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Abstract

To reduce FPGA power, Vdd programmability has been proposed recently to select Vdd-level for interconnects and to power-
gate unused interconnects. However, Vdd-level converters used in the existing Vdd-programmable method consume a large amount
of leakage. In this paper, we propose two ways to avoid using level converters in interconnects, tree based level converter insertion
(TLC) and dual-Vdd tree based level converter insertion (dTLC). TLC enforces that there is only one Vdd-level within each routing
tree while dTLC can have different Vdd-levels within a routing tree, but no VddL switch drives VddH switches. We develop dual-
Vdd assignment algorithms considering chip-level time slack allocation for maximum power reduction. Our algorithms include
power sensitivity based algorithms, TLC-S and dTLC-S, with implicit time slack allocation and a linear programming (LP) based
algorithm, dTLC-LP, with explicit time slack allocation. All first allocate time slack to interconnects with higher power sensitivity
and assign low-Vdd to them for more power reduction. Compared to the aforementioned Vdd-programmable method using Vdd-
level converters, the best algorithm dTLC-LP reduces interconnect power by 64.06% without performance loss for the MCNC
benchmark circuits. Compared to dTLC-LP, dTLC-S obtains slightly smaller power reduction but runs 3X faster.

Index Terms

Power minimization, Low-power design, Interconnect, Optimization.

I. INTRODUCTION

FPGA power modeling and reduction has become an active research recently. [1], [2] present power evaluation frameworks for
generic parameterized FPGA architectures, and show that both interconnect and leakage power are significant for nanometer
FPGAs. [3] presents a power-driven partition algorithm for mapping applications to FPGA with different Vdd-levels. [4]
studies the interaction of a suite of power-aware FPGA CAD algorithms without changing the existing FPGAs. [5] proposes
configuration inversion method to reduce leakage power of multiplexers without any additional hardware. In addition, low
power FPGA circuits and architectures have been proposed. [6] designs a new type of routing multiplexer and proposes
an input control method to reduce unused routing multiplexer leakage. [7] develops region-based power-gating for unused
FPGA logic blocks to reduce leakage power. [8] studies low leakage interconnect circuitry, which combines gate biasing, body
biasing and multi-threshold techniques to reduce interconnect leakage. [9], [10] are the first work introducing dual-Vdd and
field programmability of Vdd to FPGA. [11] applies fine-grained power-gating to FPGA interconnects and presents a routing
algorithm for pre-determined dual-Vdd interconnects. Vdd programmability has been applied to both FPGA logic blocks [9],
[10] and interconnects [12]–[14].

In this paper, we improve the Vdd-programmable interconnects proposed in [13], where a Vdd-level converter is inserted
in front of each interconnect switch to avoid excessive leakage when a low-Vdd (VddL) interconnect switch drives high-Vdd
(VddH) interconnect switches. A level converter is also inserted at each logic block (CLB) input and output. The segment
based level converter insertion, called as SLC, provides fine-grained Vdd-programmability for interconnects and may help to
maximize dynamic power reduction. However, SLC also introduces large leakage overhead. As presented in Table I, the average
leakage due to level converters in routing channels is 29% of total power for the 20 largest MCNC benchmark circuits [15] at
the ITRS 100nm technology node [16] with power-gating 1 of unused interconnect switches [13], [17].

There are some previous approaches to avoid directly using level converters in Vdd-programmable interconnects. [14] uses
level-restore buffers to avoid using level converters in interconnects. NMOS power transistor is used to generate the VddL level
leveraging the threshold voltage drop of NMOS transistor when passing ‘1’. However, the range of VddL is limited by the
threshold voltage of NMOS power transistor. The level-restore PMOS transistor is an alternative level converter design, which
has less leakage overhead but may cause larger delay and therefore larger short circuit power compared to the level converter
used in [13]. [12] inserts a level converter at each CLB input or output. All the routing trees driven by (driving) a CLB have the
same Vdd-level as the source (sink) CLB when level converters are inserted at CLB inputs (outputs). A path-based assignment
is performed to assign Vdd-level for CLBs and interconnects. However, the assignment is lacking of flexibility and cannot
effectively leverage the surplus timing slack existing in FPGA designs.

