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Field Programmability of Supply Voltages
for FPGA Power Reduction

Fei Li, Yan Lin, Student Member, IEEE, and Lei He

Abstract—Power reduction is of growing importance for field-
programmable gate arrays (FPGAs). In this paper, we apply
programmable supply voltage (Vdd) to reduce FPGA power. We
first design FPGA logic fabrics using dual-Vdd levels and show
that field-programmable power supply is required to obtain a
satisfactory power-versus-performance tradeoff. We further de-
sign FPGA interconnect fabrics for fine-grained Vdd program-
mability with minimal increase of the number of configuration
static-random-access-memory cells. With a simple yet practical
computer-aided design flow to leverage the field-programmable
dual-Vdd logic and interconnect fabrics, we carry out a highly
quantitative study using placed and routed benchmark circuits,
and delay, power, and area models obtained from detailed circuit
designs. Compared to single-Vdd FPGAs with the Vdd level sug-
gested by the International Technology Roadmap for Semiconduc-
tors for 100-nm technology, field-programmable dual-Vdd FPGAs
reduce the total power by 47.61% and the energy-delay product
by 27.36%.

Index Terms—Dual Vdd, field-programmable gate array
(FPGA) architecture, power reduction, supply-voltage program-
mability.

I. INTRODUCTION

A FIELD-PROGRAMMABLE gate array (FPGA) is an
attractive design platform due to its low nonrecurring

engineering (NRE) cost and short time to market. However,
for a given register transfer level (RTL) design, it has a much
lower power efficiency than the application-specific integrated
circuit (ASIC) because a large number of transistors are used
for field programmability. FPGA power modeling and analysis
have drawn growing attentions. Poon et al. [1] and Li et al.
[2] present flexible power models for parameterized FPGA ar-
chitectures and show that both interconnect and leakage power
are significant power components. Tuan and Lai [3] analyze the
leakage power of a commercial FPGA architecture in 90-nm
technology and quantifies the leakage power challenge for
nanometer FPGAs. As power consumption becomes an increas-
ingly important design constraint, FPGA power reduction has
also been studied recently. Anderson et al. [4] introduces an
inversion method to reprogram the FPGA configuration bits
and reduce the leakage power of multiplexers (MUXs) without
additional hardware cost. Lamoureux and Wilton [5] develop a
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suite of power-aware computer-aided design (CAD) algorithms
for existing FPGA architectures. Other work involves designing
power-efficient FPGA circuits. For example, Gayasen et al. [6]
investigate the power gating of logic fabrics and apply region-
constrained placement to reduce the leakage power of unused
logic blocks.

Existing FPGAs usually use a uniform supply voltage (Vdd)
for their array cores. One can scale down the Vdd level of
an entire FPGA array to reduce power, but the power saving
is obtained at the cost of performance degradation. To further
improve power efficiency, we believe that different Vdd levels
should be explored. A dual-Vdd technique applies high supply
voltage (VddH) to devices on critical paths to maintain perfor-
mance and low supply voltage (VddL) to devices on noncrit-
ical paths to reduce power. The dual-Vdd technique has been
successfully applied in ASIC (e.g., [7]) and is able to achieve
a better power-versus-performance tradeoff than Vdd scaling
does. However, a predefined dual-Vdd FPGA fabric in general
cannot achieve a better power-versus-performance tradeoff than
Vdd scaling because its predefined dual-Vdd pattern is not
flexible enough to accommodate a variety of applications [8].
Therefore, field programmability of the dual-Vdd pattern is a
must to reduce FPGA power through dual-Vdd techniques.

The concept of Vdd programmability for FPGA was first
introduced in [8], and the preliminary studies on Vdd-
programmable logic and interconnect fabrics were reported in
[9] and [10], respectively. Compared to papers [8]–[10], this
paper presents more analysis and experimental results and also
significantly reduces the circuit overhead to implement the Vdd
programmability. To the best of our knowledge, this paper and
[8]–[10] present the first in-depth study of field-programmable
supply voltages for FPGAs. A variety of new developments
on Vdd programmability in FPGAs have been introduced in
recent papers such as [11]–[15] (to be discussed in Section VII).
Dual-Vdd technology mapping and clustering were also studied
in [16] and [17].

The rest of this paper is organized as follows. Section II
presents the background knowledge and baseline architecture
for comparison. Section III introduces the field-programmable
power supply to logic fabrics and discusses the detailed circuit
and fabric design. Section IV discusses the CAD flow with
consideration of Vdd-programmable logic fabrics. Experimen-
tal results of logic and local interconnect power reduction
are presented in Section V. Section VI further applies Vdd
programmability to global interconnects (global interconnects
and interconnect fabric are used interchangeably in this paper)
and discusses the design of Vdd-programmable interconnect
switches. We conclude this paper in Section VII.
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Fig. 1. (a) Island-style routing architecture. (b) Connection block and connection switch. (c) Switch block. (d) Routing switches.

II. BACKGROUND AND PRELIMINARIES

A. Cluster-Based Island-Style FPGAs

This paper assumes the cluster-based island-style FPGA ar-
chitecture from [18], which is shown in Fig. 1(a). Logic blocks
are surrounded by programmable routing channels, and routing
wires in both horizontal and vertical channels are segmented
by “switch blocks.” Fig. 1(c) shows a subset switch block [19],
where the incoming track can only be connected to outgoing
tracks with the same track number. The connections in a switch
block [represented by the dashed lines in Fig. 1(c)] are program-
mable routing switches. As shown in Fig. 1(d), routing switches
can be implemented by tristate buffers, and each connection
needs two tristate buffers so that it can be programmed inde-
pendently for either direction.1 The wire segments in routing
channels are connected to the input/output pins of a logic block
by connection blocks, as shown in Fig. 1(b).

