transfer function. So the exact solution of any state variable
or its transfer function in s-domain can be represented by a
rational function of s.

Hierarchical reduction is basically reducing the n× nmatrix
M into a very smallm×mmatrixM ′ based on block Gaussian
elimination such that xi can be trivially solved symbolically
by using (6). During this reduction process, all the rational
functions involved are truncated up to a fixed maximum order
and the final solution will be a rational function with the same
order for its numerator and its denominator. We then have
the following theoretical result for the computed state variable
x′i(s) from the hierarchical reduction process in s-domain.
Theorem 1: The state variable x′i(s) computed by s-domain

hierarchical reduction with q as the maximum order for all the
rational functions will match the first q moments of the exact
solution xi(s) expanded by Taylor series at s = 0.

Proof: As we know, the exact solution of xi(s) is a
rational function as shown in (6). Due to truncation, the solution
computed by the hierarchical reduction process will be given by

x′i(s) =
a0 + a1s+ · · · + aqs

q

b0 + b1s+ · · · + bqsq
, i = 1, . . . , q. (7)

It was proven in [40] that a cancellation-free rational expression
from the hierarchical reduction process is the exact expression
obtained from the flat circuit matrix. If we do not perform
any truncation, then x′i(s) will be the exact solution xi(s),
which is obtained from the flat circuit matrix by (6) when all
cancellations are removed numerically during the hierarchical
reduction process (under the assumption that no numerical error
is introduced). With truncation, all the coefficients a0, . . . , aq

and b0, . . . , bq are still exactly the same as that in xi(s). If we
compute the moments of x′i(s) = m0 +m1s+ . . ., the first q
moments can be uniquely determined by the 2q coefficients
a0, . . . , aq and b0, . . . , bq , i.e.,

mi =
ai −

∑i
k+l=i,k≤i,l≤i,k �=0 bkml

b
. (8)

If b0 is not zero, b is simply b0, otherwise b will be the first
nonzero coefficient bt and the first q moments become the
coefficients of s−t(t > 0) to that of s−t+q. So the theorem is
proved. Hence, the transfer function H ′

ij(s) will also match the
exact one up to the first q moments. �

For a general multi-input and multi-output (MIMO) system,
each element in the reduced m×m admittance matrix M ′(s)
becomes a rational function [41]

aBB∗
u,v =

det (M [1, . . . ,m, u|1, . . . ,m, v])
det(M II)

(9)

where M [1, . . . ,m, u|1, . . . ,m, v] is a matrix that consists of
matrixM II . It isM [1, . . . ,m|1, . . . ,m] plus row u and column
v of matrix M . Then we have the following results.
Corollary 1: Each rational admittance function a′BB∗

u,v (s) in
the reduced m×m matrix M ′(s) by the hierarchical reduction
process will match the first q moments of the exact rational
function aBB∗

u,v (s) expanded by Taylor series at s = 0.

B. Numerical Stability of the Hierarchical Reduction

The hierarchical reduction process is essentially equivalent
to the implicit moment matching at s = 0. As a result, the
frequency response far away from s = 0 will become less accu-
rate due to the truncation of high-order terms. Another source
of numerical error comes from the numerical decancellation
process where polynomial division is required for removing
the common factors (cancellation) in the newly generated ra-
tional function, which will in turn introduce error from the
numerical term cancellation (the sum of two symbolic terms
should have been zero, but it is not zero due to numerical
error). Such numerical noise will cause the higher-order terms
to be less accurate even if we try to keep them. In Fig. 1, we
show the responses from the three-way two-level partitioned
µA741 circuit [42] under different maximum reduction orders
of rational functions. As we can see, increasing the rational
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Fig. 1. Responses of µA741 circuit under different reduction orders.

function order does not increase the accuracy of the response
after the order reaches 8. This is the typical numerical stability
problem with the moment matching method [28]. However, un-
like explicit moment matching methods, hierarchical reduction
is numerically stable for tree-structured circuits. We then show
the following results.
Theorem 2: For tree-structured circuits, the hierarchical

reduction process can be performed such that there is no
common-factor cancellation in the generated rational functions.

Proof: For tree-structured circuits, we can always parti-
tion the circuit in such a way that each subcircuit has only one
node shared with its parent circuit. As a result, there is only
one composite admittance aBI

u,k1
∆II

k2,k1
aIB

k2,v/det(M II) in (3)
generated in its parent circuit for each subcircuit. According
to the common-factor cancellation condition [39], at least four
composite elements from the same subcircuit reduction are
required for the existence of common-factor cancellation. So no
common-factor cancellation will occur under such partitioning.
The theorem is proved. �

The significance of Theorem 2 is that the hierarchical reduc-
tion process becomes numerically stable for almost an arbitrary
order of tree circuits. The only cancellation left is the term
cancellation, where the sum of two symbolic terms is zero,
which will not introduce any noticeable numerical error in the
reduction process. Fig. 2 shows the voltage gain response (real
part) of an RC tree with about 100 nodes (also 100 capacitors)
under different reduction orders. As can be seen, the reduced
voltage gain will match the exact one well when the kept orders
reach about 60.