1Power-gating unused level converters may reduce leakage, but is less attractive compared to methods in this paper that remove level converters.
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circuit total power # of LCs leakage of LCs
(watt) power (watt) % of total power

alu4 0.10956 122980 0.01771 16.16%
apex2 0.13507 201536 0.02902 21.49%
apex4 0.07986 137020 0.01973 24.71%
bigkey 0.22706 285740 0.04115 18.12%
clma 0.74067 2050655 0.29529 39.87%
des 0.25343 415715 0.05986 23.62%

diffeq 0.05062 128921 0.01856 36.67%
dsip 0.24545 357175 0.05143 20.95%

elliptic 0.16033 438283 0.06311 39.37%
ex1010 0.23347 584995 0.08424 36.08%
ex5p 0.07924 143065 0.02060 26.00%
frisc 0.29861 944892 0.13606 45.57%

misex3 0.09974 132440 0.01907 19.12%
pdc 0.34530 878867 0.12656 36.65%
s298 0.07383 157652 0.02270 30.75%

s38417 0.34903 743341 0.10704 30.67%
s38584 0.30223 602095 0.08670 28.69%

seq 0.13901 201536 0.02902 20.88%
spla 0.21521 498311 0.07176 33.34%
tseng 0.04075 88660 0.01277 31.33%

avg. 29.00%

TABLE I
LEAKAGE POWER OF VDD-LEVEL CONVERTERS IN VDD-PROGRAMMABLE INTERCONNECTS WITH SEGMENT BASED LEVEL-CONVERTER INSERTION

USING 100nm TECHNOLOGY. (LC STANDS FOR LEVEL CONVERTER.)

In this paper, we use the Vdd-programmable interconnects from [13], but remove the level converters in routing channels
by developing novel Vdd-level assignment algorithms to guarantee that no VddL switch drives VddH switches. Our first
contribution is that we propose two ways to avoid using level converters in interconnects. Same as [13], level converters
are inserted at CLB inputs and outputs, and can be used when needed. In the first approach, we enforce that there is only
one Vdd-level within each routing tree, namely, tree based level converter insertion (TLC). In the second approach, we can
have different Vdd-levels within a routing tree, but no VddL switch drives VddH switches, namely, dual-Vdd tree based level
converter insertion (dTLC).

Our second contribution is that we propose a few Vdd-level assignment algorithms considering time slack allocation to
maximize power reduction. For the specified clock cycle time Tspec, path timing constraints can be translated into the delay
upper bounds for nets using delay budgeting. A greedy algorithm [18] and a convex programming technique [19] have been
developed for delay budgeting in placement. [20], [21] apply delay budgeting to minimize Flip-Flops number and improve
performance in sequential applications of FPGA. In this paper, we represent the net delay upper bound by time slack, i.e., the
amount of delay that could be added to routing trees without increasing Tspec. We then allocate time slack to each routing
tree and minimize the chip-level interconnect power.

Our Vdd-level assignment algorithms include power sensitivity based algorithms, TLC-S and dTLC-S for TLC and dTLC
problems respectively, and a linear programming (LP) based algorithm, dTLC-LP for dTLC problem. TLC-S and dTLC-S
implicitly allocate time slack first to interconnects with larger power sensitivity and assign VddL to them for more power
reduction. dTLC-LP first explicitly allocate time slack to each routing tree by formulating the problem as an LP problem to
maximize a lower bound of power reduction, and then Vdd-level assignment is solved optimally within each routing tree given
the allocated time slack. Compared to [13], the best algorithm dTLC-LP reduces total interconnect power by 64.06% without
performance loss. In contrast, the best approach proposed in [12] achieves 55.45% power reduction. Compared to dTLC-LP,
dTLC-S obtains slightly smaller power reduction but runs 3X faster.

The rest part of the paper is organized as follows. Section II presents the preliminaries and motivation. Section III introduces
modeling and problem formulation. Section IV describes power sensitivity based algorithms and the LP based algorithm.
Section V presents the experimental results and Section VI concludes this paper. The preliminary results of TLC was first
presented in [17] 2.

II. BACKGROUND AND MOTIVATION

A. Preliminaries

Interconnects consume most of the area and power of FPGAs. We assume the traditional island style routing architecture [22]
as shown in Figure 1 in our study. The logic blocks (CLBs) are surrounded by routing channels consisting of wire segments. We
use CLBs with cluster size N = 10 and LUT size k = 4 in our study. The input and output pins of a CLB can be connected to
the wire segments in the surrounding channels via a connection block (see Figure 1 (b)). The multiplexer-based implementation
chooses only one track in the routing channel and connects it to the CLB input pin. The buffers between the routing tracks