In this paper, we assume that a logic block contains ten
basic logic elements (BLEs), with each BLE having one four-
input lookup table (LUT) and one flip-flop, and the interconnect
structure contains 100% tristate buffers (rather than a mix of
buffers and pass transistors). We customize an FPGA array for
each individual benchmark circuit so that the array size just
fits the given circuit for logic cell placement. We decide the
routing channel width W in the same way as the architecture
study in [18], i.e., W = 1.2Wmin, where Wmin is the minimum
channel width required to route the given circuit successfully.

1Modern FPGAs often use unidirectional routing switches. Because of the
limitation of the VPR tool set [20], we assume bidirectional switches that are
implemented by tristate buffers. However, our low-power techniques apply to
unidirectional switches.

This channel width W represents a “low-stress” routing situ-
ation that usually occurs in commercial FPGAs for “average”
circuits. Similar to [18], we conduct experiments by placing and
routing MCNC benchmarks in 100-nm technology.

B. Low-Leakage Static RAM (SRAM)

FPGAs use a large number of SRAM cells for field pro-
grammability. The configuration SRAM cells are used either
to program the logic function of LUTs or to configure the
connections between routing wires. Previous work has shown
that high threshold voltage (high Vt) can be used for transistors
in SRAM cells to reduce SRAM leakage [3], [8]. Fig. 2 uses
an LUT as an example to illustrate the application of such
low-leakage technique. The entire LUT is partitioned into two
different regions. All the configuration SRAM cells belong to
region I, while the rest including MUX-tree and input buffers
becomes region II. Note that the two regions are dc discon-
nected due to the inverters at the output of the SRAM cells.
The content of the SRAM cells does not change after the LUT
is configured, and the SRAM cells always stay in the READ

status. Therefore, they only consume leakage power (excluding
dynamically reconfigurable designs), and their READ or WRITE

delays are irrelevant to the design performance. Ideally, we
can increase Vt in region I as much as possible to achieve
maximal leakage reduction without runtime delay penalty. In
reality, a too high Vt increases the SRAM WRITE time (i.e.,
FPGA configuration time) significantly. In this paper, we in-
crease the Vt of SRAM cells to obtain 15× SRAM leakage
reduction, which only increases the configuration time by 13%.
This tradeoff is justifiable because the configuration time is
not critical in most FPGA applications. Note that the high-Vt
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Fig. 2. Schematic of a four-input LUT using high-Vt (low-leakage) SRAM cells (“SR” stands for SRAM cell).

Fig. 3. Logic blocks in dual-Vdd and Vdd-programmable FPGAs. (a) Logic
block. (b) H-block. (c) L-block. (d) P-block.

low-leakage SRAM cells can also be used for the programma-
bility of interconnects. In the rest of this paper, we assume that
the low-leakage SRAMs are used for all the programmability in
FPGAs.

III. VDD-PROGRAMMABLE LOGIC FABRICS

To introduce dual-Vdd and Vdd programmability to the logic
fabric, we design the detailed circuits and architectures. We
assume that the global interconnects use uniform VddH in this
section but remove this assumption in Section VI.

A. Circuit Design for Logic Blocks

We design three types of logic blocks, as shown in Fig. 3.
The first two types “H-block” and “L-block” are connected to
supply voltages VddH and VddL, respectively. An H-block has
the highest performance, but an L-block has reduced power
consumption at the cost of increased delay. To further introduce
Vdd programmability, a “P-block” in Fig. 3(d) is designed by
inserting p-channel MOS (PMOS) transistors between the

Fig. 4. Area and delay overhead of the power switch for a four-input LUT.

power supply rails and the logic block. These transistors are
named “power switches,” and configuration bits are used to
control the power switches so that an appropriate supply voltage
can be chosen for the P-block.

Note that the power switch is very similar to the sleep
transistor used in power gating [21]. An important design aspect
for the sleep transistor is how to determine its size because
it impacts both performance and area overhead. We control
the area overhead of power switches in two ways. First, sleep
transistors usually use high Vt for better leakage reduction
in power-off state. Transistors with high Vt have larger ON-
resistance and the transistor size needs to be increased for a
specified performance. We design power switches with normal
Vt so that area overhead can be reduced. Fig. 4 presents the
simulation program with integrated circuit emphasis (SPICE)
simulation results for a four-input LUT with a power switch.
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We use the Berkley Predictive BSIM4 model [22] in 100-nm
technology, which considers deep submicrometer effects such
as gate leakage. The x axis is the power-switch area in the
percentage of the original four-input LUT area, and y axis is
the corresponding circuit delay. The area is calculated as the
equivalent number of minimum-width transistors. The delay
overhead due to power-switch insertion is labeled beside each
data point. Under the same area budget, a power switch with
normal Vt has smaller delay compared to a power switch with
high Vt. Simulation result shows that compared to a normal
four-input LUT at the same Vdd level, an optimized four-
input LUT with power switches has 5% extra delay and 21%
transistor-area overhead.

Because the peak current for a circuit is normally smaller
than the sum of peak current for all of its subcircuits, we assume
that a logic block shares one power switch, and we carry out
SPICE simulations to find the worst-case peak current for the
logic block. Most of the LUTs in a logic block are switching in
this worst case. We then decide the power-switch size subject to
the delay constraint under the worst-case peak current and apply
the size to the power switches for all logic blocks. The same
principle is applied to power-switch sizing in [21], and novel
methods such as the genetic algorithm and the Automatic Test
Pattern Generation algorithm [23] can be used to find the worst-
case peak current for a logic block. For our logic block with ten
LUTs, only 12% area overhead is required to afford the same
5% performance loss for the worst-case simultaneous switching
current. Therefore, large granularity significantly reduces the
power-switch size and transistor-area overhead. To select differ-
ent supply voltages, we need two power switches for each logic
block. According to Fig. 4, different supply voltages have little
impact on the area overhead under the same delay increase. To
limit the delay increase to 5%, a P-block logic block requires
24% area overhead for two power switches again for the worst-
case simultaneous switching current.