The fact that no common-factor decancellation (polynomial
division) is required was also exploited in the direct truncation
of transfer function method (DTT) [16], where only polynomial
addition is required to compute the truncated transfer functions
for tree-structured RLC circuits. The DTT reduction process
can be viewed as a special case of our method. But for general
nontree-structured circuits, polynomial division is required in
node-elimination-based reduction methods due to common-
factor cancellation, and polynomial division due to truncation

Fig. 2. Responses of an RC tree circuit under different reduction orders.

will not be numerically stable for a very high frequency range
far away from dc as shown before.

To mitigate this problem, we propose using multipoint ex-
pansion for obtaining accurate rational functions or reduced ad-
mittance matrices for modeling a general MIMO linear system
as will be shown in Section V.

IV. PRESERVATION OF RECIPROCITY

A reciprocal network is one in which the power losses are
the same between any two ports regardless of the direction
of propagation [43]. Mathematically, this is equivalent to the
requirement that the circuit admittance matrix is symmetric (or
scattering parameter S21 = S12 , S13 = S31 , etc.). A net-
work is known to be reciprocal if it is passive and contains only
isotropic materials. Reciprocity is an important network prop-
erty. For hierarchical reduction, we have the following results.
Theorem 3: The hierarchical reduction method preserves the

reciprocity of a passive circuit matrix.
Proof: The proof can be found by using (9) again. We

first study a circuit with circuit matrix M . The circuit has one
subcircuit with circuit matrix M II . Assume that the original
circuit matrix is symmetric (its subcircuit is also symmetric,
i.e., both M and M II are symmetric) due to reciprocity.

After reduction, the reduced circuit matrix becomes an m×
m matrix, where each matrix element at row u and column v
appears in (9). Then we look at the element at row v and column
u, which is

aBB∗
u,v =

det (M [1, . . . ,m, u|1, . . . ,m, v])
det(M II)

. (10)

Notice that matrix M is symmetric, so row u in (9) and column
u in (10) are same. This is true for column v in (9) and row v in
(10). As a result, we have

M [1, . . . ,m, v|1, . . . ,m, u]
= M [1, . . . ,m, u|1, . . . ,m, v]T (11)

det(M [1, . . . ,m, v|1, . . . ,m, u])
= det

(
M [1, . . . ,m, u|1, . . . ,m, v]T

)
. (12)
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Hence, aBB∗
u,v = aBB∗

v,u and reciprocity is preserved in the
reduced circuit matrix when a subcircuit is reduced. In hier-
archical reduction, we reduce one subcircuit at a time and the
reduced circuit matrix is still symmetric after reduction. So the
reduced circuit matrix after all the subcircuits are reduced is
still symmetric. The theorem is proved. �

V. MULTIPOINT EXPANSION HIERARCHICAL REDUCTION

The multipoint expansion scheme by real or complex fre-
quency shift has been exploited before in projection-based
reduction approaches for improving the modeling accuracy
[8], [15]. The basic idea for such a strategy is that dominant
poles close to an expansion point are more accurately captured
than poles that are far away from the expansion point in the
moment-matching-based approximation framework. Therefore,
instead of expanding at only one point, we can expand at
multiple points along the real or complex axis to accurately
capture all the dominant points in the given frequency range.

In this paper, we extend this concept to the hierarchical
reduction algorithm. Specifically, at each expansion point, the
driving point function or each rational admittance function in
a reduced admittance matrix can be written into the partial
fraction form

f(s) =
n∑
i

ki/(s− pi). (13)

By intelligently selecting poles and their corresponding
residues from different expansions and combining them into
one rational function, we can obtain a more accurate rational
function for a very high frequency range. In this paper, we
propose an explicit waveform-matching scheme based on the
hierarchical reduction framework to find dominant poles and
their residues for both SISO and MIMO systems. It is shown
experimentally to be superior that the existing pole searching
algorithm.

A. Multipoint Expansion in Hierarchical Reduction

To expand the circuit at an arbitrary location in the complex
s-plane, say sk = αk + ωkj, we can simply substitute s in (6)
by s+ sk. Then (6) becomes

xi(s) = Hij(s)bj =
∆ij(s+ sk)

det (I(s+ sk) −A)
bj . (14)

As shown in [8], poles that dominate the transient response
in interconnect circuits are near the imaginary axis with large
residues. Hence, we expand along the imaginary axis for RF
passive and interconnect circuits. Since only capacitors and
inductors are associated with the complex frequency variable
s, expansion at a real point α or a complex point ωij point
is essentially equivalent to analyzing a new circuit where each
capacitor C has a new resistor (with real value αiC or complex
value ωiCj) connected in parallel with it and each inductor L

has a new resistor (with real value αiL or complex value ωiLj)
connected in series with it [29].