2However, the emphasis of [17] is architecture evaluation considering Vdd programmability.
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and the multiplexer are connection switches. There is a routing switch block at each intersection of a horizontal channel and a
vertical channel. The connections in a switch block (represented by the dashed lines in Figure 1 (c)) are programmable routing
switches. We implement routing switches by tri-state buffers and use two tri-state buffers for each connection so that it can be
programmed independently for either direction. An interconnect switch is either a routing switch or a connection switch. An
interconnect segment is a wire segment driven by an interconnect switch. As suggested in [22], we assume a uniform length
4, which is the optimal single wire length, for all wire segments. We plan to extend our methodology to mix of wire segments
of different lengths in the future.
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Fig. 1. (a) Island style routing architecture; (b) Connection block; (c) Switch block; (d) Routing switches. (SR stands for SRAM cell.)

Vdd programmability can be applied to interconnects to reduce FPGA power. Figure 2 shows the Vdd-programmable
interconnect switch proposed in [13]. For the Vdd-programmable routing switch in Figure 2 (a), two PMOS power transistors
M3 and M4 are inserted between the tri-state buffer and VddH, VddL power rails, respectively. Turning off one of the power
transistors can select a Vdd-level for the routing switch. By turning off both power transistors, an unused routing switch can be
power-gated. SPICE simulation shows that power-gating the routing switch can reduce the leakage power of an unused routing
switch by a factor of over 300 [13]. There are power and delay overhead associated with the power transistors insertion.
The dynamic power overhead is almost negligible. This is because that the power transistors stay either ON or OFF after
configuration and there is no charging and discharging at their source/drain capacitors. The delay overhead associated with the
power transistor insertion can be bounded when the power transistor is properly sized. Another type of routing resources is the
connection block in Figure 2 (b). Similar to the routing switch, programmable-Vdd is also applied to the connection switch.
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Fig. 2. (a) Vdd-programmable routing switch; (b) Vdd-programmable connection block; (c) Configurable Vdd-level conversion. (SR stands for SRAM cell
and LC stands for level converter.)

A Vdd-level converter is needed whenever a VddL interconnect switch drives a VddH interconnect switch to avoid excessive
leakage. In other cases, the level converter can be bypassed. As shown in Figure 2 (c), a pass transistor M1 and a MUX together
with a configuration SRAM cell can be used to implement a configurable level conversion. A configurable level conversion
circuit is inserted in front of each interconnect switch to provide fine-grained Vdd programmability for interconnects in [13].
Same as [13], in this paper we start with the single-Vdd placed and routed netlists for MCNC benchmark circuits and then
perform Vdd-level assignment for interconnects. For the rest part of the paper, we use switch to represent interconnect switch
for simplicity whenever there is no ambiguity.



3

B. Motivation

The Vdd-programmable interconnects proposed in [13] insert a configurable Vdd-level converter in front of each interconnect
switch. However, the segment based level converter insertion, called as SLC in this paper, introduces large leakage overhead.
Analysis (see Table I) shows that the average leakage of the level converters in routing channels is 29% of total power for
MCNC benchmark circuits. If CAD algorithms can guarantee that no VddL interconnect switch drives VddH switches, no
level converter is needed. In this paper, we propose two ways to avoid using level converters in interconnects. Same as [13],
configurable level converters are inserted at CLB inputs and outputs, and can be used when needed. In the first approach, we
enforce that there is only one Vdd-level within each routing tree, namely, tree based level converter insertion (TLC). Since
two routing trees will not intersect with each other, we do not need level converters in routing channels. Figure 3 (a) shows
the TLC and illustrates the situation that a VddH routing tree and VddL routing tree can share a same routing track without
level converters in routing channels. In the second approach, we can have different Vdd-levels within a routing tree, but no
VddL switch drives VddH switches, namely, dual-Vdd tree based level converter insertion (dTLC). As shown in Figure 3 (b),
we allow that VddH switch drives VddL switches within one routing tree for dTLC. To make the presentation simple, we
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Fig. 3. (a) Tree based level converter insertion; (b) Dual-Vdd tree based level converter insertion.

summarize the notations frequently used in this paper in Table II. They will be explained in detail when first used.