The configuration bits for power switches are stored in
SRAM cells and consume leakage power. The dynamic power
overhead due to the parasitic capacitances of power switches is
almost ignorable as indicated by the SPICE simulation. This is
because the power-switch transistor is either ON or OFF during
normal operation, and almost no charging or discharging occurs
on the source/drain capacitors. Therefore, the major power
overhead of Vdd programmability comes from the leakage
power of those configuration SRAM cells. Because high-Vt
SRAM can be applied to all configuration bits, the increased
number of SRAM cells due to supply-voltage programmability
may not necessarily lead to a large increase of leakage power.

Due to the similarity between power switches and sleep
transistors, we can apply power gating to an unused P-block
simply by turning off both switches. However, our normal-
Vt power switches may consume more leakage compared to
high-Vt sleep transistors. To reduce leakage power effectively,
we propose “gate-boosted power switches.” When putting a
P-block into power-off state, we drive the gate voltage of a
PMOS power switch to one Vt higher than the Vdd level at
its source node. Table I shows that a gate-boosted power switch
can reduce leakage by two orders of magnitude compared to
a normal switch. A Vdd-programmable logic block with gate-

TABLE I
LEAKAGE POWER FOR A P-BLOCK CONTAINING ONE FOUR-INPUT LUT

Fig. 5. Level-converter circuit with single supply voltage.

TABLE II
DELAY AND POWER OF THE LEVEL CONVERTER IN FIG. 5

AT BERKLEY-PREDICTED 100-nm TECHNOLOGY

boosted power switch requires three different Vdd levels. Note
that gate boosting has already been used in some commercial
Xilinx FPGAs [18] to compensate the logic 1 degradation of
n-channel MOS (NMOS) pass transistors in routing switches.
Therefore, our study assumes that gate boosting is available for
PMOS power switches.

B. Level Converter

In a dual-Vdd circuit, the interface between a VddL device
and a VddH device must be designed carefully to avoid the
excessive leakage power. If a VddL device drives a VddH
device and the VddL device output is logic 1, both PMOS and
NMOS transistors in the VddH device will be partially ON and
will dissipate an unacceptable amount of leakage power due to
dc short circuit current. A level converter should be inserted to
block the short-circuit current. The level converter converts a
VddL signal swing to a VddH signal swing.2 Different level-
converter circuits have been used in dual-Vdd ASIC designs
[24]–[27]. We use the recently proposed asynchronous level
converters with single supply voltage [28] in our dual-Vdd
fabrics. Fig. 5 shows the transistor-level schematic of the level
converter. When the input signal is logic 1, the threshold-
voltage drop across NMOS transistor n1 can provide a virtual
low supply voltage to the first-stage inverter (p2, n2) so that
p2 and n2 are not be partially ON. When the input signal is
logic 0, the feedback path from node OUT to PMOS transistor
p1 pulls up the virtual supply voltage to VddH, and inverter

2Note that a VddH device can drive a VddL device without generating
excessive leakage power, and no level converter is needed.
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Fig. 6. Predefined dual-Vdd layout patterns. (a) Row-based dual-Vdd layout pattern. (Ratio VddL Row/VddH Row = 1 : 1). (b) Interleaved dual Vdd layout
pattern (Ratio VddL Block/VddH Block = 1 : 1).

(p2, n2) generates a VddH signal to the second inverter so that
no dc short circuit current occurs. For a particular VddH/VddL
combination, we decide the transistor size in the level converter
as follows: We start from a level converter with minimum
transistor sizes. We then size up the transistors to limit the
level-converter delay within 30% of a single LUT delay or
7% of a logic cluster delay. For transistor sizes that meet
the delay bound, we choose the sizing with the lowest power
consumption. Table II shows the delay and leakage power of the
sized level converters. Note that the leakage power increases as
the voltage difference between VddH and VddL increases. This
is because the threshold-voltage drop cannot provide proper
low supply when the gap between VddH and VddL is large.
Therefore, the VddH/VddL ratio cannot be too large unless the
threshold voltage of NMOS transistor n1 can be adjusted for a
given range of VddH/VddL ratio.

C. Dual-Vdd Logic Fabric and Vdd Programmability

The combination of three types of logic blocks can construct
different FPGA logic fabrics. We study two logic fabrics, a
predefined dual-Vdd fabric, and a Vdd-programmable fabric in
the succeeding subsections.

1) Predefined Dual-Vdd Fabric: The predefined dual-Vdd
fabric named “arch-DV” in this paper is a mixture of H-blocks
and L-blocks. There is a predefined Vdd level (VddH or VddL)
for each logic block in the fabric. The physical locations of H-
blocks and L-blocks define the dual-Vdd layout pattern. Fig. 6
shows two possible layout patterns. One is the row-based pat-
tern with a ratio of VddL-row/VddH-row as 1 : 1. Another is the
interleaved layout pattern with a ratio of VddL-block/VddH-
block as 1 : 1. The ratio of VddL-row/VddH-row or the ratio
of VddL-block/VddH-block can be determined experimentally.
Note that the routing resources use uniform VddH because this
section focuses on applying dual Vdd only to logic blocks, and
dual-Vdd routing fabric is explored in Section VI. Fig. 6 also
shows routing paths that connect logic blocks with different
supply voltages. The output signals from a VddL logic block

must go through level converters before entering the routing
channels. If the VddL logic block size is N , i.e., it has N output
pins, we need N level converters at the output pins. On the
other hand, VddH logic blocks do not need any level converters.
The signal in the uniform VddH routing finally reaches another
logic block, which can be VddH or VddL. In either case, no
level converters are needed at the input pins of a logic block.