In this paper, we show that multipoint expansion can be
done very efficiently in the hierarchical reduction framework.
The rational functions are constructed in bottom-up fashion
in Y -parameter determinant decision diagrams (YDDDs) in
the hierarchical reduction algorithm [39]. When a capacitor
C or an inductor L (its YDDD node) is visited, we build a
simple polynomial 0 + Cs or 0 + Ls to multiply or add it with
existing polynomials seen at that DDD node. In the presence
of a nonzero expansion point αi or ωij, we can simply build a
new polynomial αiC + Cs or ωiCj + Cs for the capacitor and
αiL+ Ls or ωiLj + Ls for the inductor, respectively. So we
do not need to rebuild the circuit matrix or the YDDD graphs
used for reduction at s = 0. Instead, we only need to rebuild the
rational functions by visiting every YDDD node once, which
has the time complexity linear with the YDDD graph size, a
typical time complexity for DDD graph-based methods [36].

B. Explicit Waveform-Matching Algorithm

One critical issue in multipoint expansion is to determine
at each expansion point which poles are accurate and should
be included in the final rational function. In the complex fre-
quency hopping method [8], a binary search strategy was used,
where poles (common poles) seen by two expansion points
and poles with distance to the expansion points shorter than
the common poles are selected. Such a common-pole matching
algorithm, however, is very sensitive to the numerical distance
criteria for judging if two poles are actually the same poles.
For accurately detecting common poles, a small distance is
desirable, but it will lead to more expansion points, and even
worse is that the same poles may be treated as different poles
seen by two different expansion points. Also, this method may
fail to detect some dominant poles as the circle for searching
accurate poles might be too small as shown in our experi-
mental results.

In this paper, we propose a new reliable pole searching
algorithm, which is based on explicit frequency waveform
matching. The new algorithm is based on the observation that
a complex pole pi and its residue ki in partial fraction form
ki/(s− pi) have the largest impact at frequency fi when the
imaginary part of the pole equals 2πfi. Fig. 3 shows a typi-
cal response of ki/(s− pi), where ki = 2.78 × 1012 + 2.34 ×
1010j and pi = −4.93 × 108 + 2.58 × 1010j. The peaks of
both real (absolute value) and magnitude are around 4.11 ×
109, which is equal to 2.58 × 1010/(2π). The reason for this is
that both real and imaginary parts of ki/(s− pi) reach a peak
when their denominator (pr)2 + (ω − pi)2 reaches a minimum
at ω = pi, where s = ωj and pi = pr + pij. A complex pole
with negative imaginary part typically will not have a signifi-
cant impact on the upper half complex plane.

The idea of frequency waveform matching is to explicitly
match the approximate frequency waveform with that of exact
ones. Specifically, at an expansion point fi, we perform the
hierarchical reduction and then determine an accurate maxi-
mum frequency range [fi, fi+1] such that the errors between
responses (magnitude) of the reduced rational function and that
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Fig. 3. Responses of a typical ki/(s − pi).

of the exact one are bounded by a prespecified error bound. The
error is computed as

err =
|dB20(Ve) − dB20(Va)|

|dB20(Ve)|
(15)

where dB20(x) = 20 log10 (|x|) and |x| is the magnitude of
a complex number x. Ve is the exact response and Va is
the approximate response. If |dB20(Ve)| = 0, then we use
|dB20(Va)| as the denominator in (15) if it is not zero. If
|dB20(Va)| = 0, we have err = 0.

Then, fi+1 will be the next expansion point. All the poles
whose imaginary part falls within the range [2πfi, 2πfi+1] will
be selected because their contribution in this frequency range is
the largest. The new algorithm does not have the duplicate pole
issue as accurate poles can only be located at one place. The
accuracy of the found poles is assured by explicit waveform
matching. Experimental results show that it tends to use less
expansion points than the common-pole matching method and
less CPU time.

C. Multipoint Expansion for MIMO System Reduction

For a MIMO system, by using MNA, the reduced circuit
matrix M ′(s) = [yij(s)]m×m will become an m×m admit-
tance matrix. Each admittance yij is a complex rational function
with real or complex (if expansion points are on imaginary
axis) coefficients. In this case, we explicitly watch for the
error between each approximate rational admittance and the
exact value of the admittance at each frequency. The exact
value of each admittance can be computed by visiting the
DDD graph representing the admittance. Since there is a lot of
sharing among those admittances, the cost of evaluating all the
admittances is similar to evaluating one admittance, considering
that every DDD node just needs to be visited once at each
frequency point [42].

VI. INDUCTANCE MODELS IN HIERARCHICAL REDUCTION

In this section, we discuss the VPEC used in our reduc-
tion method. We compare the VPEC model with another

inductance-based nodal susceptance concept. We will show that
the inductance model by nodal susceptance is not physically
equivalent to inductance as unwanted dc paths are created at
low frequency.