G(V, E) timing graph
PI set of all primary inputs and register outputs
PO set of all primary outputs and register inputs
FOv set of all fanout vertices of vertex v in G
SRC set of vertices corresponding to routing tree sources
Ri ith routing tree in FPGA
FOij set of fanout switches of jth switch in Ri

SLij set of sinks in the fanout cone of jth switch in Ri

a(v) arrival time of vertex v in G
d(u, v) delay from vertex u to vertex v in G
Nr total number (#) of routing trees in FPGA
vij Vdd-level of jth switch in Ri

lik # of switches in the path from source to kth sink in Ri

sik allocated slack for kth sink in Ri

pi0 vertex in G corresponding to the source of Ri

pik vertex in G corresponding to kth sink of Ri

fs(i) transition density of Ri

Nk(i) # of sinks in Ri

Ns(i) total # of switches in Ri

Nl(i) # of VddL switches in Ri

Fn(i) estimated # of VddL switches in Ri

TABLE II
NOTATIONS FREQUENTLY USED IN THIS PAPER.

III. MODELING AND PROBLEM FORMULATION

A. Delay Modeling with Dual-Vdd

A directed acyclic timing graph G(V , E) [22] is constructed to model the circuit for timing analysis. Vertices represent the
input and output pins of basic circuit elements such as registers and LUTs. Edges are added between the inputs of combinational
logic elements (e.g. LUTs) and their outputs, and between the connected pins specified by the circuit netlist. Register inputs
are not joined to register outputs. Each edge is annotated with the delay required to pass through the circuit element or routing.
We use PI to represent the set of primary inputs and register outputs which have no incoming edges, and PO to represent
the set of primary outputs and register inputs which have no outgoing edges.
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Elmore delay model [23] is used to calculate the routing delay. We define the fanout cone of an interconnect switch as the
sub-tree of the routing tree rooted at the switch. Assigning VddL to a switch affects the delay from source to all the sinks
in its fanout cone, and therefore affects the delay of the corresponding edges in G. To incorporate dual-Vdd into the timing
analysis, we use SPICE to pre-characterize the intrinsic delay and effective driving resistance for a switch under VddH and
VddL, respectively. We use Berkeley predictive device model [24] at the ITRS 100nm technology node in this paper. SPICE
simulation (see Table III) shows that Vdd-level has little impact on the input and load capacitance of a switch, and such impact
is ignored in this paper.

Vdd (volt) Cinput (fF) Cload (fF)
1.3 2.3 9.8
0.8 2.2 10.2

TABLE III
THE INPUT AND LOAD CAPACITANCE OF A 7X BUFFER CALIBRATED USING SPICE UNDER 1.3V AND 0.8V, RESPECTIVELY.

B. Power Modeling with Dual-Vdd

There are three power sources in FPGAs, switching power, short-circuit power and leakage power. The first two contribute
to the dynamic power and can only occur when a signal transition happens at the gate output. Although timing change may
change the transition density, we assume that the transition density for an interconnect switch will not change when VddL is
used, and the switches within one routing tree have the same transition density. The third type of power, leakage power, is
the power consumed when there is no signal transition for a circuit element. We assume that the power-gated unused switches
consume no leakage. Despite of simplification in the modeling, a more accurate power simulation will be performed to verify
experimental results in Section V.

Given Vdd-level of interconnect switches and transition density of routing trees, the interconnect power P using pro-
grammable dual-Vdd can be expressed as the sum of dynamic power and leakage power as follows,

P = 0.5fclk · c

Nr−1X

i=0

fs(i)

Ns(i)−1X

j=0

V ddij
2 +

Nr−1X

i=0

Ns(i)−1X

j=0

Ps(V ddij) (1)

where Nr is the total number of routing trees, fs(i) is the transition density of ith routing tree Ri, Ns(i) is the number of
switches in Ri, and V ddij , Ps(V ddij) and c are the Vdd-level, leakage power and load capacitance of each switch respectively.
For the rest part of the paper, we use Ri to represent ith routing tree. The dynamic power quadratically depends on the Vdd-
level while the leakage power exponentially depends on the Vdd-level. For simplicity, we assume that all the switches have the
same load capacitance. Our algorithms can however be easily extended to remove the simplification. vij indicates Vdd-level
of jth switch in Ri as follows

vij =
{

1 if Vdd-level of jth switch in Ri is VddH
0 if Vdd-level of jth switch in Ri is VddL

Reducing the Vdd-level can reduce both dynamic and leakage power. The interconnect power reduction Pr using programmable
dual-Vdd can be expressed as the sum of dynamic power reduction and leakage power reduction as follows,

Pr = 0.5fclk · c · ∆V dd2
Nr−1∑

i=0

fs(i)Nl(i) +

Nr−1∑

i=0

∆PsNl(i)

=

Nr−1∑

i=0

[0.5fclk · c · ∆V dd2 · fs(i) + ∆Ps] · Nl(i) (2)

∆V dd2 = V ddH2 − V ddL2

Nl(i) =

Ns(i)−1∑

j=0

(1 − vij)

where Nl(i) is the number of VddL switches that can be achieved in Ri and ∆Ps is the leakage power reduction of a switch
by changing its supply voltage from V ddH to V ddL. We assume that unused switches have been power-gated in this paper.