2) Vdd-Programmable Logic Fabric: When all the logic
blocks in an FPGA fabric are P-blocks, we call it a logic
fabric with full Vdd programmability. This logic fabric has
the maximum Vdd programmability for logic blocks. For each
output of a P-block, we have a level converter to implement the
interface from VddL logic block to VddH routing channels. The
logic block output can be programmed to either go through
the level-converter circuit or bypass it.

On the other hand, one can also obtain a logic fabric by
mixing all three types of logic blocks, and it has the level of
Vdd programmability between the predefined dual-Vdd logic
fabric and the logic fabric with 100% P-blocks. Although
such a fabric represents a tradeoff between power-switch area
and Vdd programmability, the different tile size of H-block/
L-block and P-block may cause difficulty in obtaining a regular
fabric layout. In this paper, we only study Vdd-programmable
logic fabric with 100% P-blocks, with the experimental results
for fabrics of mixed H-block/L-block/P-block being presented
in [9].

IV. CAD FLOW FOR VDD-PROGRAMMABLE

LOGIC FABRICS

We develop a design flow in Fig. 7 to leverage the dual-
Vdd and Vdd-programmable fabrics. Given a single-Vdd gate-
level netlist, we first apply single-Vdd technology mapping and
timing-driven packing [18] to obtain a cluster-level netlist. We
then perform single-Vdd timing-driven placement and routing
by the Versatile Place and Route Tool for FPGAs (VPR)
[18] and generate the back-annotated basic circuit netlist (BC-
netlist) defined in [2]. As the first step to consider dual Vdd in
the design flow, Vdd assignment for logic blocks is performed
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Fig. 7. Design flow for predefined dual-Vdd and Vdd-programmable logic
fabrics.

to obtain a dual-Vdd BC-netlist. After the dual-Vdd assign-
ment, we have two different design paths. If the logic fabric has
full Vdd programmability (i.e., 100% P-blocks), the dual-Vdd
assignment result is always feasible, and an enhanced version
of the FPGA power analysis framework “fpgaEva-LP” [2], [14]
is used to estimate the power and performance. If the logic
fabric is a predefined dual-Vdd fabric, the corresponding design
path goes through an extra step of dual-Vdd placement.3 We
discuss the dual-Vdd assignment and dual-Vdd placement in
the succeeding sections.

A. Dual-Vdd Assignment

The dual-Vdd assignment determines the Vdd level for each
logic block in the mapped netlist. It makes use of the time
slack in a circuit and performs power optimization by applying
dual-Vdd levels. Sensitivity-based algorithms have been used
in ASIC circuit tuning for either delay optimization [29] or
power-delay tradeoff [30]. We use a similar sensitivity-based
algorithm for dual-Vdd assignment. First, we define “power
sensitivity” as follows.

Definition 1 (Power Sensitivity Sx): For a given design
variable x, power sensitivity is calculated as

Sx =
∆P

∆x
=

∆Psw

∆x
+

∆Plkg

∆x
(1)

3Because we apply uniform high Vdd (VddH) to interconnects in this section,
the routing algorithm does not need to consider dual Vdd.

Fig. 8. Sensitivity-based dual-Vdd assignment algorithm.

where Psw is switching power and Plkg is leakage power.
In our dual-Vdd assignment problem, the design variable x

becomes supply voltage Vdd. To calculate power sensitivity, we
need the relationship between power and supply voltage. We
use the FPGA power model in [2]. The switching power Psw of
a primitive node i in the BC-netlist is calculated as follows:

Psw(i) = 0.5f · Êi · Ci · Vdd2 (2)

where f is the clock frequency, Êi is the effective transition
density considering glitches, and Ci is the load capacitance. The
leakage power Plkg of node i is calculated as follows:

Plkg(i) = Ilkg(Vdd) · Vdd (3)

where Ilkg is the leakage current at supply voltage Vdd. The
power sensitivity of a logic block B can be calculated as the
sum of sensitivities for all the nodes inside this logic block, i.e.,

Sx(B) =
∑

node i∈B

Sx(i). (4)

We present our dual-Vdd assignment algorithm in Fig. 8. It
is a greedy algorithm with an iteration loop. Given the single-
Vdd BC-netlist, we analyze the timing and obtain the circuit
path with the largest time slack. Power sensitivity is calculated
for logic blocks on this path but not on the critical path. We
assign low Vdd to the logic block with the largest power
sensitivity and update the timing information. If the new critical
path delay exceeds the user-specified delay increase bound,
we reverse the low-Vdd assignment. Otherwise, we keep this
assignment and go to the next iteration. In either case, the logic
block selected in the current iteration will not be revisited in
other iterations. Dual-Vdd assignment ignores the placement
constraint imposed by the predefined pattern. This constraint is
to be handled by dual-Vdd placement.

B. Placement for Predefined Dual-Vdd Fabric

We develop a dual-Vdd placement algorithm based on
the simulated annealing algorithm implemented in VPR [18].
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The VPR placement tool models an FPGA as a set of legal
slots or discrete locations, at which logic blocks or I/O pads
can be placed. A linear congestion cost function is used in
VPR placement to reduce wire length and congestion, which
is shown as follows:

Costlin−cgst =
Nnets∑
i=1

q(i)
[

bbx(i)
Cav,x(i)γ

+
bby(i)

Cav,y(i)γ

]
. (5)

The summation is over the number of nets Nnets in the circuit.
For each net i, bbx(i) and bby(i) represent the horizontal
and vertical spans of its bounding box, respectively. The q(i)
compensating factor is due to the fact that a wire length model
using the bounding box underestimates the wiring required
to connect nets with more than three terminals. The value of
q(i) depends on the number of terminals in net i. Cav,x(i)

and Cav,y(i) are the average channel capacities in the x and y
directions, respectively, over the bounding box of net i. When
channel capacities are different across an FPGA chip, the cost
function penalizes placements, which require more routing in
the narrower channels and hence reduce the routing congestion.