A. Inductance Formulation in Hierarchical Reduction

For an RLCM circuit, when we assume that only indepen-
dent current sources exist at external ports, the circuit matrix in
s-domain starting with MNA formulation can be written as

Gx+ sCx = Bi(s) v(s) = BTx (16)

where x, v, and i are the state variable, output voltage, and
input current vectors, and G, C, andB are state and input–output
matrices, respectively. Equation (16) can be further written as

[
G AT

l

−Al 0

][
vn

il

]
+s

[
C 0
0 sL

][
vn

il

]
=

[
Aiin(s)

0

]
(17)

where G and C are the admittance matrices for resistors and
capacitors, L is the inductance matrix, which includes the
mutual inductance, vn is a vector of node voltage, il is a branch
current vector of inductors, Al is the adjacency matrix for all
inductors, and Ai is the adjacency matrix for all port current
sources.

Circuit reduction means applying Gaussian elimination for
state variables like node voltage vn and branch current il. If we
first reduce the branch current vector il, we actually result in a
state equation with only nodal voltage variables, i.e.,

[
G+ sC +

1
s
AlSA

T
l

]
[vn] = [Aiin(s)] . (18)

This is exactly like the NA formulation, where S = L−1 is
the susceptance [5] and Γ = (1/s)AlSA

T
l is the admittance

form for the mutual inductance under NA. Circuit reduction by
further eliminating the nodal voltage variable vn is exactly like
the Y−∆ transformation in [31].

B. Inductance Models by Nodal-Susceptance

The nodal susceptance in (18) actually creates a dc path at
the low-frequency range. We illustrate this with a 2-bit inter-
connect example shown in Fig. 4. The nodal voltage equation
of susceptance at four nodes (A,B,C,D) becomes

S11

s
VA − S11

s
VB +

S21

s
VC − S21

s
VD = I1

−S11

s
VA +

S11

s
VB − S12

s
VC +

S12

s
VD = −I1

S12

s
VA − S12

s
VB +

S22

s
VC − S22

s
VD = I2

−S12

s
VA +

S12

s
VB − S22

s
VC +

S22

s
VD = −I2. (19)

As shown in Fig. 5, it is mathematically equivalent to
stamping six susceptance elements into the admittance matrix
[31] when s �= 0. However, the susceptance element Sij/s
approaches infinity (thus 0 impedance or short circuit) when
s = 0; there exist four unwanted dc paths between nodes
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Fig. 4. Example of a coupled 2-bit RLCM circuit under PEEC model.

Fig. 5. Example of a coupled 2-bit RLCM circuit under nodal susceptance
model.

Fig. 6. Frequency responses of the PEEC model in SPICE, susceptance under
NA, and VPEC models for the 2-bit bus.

(A,B,C,D), which do not exist before. As a result, it leads
to wrong dc values and inaccurate low-frequency simulation
results even for the 2-bit bus example in Fig. 4.

We compute the exact driving-point impedance responses
using inductance under MNA and nodal susceptance under NA,
respectively, using the symbolic analysis tool [36].

As shown in Fig. 6, NA formulation (by using nodal suscep-
tance for inductance) gives the exact response as SPICE does
in the high-frequency range, but the response is not correct in
the low-frequency range. When s approaches zero, the actual
driving-point impedance in Fig. 4 should be dominated by three

Fig. 7. Example of a coupled 2-bit RLCM circuit under the VPEC model.

capacitors with total capacitance value 43fF . However, for
Fig. 5 at dc, the driving point impedance becomes a resistor
with a total resistance value of 234 Ω [or 49 Ω (dB)] due to
unwanted dc paths.

The reason for such a discrepancy is that when s = 0,
L−1 cannot be computed as L becomes singular. As a re-
sult, the NA formulation of inductance, which is based on
L−1, is no longer equivalent to the original circuit matrix.
Hence, circuit reduction starting with nodal susceptance for-
mulation cannot give the correct low-frequency response, in
general, and is not suitable for generating the wideband macro-
model of interconnects.

C. Formulation by VPEC Model

From the above discussion, we know that inductance for-
mulation by nodal susceptance leads to an inaccurate low-
frequency response. It is not suitable for generating the reduced
interconnect model for wideband applications. However, di-
rectly handling mutual inductance in a dense MNA formulation
as in [3] will be computationally expensive. As shown in
[44], the sparsified VPEC model actually not only achieves the
runtime speedup but also has the high accuracy compared to
the original full model. Therefore, we use1 the VPEC model to
represent inductance in our circuit reduction flow, as it enables
passive presparsification [27], [44].

The significant difference between VPEC and nodal suscep-
tance models for mutual inductance is that VPEC is a physically
equivalent model and can exactly represent the original system
[44]. As shown in Fig. 7, this model consists of an electrical cir-
cuit (PEEC resistance and capacitance) and a magnetic circuit
(VPEC effective resistance and controlled source). It includes
the following components: 1) wire resistance and capacitance
are the same as in the PEEC model; 2) a dummy voltage
source (sensing electrical current Ii) to control Îi; 3) a voltage-
controlled current source to relate V̂i and Îi with gain g = 1;
4) an electrical voltage source Vi controlled by V̂i; 5) effective
resistors including ground R̂i0 and coupling R̂ij to consider
the strength of inductances; and 6) a unit inductance Li to
a) take into account the time derivative of Ai and b) preserve
the magnetic energy from the electronic circuit.