C. Problem Formulation

Removing Vdd-level converters requires that no VddL switch should drive VddH switches. For TLC, only one Vdd-level
can be used within each routing tree, and the Vdd-level constraints can be expressed as

vij = vik 0 ≤ i < Nr ∧ 0 ≤ j, k < Ns(i) (3)
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i.e., each pair of switches within a routing tree have the same Vdd-level. For dTLC, we can have different Vdd-levels within
one routing tree, and the Vdd-level constraints can be expressed as

vik ≤ vij 0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) ∧ k ∈ FOij (4)

i.e., no VddL switch should drive VddH switches. FOij gives the set of fanout switches of jth switch in Ri.
The timing constraints require that the maximal arrival time at PO with respect to PI is at most Tspec, i.e., for all paths

from PI to PO, the sum of edge delays in each path p must be at most Tspec. As the number of paths from PI to PO can be
exponential, the direct path-based formulation on timing constraints is impractical for analysis and optimization. Alternatively,
we use the net-based formulation which partitions the constraints on path delay into constraints on delay across circuit elements
or routing. Let a(v) be the arrival time for vertex v in G and the timing constraints become

a(v) ≤ Tspec ∀v ∈ PO (5)
a(v) = 0 ∀v ∈ PI (6)

a(u) + d(u, v) ≤ a(v) ∀u ∈ V ∧ v ∈ FOu (7)

where V is the set of vertices in G, d(u, v) is the delay from vertex u to v and FOu is the set of fanout vertices of u.
The below objective function (8) is to maximize the power reduction (2).

Maximize

Nr−1∑

i=0

[0.5fclk · c · ∆V dd2 · fs(i) + ∆Ps] · Nl(i) (8)

The TLC problem consists of objective function(8), Vdd-level constraints (3) and timing constraints (5), (6) and (7). The dTLC
problem is same as the tree based problem except that Vdd-level constraints (4) replace (3).

IV. CHIP-LEVEL VDD ASSIGNMENT

A. Tree Based Level Converter Insertion (TLC)

In this section, we present a simple yet practical power sensitivity based algorithm, namely, TLC-S, for TLC problem.
Starting with a placed and routed single-Vdd circuit netlist, we calculate power sensitivity ∆P/∆Vdd, which is defined as the
power reduction (∆P ) divided by the Vdd-level difference (∆V dd) between VddH and VddL, for each switch with the wire
it drives. The total power P includes both the dynamic power Pd and the leakage power Ps. We define the power sensitivity
of tree Ri as

∑Ns(i)−1
j=0 ∆Pij/∆Vdd, where ∆Pij/∆Vdd is the power sensitivity of jth switch in Ri.

A greedy algorithm similar to that in [25] is performed to assign Vdd-level for routing trees (See Figure 4). In the beginning,
VddH is assigned to all the routing trees and the power sensitivity is calculated for each routing tree. We then iteratively perform
the following steps. VddL is assigned to the routing tree with the largest power sensitivity. After updating the circuit timing,
we accept the assignment if the critical path delay does not increase. Otherwise, we reject the assignment and restore the
Vdd-level of this routing tree to VddH. In either case, the routing tree will be marked as ‘tried’ and will not be re-visited in
subsequent iterations. After the dual-Vdd assignment, we obtain a dual-Vdd netlist without performance loss.

Tree based algorithm:
Assign VddH to all routing trees and mark them as ‘untried’;
Calculate power-sensitivity for all routing trees;
While( ∃ ‘untried’ routing tree)
{

Assign VddL to the routing tree with the largest power
sensitivity if critical path increase does not increase;

Mark the routing tree as ‘tried’;
}

Fig. 4. Sensitivity based algorithm TLC-S for TLC problem.