We adopt the same adaptive annealing schedule in VPR but
use a new cost function that has terms considering dual Vdd.
“moves” are defined as either swapping two logic blocks or
relocating a logic block to an empty slot. The cost of relocating
a logic block j to an empty slot, which is also the cost difference
between the placements before and after the relocation,4 is

Cost(relocate) =∆Cost(placement)

=∆Costlin−cgst − α · ∆matched(j)

+ β · (1 − matched(j)) . (6)

Weight coefficients α and β are determined experimentally. In
our experiments, we find that α = 1 × 10−5 and β = 0.5 ×
10−5 can push most of the logic blocks into Vdd-matched
sites while introducing minimal wire length and delay penalty.
matched(j) is a Boolean function that describes the Vdd-
matching status of a logic block in the new slot and is defined as

matched(j)

=

{ 1, VddL block j in the slot of L-block or P-block
1, VddH block j in the slot of H-block or P-block
0, otherwise.

If the Vdd assigned to block j matches the Vdd at its physical
location, matched(j) returns a value of “1.” Otherwise, it
returns “0.” Because the power supply of a P-block in a Vdd-
programmable fabric is configurable, any logic block placed
in a P-block slot returns a matched value. ∆matched(j) is the
difference in matched(j), which penalizes relocating block
j from a Vdd-matched location to an unmatched location.
The term 1 − matched(j) penalizes relocating block j from
a Vdd-unmatched location to another unmatched location
and attempts to maximize the number of Vdd-matched logic
blocks. Considering the power and delay overhead of a P-block

4We use this representation of our cost function because it is easier to
integrate into the incremental updating mechanism in the simulated annealing.

TABLE III
PERCENTAGE OF VddL LOGIC BLOCKS GIVEN BY DUAL-Vdd WITH

ZERO DELAY INCREASE AND NO LAYOUT RESTRICTIONS

(VddH = 1.3 V, AND VddL = 0.8 V)

used in a Vdd-programmable logic fabric, we further penalize
the Vdd-matched location at a P-block slot other than that at an
H-block or L-block slot. The cost of swapping two logic blocks
is the sum of the costs given by (6) for the two blocks. Because
the time overhead to calculate the new cost function is almost
ignorable, our dual-Vdd placement algorithm runs in the same
time as the original VPR placement tool.

V. EXPERIMENTAL RESULTS FOR VDD-PROGRAMMABLE

LOGIC FABRICS

In this section, we first compare four types of FPGAs,
namely: 1) arch-SV; 2) arch-DV; 3) arch-PV; and 4) ideal-DV.
The difference between the four FPGAs lies in the logic fabric.
Their interconnect fabrics all use uniform VddH. The logic
fabric in arch-SV uses the same single Vdd as its interconnect
fabric, and it is the baseline in our architecture comparison.
arch-DV is our predefined dual-Vdd FPGA, and its logic fab-
ric consists of H-blocks and L-blocks, with VddH being the
same Vdd level for its interconnect fabric. Both row-based and
interleaved dual-Vdd layout patterns are studied. arch-PV is
our Vdd-programmable FPGA with 100% P-blocks. ideal-DV
is the ideal case that does not have any P-blocks but assumes
that the mixture and placement of H-blocks and L-blocks
can be “perfectly” customized for each individual application.
Compared to arch-PV with 100% P-blocks to customize the
power supply for every logic block, ideal-DV has neither power
and delay overhead associated with P-blocks nor the capability
to turn off the unused logic blocks by power gating. It does have
all the necessary level converters whenever a VddL block drives
a VddH block.

Before we present the experimental results, we need to deter-
mine the ratio between the H-block and L-block for predefined
dual-Vdd FPGA arch-DV. Table III shows the percentage of
VddL logic blocks after dual-Vdd assignment for 20 MCNC
benchmark circuits [31]. No delay increase is allowed when we
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Fig. 9. Power versus delay for s38584 (arch-SV, single-Vdd FPGA; arch-
DV, FPGA with predefined dual-Vdd logic fabric; arch-PV, FPGA with Vdd-
programmable logic fabric).

assign VddL to logic blocks. VddH and VddL are set to 1.3 and
0.8 V, respectively. The percentage varies from 53% to 96%,
and the average is about 75%. It clearly shows that circuits
implemented on uniform-Vdd FPGA have a large amount of
timing slack to be utilized for power reduction. According to the
ideal percentage given by dual-Vdd assignment and considering
that the predefined dual-Vdd layout pattern constraints may
reduce the percentage of VddL logic block, we set the ratio
H : L to 1 : 2 for arch-DV.5

A. Architecture Comparison

We carry out experiments on 20 MCNC benchmarks for the
four types of FPGAs. Both row-based and interleaved layout
patterns in Fig. 6 have been tried for arch-DV. However, our
experimental results show no significant power and perfor-
mance difference between these two layout patterns. Consid-
ering that a row-based layout pattern is easier to use in routing
the power/ground network, we only present the experimental
results of the row-based layout pattern for arch-DV.