Clearly, this SPICE-compatible implementation does not
introduce unwanted dc paths when s = 0 as that by the nodal
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susceptance. Moreover, Fig. 6 shows the response of the VPEC
model for the 2-bit circuit, which is identical to SPICE for
the entire frequency range. Detailed analysis also shows that
the impedance function of the 2-bit circuit modeled by VPEC
model is the same as the impedance function by the PEEC
model [45].

As shown in [44], although the VPEC model introduces
more circuit elements, it has faster runtime because this model
dramatically reduces reactive elements (i.e., inductors), leads
to less numerical derivatives and integrals, and makes the
simulation converge faster. To further improve the sparsified
VPEC model extraction without full inversion as in [44], we
extend a windowing technique [5]. It reduces the computation
complexity to [O(Nb3)], where b is the size of the window (i.e.,
the size of the submatrix). Note that although the VPEC model
enables efficient inductance simulation, the order of the circuit
matrix is still high. Moreover, its SPICE-compatible model
still contains controlled sources and cannot be handled by the
existing realizable circuit reduction approaches [3], [31].

VII. PASSIVITY ENFORCEMENT

In this section, we present the state-space-based passivity
enforcement method, which is based on the method used in [7].
But we show how this method can be used in our hierarchical
model order reduction (HMOR) framework to enforce passivity
of the model order reduced admittance matrix Ỹ(s).

Passivity is an important property of many physical systems.
Brune [6] has proved that the admittance and impedance ma-
trices of an electrical circuit consisting of an interconnection
of a finite number of positive R, positive C, positive L, and
transformers are passive if and only if (iff) its rational functions
are positive real (PR). It can be proved that the following
statements are equivalent:

1) A transfer function matrix Y(s) is PR.
2) Let (ABCD) be a minimal controllable state-space rep-

resentation of Y(s). ∃K

K = KT , K ≥ 0 (20)

such that the linear matrix inequality (LMI)

[
ATK +KA KB − CT

BTK − C −D −DT

]
≥ 0 (21)

holds.

Constraint (21) actually comes from the Kalman Yakubovich
Popov (KYP) Lemma, which establishes important relations
between state-space and frequency-domain objects. KYP was
introduced in control theory and later used in network syn-
thesis [4].

If we include the term proportional to s in the transfer
function, which means we need to know what happens in
infinite frequency, we can write the admittance matrix in terms
of (ABCD) as

Y(s) = sY ∞ +D + C(sI −A)−1B (22)

where I denotes the identify matrix with the same dimension
as A. To keep the transfer function PR, Y ∞ must satisfy

Y ∞ = (Y ∞)T , Y ∞ ≥ 0. (23)

Therefore, we can transform the problem of checking whether
the admittance matrix Y(s) is PR into the problem of check-
ing whether its corresponding state-space model in terms of
(ABCD) is positive semidefinite. More important is that we
can use the PR criterion in terms of the state-space form to
enforce the passivity of the reduced circuit matrices as shown
in the next section.

A. State-Space Model Representation of Ỹ(s)

After the multipoint hierarchical model reduction, an n-port-
order reduced admittance matrix is generated as

Ỹ(s) =




Ỹ1,1 · · · Ỹ1,n

...
. . .

...
Ỹn,1 · · · Ỹn,n


 (24)

where each Ỹp,q is a rational function of s. The reduction
process can capture the entire dominant complex poles, which
means that there are no poles in the right hand plane (RHP) of
the complex plane.

The first step that we do is to transform the admittance matrix
Ỹ(s) into its state-space representation. We assume that all
rational functions in the matrix share the common poles of
the system. If there are private poles appearing on the leading
diagonal element, we can separate them and their residues from
the whole rational function after partial fraction decomposition
and realize them separately.

Given a multivariable n-port network, each rational func-
tion Ỹp,q is considered as an SISO subsystem and mapped
to its state-space representation in the controllable canonical
form, which corresponds to (Aq,qBq,qCp,qDp,q) in the matrix
of (ABCD), respectively. Now we can write its state-space
representation as

A =



A1,1 · · · 0

...
. . .

...
0 · · · An,n




B =



B1,1 · · · 0

...
. . .

...
0 · · · Bn,n




C =



C1,1 · · · C1,n

...
. . .

...
Cn,1 · · · Cn,n




D =



D1,1 · · · D1,n

...
. . .

...
Dn,1 · · · Dn,n


 . (25)

Also, this mapping process could be viewed as an n set of
single-input multiple-output (SIMO) subsystems. If we choose
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the mth port as the input port, the mth column admittance
rational function can be mapped into (Am,mBm,mC:,mD:,m).

B. Passivity Enforcement Optimization

In this section, we briefly mention how passivity enforcement
is done via a convex optimization process on the state-space
representation of the admittance matrix.