B. Dual-Vdd Tree Based Level Converter Insertion (dTLC)

In this section, we present two Vdd-level assignment algorithms for dTLC problem. The first algorithm is sensitivity based
algorithm called as dTLC-S, which is similar to TLC-S presented above. Both TLC-S and dTLC-S implicitly allocate time
slack first to routing trees or switches with higher power sensitivity to reduce more power. A linear programming (LP) based
algorithm with explicit time slack allocation, namely, dTLC-LP is then presented for dTLC problem. The details of these two
algorithms are presented as below.
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1) Sensitivity Based Algorithm (dTLC-S): The sensitivity based algorithm dTLC-S is quite similar to TLC-S except two
differences. First, the assignment unit in dTLC-S is an interconnect switch instead of a routing tree. We define a switch as a
candidate switch if it is ‘untried’, and it does not drive any switch or VddL has been assigned to all of its fanout switches.
In the assignment, we try to assign VddL to the candidate switch with maximum power sensitivity in each iteration. Second,
when VddL cannot be assigned to a candidate switch due to the timing violation, we mark all the upstream switches of that
candidate switch in the same routing tree as ‘tried’ and those upstream switches stay VddH. As there is no level converter in
routing channels, VddH has to be assigned to all the upstream switches of a VddH switch within a routing tree. There is no
performance loss in dTLC-S summarized in Figure 5.

Segment based algorithm:
Assign VddH to all switches and mark them as ‘untried’;
Calculate power-sensitivity for all switches;
While( ∃ ‘untried’ switch)
{

Assign VddL to the candidate switch j with the largest
power sensitivity;

If (critical path delay increases)
{

Find all the upstream switches of j in the same tree;
Assign VddH to j and those upstream switches, and

mark them as ‘tried’;
}
Else mark j as ‘tried’;

}

Fig. 5. Sensitivity based algorithm dTLC-S for dTLC problem.

2) Linear Programming Based Algorithm (dTLC-LP): The sensitivity based algorithms TLC-S and dTLC-S implicitly
allocate time slack first to routing trees or switches with higher power sensitivity to reduce more power. Below, we present a
linear programming based algorithm, called as dTLC-LP, with explicit time slack allocation considering both global and local
optimality for dTLC problem. As dTLC in general reduces more power than TLC, we only consider the LP based algorithm for
dTLC problem dTLC-LP includes three phases: We first allocate time slack to each routing tree by formulating the problem as
an LP problem to maximize a lower bound of power reduction. We then perform a bottom-up assignment algorithm to achieve
the optimal solution within each routing tree given the allocated time slack. We finally perform a refinement to leverage surplus
time slack. The details are discussed below.

• Chip-level Time Slack Allocation
Estimation for Number of Low-Vdd Switches
The slack sij of a connection between the source and jth sink in Ri is defined as the amount of delay which could be added
to this connection without increasing the cycle time Tspec. We represent the slack sij in a multiple of ∆d, where ∆d is the
delay increase for an interconnect segment by changing the Vdd-level from VddH to VddL. Figure 6 presents a 2-sink routing
tree as an example. S0 and S1 are the slacks allocated to two sinks Sink0 and Sink1, respectively. In Figure 6 (a), VddL can
be assigned to b2 given S0 = 1 and VddL can be assigned to b3 given S1 = 1. When we increase the slack S1 for Sink1 to
2 in Figure 6 (b), b0 has to stay VddH restricted by S0 = 1. In other words, b0 is restricted by both S0 and S1, and VddL
can only be assigned to b0 when S0 ≥ 3∧S1 ≥ 2. Figure 6 (c) shows the case in which VddL is assigned to all the switches
given S0 = 3 ∧ S1 = 2. Therefore, there is an upper bound for slack, which is the delay increase when VddL are assigned
to all the switches in a tree, and slack more than the upper bound cannot lead to more VddL switches. We define the useful
slack of each routing tree sink as the slack less than this upper bound. For the rest part of the paper, we use slack to represent
the useful slack.
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Fig. 6. An example for estimating number of VddL switches.

Figure 6 (a) and (b) show that we may achieve the same number of VddL switches with different slacks. Given a routing
tree with arbitrary topology and allocated slack for each sink, we need to estimate the number of VddL switches that can be
achieved. We use lik to represent the number of switches in the path from the source to kth sink in Ri. We define sink list
SLij as the set of sinks in the fanout cone of jth switch in Ri. We then estimate the number of VddL switches that can be
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achieved given the allocated slack as
Fn(i) =

Ns(i)−1X

j=0

min(
sik

lik

: ∀k ∈ SLij) (9)

To estimate the number of VddL switches that can be achieved in tree Ri, we first deliberately distribute the slack sik evenly
to the lik switches in the path from source to kth sink in Ri. For a switch with multiple sinks in its fanout cone, we choose
the minimum sik/lik as the slack distributed to the switch. We then add the slack distributed to all the switches in Ri and get
the estimated number of VddL switches. The rationale is that we consider kth sink with minimum sik/lik in sink list SLij

as the most critical sink to jth switch in Ri. Figure 6 (d) gives an example and the estimated number of VddL switches is
calculated as

Fn = S0/3 + S0/3 + S1/2 + min(S0/3, S1/2)

Theorem 1: Given a routing tree and allocated slack in a multiple of ∆d, (9) gives a lower bound of number of VddL
interconnect switches that can be achieved.