Fig. 9 presents the architecture comparison for a large
MCNC benchmark circuit “s38584.” The x axis is the clock
frequency calculated as the reciprocal of critical path delay.
This delay is obtained by the timing analysis in VPR based
on the Elmore delay model and is generally overestimated.
The y axis is the total power consumption. Each curve in
the figures represents the power-versus-performance tradeoff
for a particular FPGA architecture under different Vdd levels
or VddH/VddL combinations. For arch-DV and ideal-DV, we
try several different VddH/VddL combinations and prune the
“inferior” data points (i.e., those with larger power consumption
and smaller clock frequency compared to certain VddH/VddL
combination) to obtain the curve. We label the Vdd level or
VddH/VddL combination beside each data point. The curve
for arch-SV shows that we can scale down the Vdd level of

5We also conducted experiments with higher percentage of H-blocks. The
experimental results do not change the conclusion to be presented that a fixed
dual-Vdd layout pattern leads to a large delay penalty.

a single-Vdd FPGA and reduce the power at the cost of per-
formance degradation.6 The curve for arch-DV demonstrates
poor performance for the predefined dual-Vdd FPGA. The
placement constraint for the predefined dual-Vdd fabric arch-
DV is large enough to degrade the performance dramatically
and equivalently leads to a large power overhead at the same
clock frequency.

With Vdd programmability to remove the placement con-
straint of matching Vdd levels, FPGA arch-PV (with 100%
P-blocks) is able to achieve a better power-versus-performance
tradeoff curve compared to arch-SV (see Fig. 9). The advan-
tage of FPGA architecture arch-PV over arch-DV has been
observed for all the benchmark circuits, and it shows that the
field programmability of Vdd is required to obtain a satisfac-
tory power-versus-performance tradeoff. In the clock frequency
range of our experiments, the power saving by arch-PV is
larger at the higher frequency end. This is because higher clock
frequency usually requires higher supply voltage, and the gap
between VddH and VddL could be larger. As VddH decreases
at lower frequency and VddL is limited by the lowest Vt in
a technology, the gap between VddH and VddL decreases as
well. This limits the opportunity for dual-Vdd optimization at
the lower frequency end. Moreover, FPGA arch-PV gives a
power-versus-performance tradeoff curve that is close to that of
FPGA ideal-DV for most VddH/VddL combinations. It shows
that the power and delay overhead for Vdd programmability is
relatively small.

Table IV presents the power saving by Vdd-programmable
FPGA arch-PV as well as the delay increase when compared
to single-Vdd FPGA arch-SV for all the MCNC benchmark
circuits [32]. The Vdd level for arch-SV is 1.3 V, as suggested
by the International Technology Roadmap for Semiconductors
(ITRS) [33] for 100-nm technology. The VddH/VddL combi-
nation for arch-PV is 1.3 V/0.8 V. FPGA arch-PV has a larger
critical path delay due to the insertion of power switch for
logic blocks. However, this delay increase is very small with
properly sized power switches, and it is only 2.33% in our
experiments. We break down FPGA power into logic power,
local interconnect power, and global interconnect power. The
logic power is the power of LUTs, flip-flops, and MUXs in logic
blocks. The local interconnect power is the power of internal
routing wires and buffers within logic blocks. Routing wires
outside logic blocks, programmable interconnect switches in
routing channels, and their configuration SRAM cells con-
tribute to the global interconnect power. Because FPGA arch-
PV has the Vdd programmability for logic blocks, it can reduce
both logic power and local interconnect power. On average,
arch-PV reduces logic power by 42.30% and reduces local
interconnect power by 37.97%. However, the total FPGA power
saving is significantly smaller, and it is only 9.74% on average.
When considering the delay increase in FPGA arch-PV, the
energy-delay product reduction is only 5.48%. The small power
saving for an entire FPGA chip is because global interconnects
between logic blocks consume most of the power in an FPGA.

6For Vdd scaling, we assume that the threshold voltage Vt can be scaled to
maintain constant leakage. This scheme is called constant leakage scaling, and
it offers a good power and performance tradeoff, as studied in [8].
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TABLE IV
POWER AND DELAY COMPARISON BETWEEN FPGA arch-PV (WITH 100% P-BLOCKS) AND THE BASELINE FPGA arch-SV.

THE Vdd IS 1.3 V FOR arch-SV, AND THE VddH/VddL COMBINATION IS 1.3 V/0.8 V FOR arch-PV

Fig. 10. (a) Vdd-programmable routing switch. (b) MUX-based Vdd-programmable connection block. [“SR” stands for SRAM cell, and “LC” stands for the
level converter. The same configurable level-conversion circuit is used in both (a) and (b)].

As shown by the power breakdown in Table IV for arch-SV, the
global interconnect power is significantly larger than the sum
of logic power and local interconnect power. Therefore, Vdd
programmability must be applied to FPGA interconnect fabric
in order to achieve significant total power saving, which is to be
presented in the next section.

VI. VDD-PROGRAMMABLE INTERCONNECT FABRICS

A. Vdd-Programmable Interconnect Fabric

We apply programmable dual-Vdd to each interconnect
switch (either a routing switch or a connection switch). Our
Vdd-programmable routing switch is shown in Fig. 10(a). The
right part of the circuit is the Vdd-programmable routing buffer.
For the tristate buffer in the routing switch, we insert two
PMOS transistors M3 and M4 between the tristate buffer and
the VddH and VddL power rails, respectively. Similar to a Vdd-
programmable logic block, turning off one of the two power

TABLE V
UTILIZATION RATE OF INTERCONNECT SWITCHES
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TABLE VI
DELAY AND POWER OF A Vdd-PROGRAMMABLE ROUTING SWITCH. WE USE A 7× MINIMUM-WIDTH TRISTATE BUFFER

FOR ROUTING SWITCHES AND A 4× MINIMUM-WIDTH PMOS TRANSISTOR FOR POWER SWITCHES

switches can select a Vdd level for the routing switch. Consider-
ing the extremely low interconnect utilization rate (on average,
11.90%,7 as shown in Table V, for the MCNC benchmark
set), we can turn off both power switches and power gate an
unused routing switch. In that case, we provide three Vdd states,
namely: 1) high Vdd; 2) low Vdd; and 3) power gating.