Assume that we have obtained the admittance matrix of a
model order reduced system Ỹ(s) with a set of N sampling
points. Let Ỹp,q(s) denote the (p, q) entry of the transfer
function Ỹ(s). Let Ŷp,q(sk) be the exact values of admittance
at the entry (p, q) at the kth frequency point, which can be
obtained by the exact hierarchical symbolic analysis [42].

The optimization problem is to determine C, D, and Y ∞

such that a cost function is minimized with constraints on the
error (Ŷp,q − Ỹp,q). Here, the constraints are on the weighted
least square error taken over N frequencies as

N∑
k=1

wk,p,q

∥∥∥Ŷp,q(sk) − Ỹp,q(sk)
∥∥∥2

2
≤ tp,q. (26)

It is shown in [7] that the optimization problem in (26)
subject to constrains in (21) can be transformed into a convex
programming problem, which can be solved efficiently by some
existing convex programming programs.

We notice that passivity enforcement was done by the
compensation-based approach proposed in [1]. But this method
does not ensure accurate matching because the compensated
part may have significant impacts on the frequency range that
we are interested.

VIII. MULTIPORT CIRCUIT REALIZATION

Once the new C, D, and Y ∞ are obtained by convex pro-
gramming, the new passivity-enforced Y(s) are constructed
again by (22). We now discuss how to generate realized macro-
models for both frequency and time-domain simulation.

A. Relaxed One-Port Realization

We start with one-port network realization. For a one-port
model with driving-point admittance function, we propose to
use a generalized Foster’s canonical form based realization to
directly synthesize the admittance function.

To synthesize the one-port model from the driving-point
admittance rational function Y (s), we first rewrite it in Foster’s
canonical form [43]

Y (s) = sY∞ + Y0 +
M∑

m=1

am

s− pm
+

N∑
n=1

(
an

s− pn
+

a∗n
s− p∗n

)

(27)

where we expand the rational function into the partial fraction
form with N conjugate-poles pn and M real poles pm.

Fig. 8. One-port Foster admittance realization.

The admittance function in Foster’s canonical form can then
be synthesized by an equivalent circuit in Fig. 8 with the
relations to determine R, L, C, and G elements given as

Gs =Y0

Cs =Y∞

Rm_m =
1
am

Lm_m = − pm

am

Ln_n =
1

2Re{an}
Ln_nCn_n|pn|2 =Rn_nGn_n + 1

Gn_n

Cn_n
= −Re{anp

∗
n}

Re{an}
Rn_n

Ln_n
=
Re{anp

∗
n}

Re{an}
− 2Re{pn}. (28)

Some existing works like PRIME [24] require every complex
pole pairs to be physically realizable (every RCL element
is positive), which is over constrained and may lead to sig-
nificant errors when unrealizable pole pairs are discarded or
their residues are changed. In our approach, we relax those
constraints by allowing some negative RLC elements. But the
passivity of the admittance function will still be guaranteed
by the passivity enforcement procedure since the realization is
error free and reversible and does not change the passivity of
the realized system.

B. Multiport Realization

For a passive multiport order reduced admittance matrix, we
propose a general complete graph structure (in case of full
admittance matrix) to realize the admittance matrix based on
one-port realization. In the following, we first illustrate how a
two-port network is realized and then extend this concept for
general n-port network realization.

Given a 2 × 2 passive admittance matrix, which is obtained
by the HMOR method

Y2×2(s) =
[
y11(s) y12(s)
y21(s) y22(s)

]
(29)

it can be realized exactly by using the Π structure template
shown in Fig. 9, where each branch admittance will be realized
by the one-port Foster’s expansion method shown in Fig. 8.
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Fig. 9. General two-port realization Π model.

Fig. 10. Six-port realization based on the Π structure.

Based on this template, such a realization can be easily ex-
tended to the multiport case, i.e.,

Yn×n(s) =



y11(s) · · · y1n(s)

...
. . .

...
yn1(s) · · · ynn(s)


 . (30)

Generally, for a reduced n-port network with a full n× n
admittance matrix as shown in (30), the realized network will
be a complete graph where each branch represents an admit-
tance, which is realized by the one-port realization method.
For instance, Fig. 10 shows a realization of a synthesized six-
port network. The branch admittance of the mth port branch
(the branch between the port and ground) is the sum of all
the mth row admittances, and the admittance of the branch
between the port and any other port is the negative value of
the corresponding admittance.

Notice that our realized circuits automatically preserve the
reciprocity of the original circuit matrix as it requires the
admittance to be symmetric.

IX. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented in C++,
and all the data are collected on a Linux workstation with
dual 1.6-GHz AMD Althon CPUs and 2-GB memory. The
convex programming problem is solved using some standard
optimization packages. We use SeDuMi [38] and SeDuMi
Interface to solve the convex programming problem for pas-
sivity enforcement.