It is easy to see that (9) gives the exact number of VddL switches for 1-sink tree. For a 2-sink tree, we can verify that (9)
gives a lower bound of number of VddL switches with different allocated slack for each sink. Suppose this proposal of lower
bound holds for any tree with n − 1 sinks, we can prove that it is true for any n-sink routing tree. The details of proof is
presented in the appendix.
LP Problem Formulation
The objective function (8) is to maximize power reduction which is the weighted sum of VddL switch number within
each routing tree. To incorporate (9), which gives a lower bound of VddL switch number, into mathematical programming,
we introduce a variable fn(i, j) for jth switch in Ri and some additional constraints. The new objective function after
transformation plus the additional constraints can be expressed as

Maximize

Nr−1∑

i=0

[0.5fclk · c · ∆V dd2 · fs(i) + ∆Ps] · Fn(i) (10)

s.t.

Fn(i) =

Ns(i)−1∑

j=0

fn(i, j) 0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) (11)

fn(i, j) ≤
bsikc

lik
0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) ∧ ∀k ∈ SLij (12)

The slack sik is a continuous variable normalized to ∆d in (12) and also the rest part of the paper. The floor function bsikc
in (12) gives multiple of ∆d and is introduced to make (11) a lower bound of number of VddL switches. To avoid the floor
function that is not a linear operation, we replace bsikc

lik
with sik−1

lik
in (12) and have the following equation,

fn(i, j) ≤
sik − 1

lik
0 ≤ i < Nr ∧ ∀k ∈ SLij (13)

The slack upper bound constraints can be expressed as

0 ≤ sik ≤ lik 0 ≤ i < Nr ∧ 1 ≤ k ≤ Nk(i) (14)

where Nk(i) is the number of sinks in Ri.
We modify the timing constraints (7) as follows. For the edges corresponding to routing in G, the constraints considering

slack can be expressed as

a(pi0) + d(pi0, pik) + sik · ∆d ≤ a(pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (15)

where vertex pi0 is the source of Ri in G, vertex pik is kth sink of Ri in G and d(pi0, pik) is the delay from pi0 to pik in Ri

using VddH. For the edges other than routing in G, the constraints can be expressed as

a(u) + d(u, v) ≤ a(v) ∀u ∈ V ∧ u /∈ SRC ∧ v ∈ FOu (16)

where SRC is a subset of V and gives the set of vertices corresponding to routing tree sources.
We formulate the time slack allocation problem using objective function (10), additional constraints (11) and (13), slack

upper bound constraints (14), plus timing constraints (5), (6), (15) and (16). It is easy to verify that (5), (6), (11) and (13) ∼
(16) are linear, and the objective function (10) is linear too. Hence we have the following theorem.

Theorem 2: The time slack allocation problem is a linear programming (LP) problem.
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There are well-developed linear programming solvers available from both the commercial world like [26] and the academia
like [27]. In this paper, we use the LP solver from [27]. For the rest part of the paper, we use LP problem to represent the
time slack allocation problem.

• Net-level Assignment
Given the allocated slack for each routing tree after solving the LP problem, we perform a bottom-up assignment within

each tree to leverage the allocated slack (see Figure 7). For each tree Ri, VddH is first assigned to all the switches in Ri.
We then iteratively perform the following steps in a bottom-up fashion. We assign VddL to a candidate switch and mark the
switch as ‘tried’. After updating the circuit timing, we reject the assignment and restore the Vdd-level of the switch to VddH
if the delay increase at any sink exceeds the allocated slack. The iteration terminates when there is no candidate switch in Ri.

Bottom-up assignment within Ri:
Assign VddH to all switches in Ri and mark them as ‘untried’;
While( ∃ candidate switch)
{

Assign VddL to a candidate switch j;
If (timing constraints violated)
{

Find all the upstream switches of j in Ri;
Assign VddH to j and those upstream switches, and

mark them as ‘tried’;
}
Else mark j as ‘tried’;

}

Fig. 7. Net-level bottom-up assignment.