The power-gating state provided by Vdd programmability is
very attractive because our SPICE simulation shows that the
power gating of the routing switch can reduce its leakage power
by a factor of over 300 at circuit level. We also consider the
power and delay overhead associated with the power-switch
insertion. The dynamic power overhead is almost ignorable (see
the energy per switch in Table VI). This is because the power
switches stay either ON or OFF, and there is no charging and
discharging at their source/drain capacitors. The main power
overhead is the leakage power of the extra configuration cells
for Vdd selection. We use the same high-Vt SRAM cells in
Section II to reduce configuration cell leakage. Furthermore,
the Vdd-programmable routing buffer has an increased delay
compared to the conventional routing buffer because the power
switches are inserted between the buffer and power supply.
We size the power switches for the tristate buffer to achieve a
bounded delay increase. For a routing architecture with all wire
segments spanning four logic blocks, we assume 7× minimum-
width tristate buffers and get a 16% delay increase by inserting
4× minimum-width power switches. The left part of the circuit
in Fig. 10(a) is the configurable level converter. We insert the
level converter right before the routing buffer and use a MUX to
either use this level converter or bypass it. Transistor M1 is used
to prevent signal transitions from propagating through the level
converter when it is bypassed; therefore, the dynamic power of
an unused level converter is eliminated. Only one configuration
bit is needed to realize the level-converter selection and signal
gating for unused level converters. The delay of this config-
urable level converter is also shown in Table VI, in contrast
with a normal level converter.

Connection block is another type of routing resource [18].
Fig. 10(b) shows the MUX-based implementation of a connec-
tion block, which chooses only one track in the channel and
connects it to the logic-block input pin. The buffers between the
routing track and the MUX are connection switches. To apply

7Note that we use the minimum FPGA array that just fits the application
circuit. In reality, the chip size can be significantly larger than necessary, and
the interconnect switch utilization can be much lower.

Vdd programmability to connection blocks, we can simply re-
place the connection switches with Vdd-programmable buffers
and insert the configurable level conversion circuits before
each new connection switch. However, this structure introduces
a large number of extra configuration SRAM cells. For a
connection block containing N Vdd-programmable connection
switches, there are 2N + �log2 N� configuration SRAM cells,
among which the �log2 N� SRAM cells are for the MUX and
the other 2N SRAM cells are for the N Vdd-programmable
connection switches. Another disadvantage for such a connec-
tion block is that its delay increases quickly as the number of
inputs to the connection block increases. Recently, new Vdd-
programmable switch and connection block are proposed in
[14] to improve the SRAM efficiency as well as the delay. As
shown in Fig. 11(a), a Vdd-programmable switch module with
three signal ports, namely: 1) V ddH_En; 2) V ddL_En; and
3) Pass_En, is first defined. By setting these three control sig-
nals, we can program the Vdd-programmable switch between
Vdd selection and power gating. Fig. 11(b) further shows the
SRAM-efficient Vdd-programmable switch. Pass_En can be
generated by V ddH_En and V ddL_En with a NAND2 gate.
With the new Vdd-programmable switch, the SRAM-efficient
design of Vdd-programmable connection block is shown in
Fig. 11(c). It removes the MUX and tie the tristate outputs of
Vdd-programmable switches together. A �log2 N� : N decoder
and 2N NAND2 gates are used to generate the control signals
for the Vdd-programmable switches. When the connection
block is used, only one of the Vdd-programmable switches is
enabled, and the V dd_sel signal selects its Vdd level. The other
Vdd-programmable switches are power gated. When the entire
connection block is not used, Dec_Disable is asserted to power
gate all the Vdd-programmable switches in the connection
block. By combining the configuration bits for signal multiplex-
ing in a MUX and those for Vdd selection, this design avoids
a straightforward implementation of Vdd-programmability on
connection blocks and reduces the number of SRAM cells
for an N -input connection block to [log 2N ] + 2. Due to the
removal of pass transistor trees from the critical path, the
new connection block is 28% faster and consumes 19% less
dynamic power as shown in Table VII. We use the SRAM-
efficient Vdd-programmable switches and connection blocks in
our interconnect fabric. Because we apply programmable Vdd
to both logic blocks and programmable interconnect switches,
it is possible that a VddL connection switch connects to a VddH
logic block. To ensure that there is supply level conversion for
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Fig. 11. (a) Vdd-programmable switch. (b) SRAM-efficient Vdd-programmable switch. (c) SRAM-efficient Vdd-programmable connection block.

TABLE VII
DELAY AND POWER OF THE SRAM-EFFICIENT Vdd-PROGRAMMABLE CONNECTION BLOCK COMPARED TO A CONVENTIONAL CONNECTION BLOCK

WITHOUT Vdd PROGRAMMABILITY. WE USE A 4× MINIMUM-WIDTH TRISTATE BUFFER FOR CONNECTION SWITCHES AND A 1× MINIMUM-WIDTH

PMOS TRANSISTOR FOR POWER TRANSISTORS. THE PARAMETER N FOR A CONNECTION BLOCK IS 32

this type of connection, we also insert the configurable level
conversion circuit before each logic-block input pin.