A. One-Port Macromodel for Spiral Inductor

We first construct the detailed PEEC model for a three-turn
spiral inductor with its substrate. We assume copper (ρ = 1.7 ×
10−8 Ω · m) for the metal and the low-k dielectric (ε = 2.0).
The substrate is modeled as a lossy ground plane (heavily
doped) with ρ = 1.0 × 10−5 Ω · m. The conductor is volume

Fig. 11. Frequency response of the three-turn spiral inductor and its reduced
model by using waveform matching and common-pole method.

discretized according to skin depth and longitudinal segmented
by one tenth of a wavelength. The substrate is also discretized
as in [23]. The capacitance is extracted by FastCap [25], and
only adjacent capacitive coupling is considered since capacitive
coupling is short range. Partial inductance is extracted by
FastHenry at 50 GHz [17]. Inductive coupling between any
pair of segments (including segments in the same line) is
considered. Then, we generate the distributed PEEC model by
π-type ofRLC topology to connect each segment, and it results
in a SPICE netlist with 232 passive RLCM elements. The
substrate parasitic contribution (Eddy current loss) is lumped
into the above conductor segment. Note that for more accurate
extraction at ultrahigh frequency, it needs full-wave PEEC
model description [18]. For mutual inductance, a VPEC is
used [44], which is more hierarchical reduction friendly as
no coupling inductor branch currents are involved and circuit
partition can be done easily.
1) Comparison With Common-Pole Matching Method in

Frequency Domain: For the spiral inductor, the driving point
impedance is obtained by the multipoint hierarchical reduction
process. We use both the common-pole matching algorithm in
the complex frequency hopping method and the new waveform-
matching algorithm to search for dominant poles along the
imaginary axis.

For a fair comparison, we make sure that the resulting
rational functions will have similar accuracy. For a common-
pole matching algorithm, if two poles are located within 1%
of their magnitude, they are regarded as the same pole. For
the waveform-matching algorithm, the error bound between the
approximate one and the exact is set to 0.1%. As a result,
a common-pole approach takes 26 expansions with 37.1 s,
while the waveform marching method uses 15 expansions with
22.57 s. The responses obtained using both methods versus
the exact response up to 100 GHz are shown in the Fig. 11.
The responses from both methods match the exact ones very
well all the way to 100 GHz. Our experience shows that
CPU time of the common-pole method highly depends on the
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Fig. 12. Colpitts LC oscillator with spiral inductors.

Fig. 13. Time domain comparison between original and synthesized models
for a Colpitts LC oscillator with a three-turn spiral inductor.

common-pole detection criteria. For instance, if we set the
criteria for common-pole detection to 0.5%, then 65 expansions
are carried out. Also, as more expansions are carried out, the
chances that a single pole is seen by two consecutive expansion
points becomes larger, but it may be treated as different poles
due to a small distance criteria, which in turn leads to significant
distortion of the frequency response.
2) Time-Domain Simulation of a LC Oscillator: We further

demonstrate the accuracy and efficiency of the inductor macro-
model in the time-domain harmonic simulation. Note that the
synthesized one-port macromodel can be used to efficiently pre-
dict the critical performance parameters of the spiral inductor,
such as ωT , Q factor, and even the resonance starting condition
for an oscillator [32].

We use Colpitts LC oscillator as an example as shown in
Fig. 12(b), where the active circuit behaves like a negative
resistance to make the oscillator work as shown in Fig. 12(a).

In this experiment, the synthesized one-port model is from
a 25-order rational function with 24 poles and results in a
macromodel with 40 RLC elements. As shown in Fig. 13,
the waveform at steady state of synthesized model and original
model matches very well, but we observe a 10× (5.17 s versus
0.52 s) runtime speedup by using the reduced model.

Fig. 14. Frequency responses of Y11 of a 2-bit transmission line.

Fig. 15. Frequency responses of Y12 of a 2-bit transmission line.

B. Multiport Macromodel of Coupled Transmission Line

We then use a 2-bit coupled transmission line as the example
for multiport reduction and synthesis. The original PEEC model
contains 42 resistors, 63 capacitors, 40 self-inductors, and
760 mutual inductors, where we consider inductive coupling
between any two segments including those in the same line.
Still, for mutual inductance, a VPEC is used.

The matching frequency is up to 31 GHz, and we find 24
dominant poles in this range. There are 150 RLC elements in
the synthesized circuit compared with 364 devices in the orig-
inal circuit, which represent a 58.79% reduction rate. The fre-
quency responses for Y11(s) and Y12(s) are shown in Figs. 14
and 15, respectively. If we only match to 14 GHz, 12 poles are
required and we can achieve a 78.5% reduction rate instead.
The time-domain step responses from the original circuit, the
14-GHz synthesized circuit, and the 31-GHz synthesized circuit
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Fig. 16. Transient responses of a 2-bit transmission line.

Fig. 17. Frequency responses of a 2-bit transmission line at two ports.

are shown in Fig. 16. The difference among these three circuits
is fairly small.