The resulting FPGA has Vdd programmability for both logic
and interconnect fabrics, and we name it “arch-PV-fpga.” The
same design flow for the FPGA arch-PV (with 100% P-blocks)
in Fig. 7 can be applied to arch-PV-fpga. The only difference
is that a circuit element in dual-Vdd assignment can be either
a logic block or an interconnect switch. Power sensitivity is
calculated for both logic blocks and interconnect switches. The
Vdd assignment is performed as a postrouting procedure, and
no change is made to the original VPR tool.

B. Experimental Results

In this section, we compare the new fabric arch-PV-fpga
with the baseline fabric arch-SV and present the results in
Table VIII. The Vdd-programmable interconnects in FPGA
arch-PV-fpga enable Vdd selection for used interconnect
switches and power gating for unused interconnect switches.
Because the FPGA area is dominated by the interconnect

fabric, our fine-grained Vdd-programmable interconnect fabric
increases the FPGA tile size significantly. Using the area model
in [18], we have estimated that FPGA arch-PV-fpga is 125%
larger than baseline FPGA arch-SV [34]. The larger tile size
translates into a 50% wire length increase (also a 50% wire
capacitance and resistance increase) for each wire segment in
routing channels.

As shown in columns 6–8, the leakage power of global
interconnects is reduced by 55.51%, and the dynamic power
of global interconnects is reduced by 32.39%. The overall
global interconnect power is reduced by 46.74%. With this
power reduction for global interconnects, arch-PV-fpga is able
to reduce the total FPGA power by 47.61%. In contrast, arch-
PV only applies Vdd programmability to the logic fabric, and
the total FPGA power reduction is only 9.74% (see Table IV).
Our arch-PV-fpga has a 17.65% delay increase compared to
arch-SV. The majority of delay increase comes from longer
wire segments due to the area overhead. The rest delay in-
crease comes from Vdd-programmable routing switches. Con-
sidering this performance loss, we compare the metric of the
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TABLE VIII
POWER AND DELAY COMPARISON BETWEEN FPGA arch-PV-fpga AND BASELINE FPGA arch-SV. THE Vdd IS 1.3 V FOR arch-SV,

AND THE VddH/VddL COMBINATION IS 1.3 V/0.8 V FOR arch-PV-fpga

energy-delay product in column 10 and show that arch-PV-fpga
can still reduce the energy-delay product significantly (27.36%,
on average, for the MCNC benchmark circuits). Note that our
SRAM-efficient connection block is 28% faster compared to
the MUX-based connection block, and it helps mitigate the
delay overhead. Columns 11 and 12 show the delay increase
and energy-delay product reduction of arch-PV-fpga when us-
ing straightforward implementation of Vdd-programmable con-
nection block based on a tree-structure MUX. At circuit level,
the tree-based connection block with Vdd programmability has
a 6% larger delay than the baseline connection block without
Vdd-programmability. Together with the delay overhead from
longer wire segments and Vdd-programmable routing switches,
tree-based connection blocks would result in a 23.17% delay
increase and only 20.42% energy-delay product reduction.
This comparison clearly shows the performance advantage of
SRAM-efficient connection blocks in our Vdd-programmable
FPGAs.

VII. CONCLUSION AND DISCUSSION

This paper presents field-programmable dual-Vdd and Vdd
gating (in short, Vdd programmability) for FPGA power re-
duction. We have shown that field programmability is required
to achieve a satisfactory power-versus-performance tradeoff.
We have designed novel FPGA logic and interconnect fabrics
with Vdd programmability and developed a simple yet practical
CAD flow to leverage the new fabrics. We have carried out
a highly quantitative study using delay and power models
obtained from circuit design at 100-nm technology. We also es-
timated that the area overhead of our Vdd-programmable FPGA
is 125%, using the area model [18]. This translates into a 50%
wire length increase in the interconnect fabric. We compare our
Vdd-programmable FPGA to a single-Vdd FPGA with a Vdd
level suggested by ITRS for a 100-nm process. Considering all
the area and delay overhead, our Vdd-programmable logic fab-

ric reduces logic power and local interconnect power by 42.30%
and 37.97%, respectively, and our Vdd-programmable inter-
connect fabric reduces global interconnect power by 46.74%.
Overall, we are able to reduce the total FPGA power by 47.61%.
Our critical path delay is 17.65% larger than that of the single-
Vdd FPGA due to the delay overhead of Vdd programmability
and longer wire segments. Considering this performance loss,
we still reduce the energy-delay product by 27.36%. To the
best of our knowledge, it is the first in-depth study on field-
programmable supply voltages for FPGA power reduction.

We have studied supply-voltage programmability using the
common academic research framework, the generic tile-based
architecture presented in [18], and the de facto benchmark suite
MCNC benchmark suite [31] for academic research. In the
future, we plan to extend the concept of supply-voltage pro-
grammability to commercial FPGA architectures and circuits
and verify this technique by large industry benchmarks.

Although we have significantly reduced interconnect power,
there is still a large amount of leakage power and area overhead
due to the level converters inserted in our Vdd-programmable
interconnect fabric. Recent studies have reduced such leakage
and area overhead. Anderson and Najm [12] use the keeper
transistor in the routing structure of commercial FPGAs to per-
form the level restoring. In essence, it combines the level con-
verter with the routing switch at circuit level. Gayasen et al. [11]
use the same Vdd level for all the routing trees driven by one
output of a logic block. Therefore, the Vdd-level conversion
occurs only at the input/output pins of a logic block. With
same level-converter placement as in [11], Lin and He [35]
customize the Vdd level for each routing tree and further allow
high-Vdd wire segments driving low-Vdd segments within each
routing tree. It also performs chip-level time slack allocation
and obtains significant power reduction compared to both this
paper and [11]. The area overhead of Vdd programmability in
[34] and [35] is barely 17% for about 54% energy-delay product
reduction.
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