In Fig. 17, we further compare the frequency responses of
the 24th-order macromodel by HMOR, the 24th-order macro-
model by PRIMA, and the time-constant-based reduction (with
similar reduction ratio) with the original circuit. The frequency
response of port-1 is observed at the input port of the first bit,
and that of port-2 is at the far-end of the first bit. Due to the
preserved reciprocity, the reduced mode is easily realized by
Foster’s synthesis, and the model size is half of the SPICE-
compatible circuit by PRIMA (via recursive convolution for
each Yij). Moreover, as shown in Fig. 17, the accuracy of the
24th-order model by H-reduction can match up to 30 GHz,
but the same order model by PRIMA can only match up
to 20 GHz. Note that under similar reduction ratio with
H-reduction, the time-constant-based reduction can only match
up to 5 GHz.

TABLE I
COMPARISON OF REDUCTION CPU TIMES

C. Scalability Comparison With Existing Methods

Table I gives the reduction CPU time comparison for the
two methods. HMOR denotes the CPU times of hierarchical
reduction. We notice that HMOR is slower than PRIMA. But
the difference becomes less for large circuits. Theoretically,
PRIMA and the one-point hierarchical model reduction have
the same time complexity, that is, time of complexity of one
Gaussian elimination. In PRIMA, we have to solve the circuit
matrix at least once using Gaussian elimination or LU decom-
position to solve for all the Krylov space base vectors (or mo-
ments). In the hierarchical reduction method, if we reduce one
node at a time, it becomes the Gaussian elimination process.
All the polynomial operations with fixed order have fixed
computing costs. The efficiency difference is mainly due to
expensive recursive operations used in graph operations, which
can be further improved, and multipoint matching. However,
multipoint matching makes our method closed-loop, which
gives us good control on the model accuracy. For PRIMA,
the model accuracy cannot be determined without several trials
using different reduction orders.

We finally present a scalability comparison in Table II by
the time-domain transient simulation for the following aspects:
1) runtime of simulation; 2) realization efficiency (realized
model size); and 3) accuracy in terms of delay. Several dif-
ferent sized RLCM circuits are used. We compare the our
method with the time-constant-based circuit reduction [3] and
projection-based reduction PRIMA implemented at [21]. The
same number of poles are used for the reduction when we
compare our H-reduction with PRIMA. The reduced model by
time-constant reduction is obtained with the similar model size
as H-reduction.

First, we found that our realized RLCG circuit model size
is up to 10× smaller on average than the SPICE-compatible
circuit from PRIMA. Therefore, a similar simulation speedup
(8×) is observed when we run both circuits in SPICE3. When
we further compare the simulation time of our reduced models
with the PEEC circuits, a significant speedup (up to 2712x for
ckt5) is obtained. Furthermore, the waveform accuracy in terms
of delay is given in columns 12–14. The reduced models are
very accurate with the worst case delay error being −1.04%
even with 478× (957.9 kb versus 1.92 kb) reduction ratio in
terms of model size. But for the same reduction ratio as our
reduction, we found that time-constant-based reduction intro-
duces large errors (up to 12.91%) because too many nodes are
to be eliminated and the reduction criteria cannot be satisfied.

Note that the sparsification in the VPEC model can dramat-
ically reduce the number of mutual inductive couplings but
can also maintain the accuracy [44]. As a result, we use this
technique during our reduction for larger circuits. For example,
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TABLE II
SIMULATION EFFICIENCY COMPARISON BETWEEN ORIGINAL

AND SYNTHESIZED MODELS

in the case of ckt5 (the largest one) in Table II, we obtain
a 97.5% sparsification from 19 900 to 498 mutual inductors.
Due to this sparsification, it reduces the reduction time by 10×
(365.4–47.8 s).

X. CONCLUSION

We have proposed a new hierarchical multipoint reduction
algorithm for the wideband modeling of high-performance RF
passive and linear(ized) analog circuits. In the theoretical side,
we showed that s-domain hierarchical reduction is equivalent
to the implicit moment matching at around s = 0 and that
hierarchical one-point reduction is numerically stable for gen-
eral tree-structured circuits. We also showed that hierarchical
reduction preserves the reciprocity of passive circuit matrices.
In the practical side, we have proposed a hierarchical multipoint
reduction scheme for the high-fidelity wideband modeling of
general passive and active linear circuits. A novel explicit
waveform-matching algorithm is proposed for searching dom-
inant poles and their residues from different expansion points,
which is shown to be more efficient than the existing pole search
algorithm. The passivity of reduced models is enforced by the
state-space-based optimization method. We also proposed a
general multiport network realization framework to generate
SPICE-compatible circuits as the macromodels of the reduced
circuit admittance matrices. The resulting modeling algorithm
can generate the multiport passive SPICE-compatible model
for any linear passive network with easily controlled model
accuracy and complexity. Experimental results on a number of
passive RF and interconnect circuits have shown that the new
proposed macromodeling technique generates more compact
models given the same accuracy requirements than existing
approaches like PRIMA and time-constant methods.
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