Theorem 3: Given a routing tree Ri and allocated slack for each sink, the bottom-up assignment gives the optimal assignment
solution when Vdd-level converters cannot be used.
Sketch of proof: If jth switch in Ri is assigned to VddL in the solution given by the bottom-up assignment and is assigned
to VddH in an optimal solution, we can assign VddL to jth switch and all of its downstream switches in the optimal solution
without violating timing constraints and get another solution that is better than the optimal solution. Therefore, the bottom-up
assignment algorithm gives the optimal solution when level converters cannot be used. �

Theorem 4: Given a routing tree Ri in which each switch has a uniform load capacitance, and transition density of the
routing tree 3, and Vdd-level converter can be used, there exists a power-optimal Vdd-level assignment for any given slack
without using Vdd-level converters.
Sketch of proof: In an optimal solution using level converters, each VddL switch in Ri can drive at most one VddH switch,
otherwise we can swap Vdd-level of the VddL switch and its fanout VddH switches without violating timing constraints and
get another solution with more VddL switches than the optimal solution. Given this observation, for each VddL switch driving
one VddH switch in an optimal solution, we can swap Vdd-level of the VddL switch and its fanout VddH switch without
introducing more level converters. By keeping this process, we can eventually achieve a solution with the same number of
VddH and VddL switches as the optimal solution, but no level converter is needed. �

• Refinement
After net-level assignment, we may further reduce power by leveraging surplus slack. Figure 6(b) shows a routing tree containing
surplus slack. b0 has to stay VddH restricted by S0 = 1. Therefore, Sink1 can only consume one unit slack from S1 and
there is surplus slack of 1. To leverage surplus slack, we mark all the VddH switches as ‘untried’ but keep the VddL switches
as ‘tried’, and then perform the sensitivity based algorithm dTLC-S (see Figure 5) to achieve more VddL switches and further
reduce power.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments on the MCNC benchmark set. We first compare the interconnect power and runtime
between the sensitivity based algorithms TLC-S, dTLC-S and the LP based algorithm dTLC-LP, which are proposed in this
paper. We then compare the best one among TLC-S, dTLC-S and dTLC-LP, and one previous approach without using level
converters in interconnects, h2lLCi [12], to the baseline using Vdd-programmable interconnects with fine-grained Vdd-level
converter inserted in routing channels, SLC [13]. We use the same Vdd-programmable logic blocks and interconnects in [13],
but no level converter is inserted in routing channels. The unused interconnect switches are power-gated in all cases. Same as
[13], we customize the FPGA chip size for each benchmark circuit and use the smallest chip that just fits each benchmark.
Considering the VddL/VddH ratio between 0.6 ∼ 0.7 suggested in [28], we use 1.3v for VddH and 0.8v for VddL in our
experiments at 100nm technology node.

3For a buffered interconnect tree, all the buffers in the tree have the same transition density without considering glitches, which might be weakened or absorbed after propagating
through a few buffers. Nevertheless, our problem formulations and algorithms can be extended if the transition density is known for each individual buffer.
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We first use VPR [22] for single-Vdd placement and routing. Before applying SLC, TLC-S, dTLC-S or dTLC-LP to the Vdd-
programmable interconnects, a sensitivity based assignment [10] is first performed to assign Vdd-level for Vdd-programmable
logic blocks without performance loss. One is easy to see that our algorithms, especially sensitivity based algorithms, can be
easily extended to consider Vdd assignment for both logic blocks and interconnects in a uniform fashion. The cycle-accurate
FPGA power simulator fpgaEva-LP2 [17] is then used to calculate power. It has been shown that fpgaEva-LP2 achieves high
fidelity as well as high accuracy compared to SPICE simulation with the average of absolute error 8.26% [17]. Because the
power computation in fpgaEva-LP2 considers short circuit power and uses input vectors, it is more accurate than the power
model in our problem formulations. Using fpgaEva-LP2 verifies both our modeling and problem formulations.

A. Comparison Between TLC-S, dTLC-S and dTLC-LP

1) Interconnect Power Comparison: We present the number of VddL switches and interconnect power achieved by TLC-
S, dTLC-S and dTLC-LP in Table IV. The number of VddL switches is expressed in percent of used switch number. The
interconnect power achieved by dTLC-S and dTLC-LP are presented in the power difference normalized to TLC-S in this
section. The benchmark clma is not presented in the table as dTLC-LP fails to solve the LP problem for the circuit. Column 2-4
in Table IV present the percentage of VddL switches achieved by the three algorithms. TLC-S, dTLC-S and dTLC-LP achieve
56.05%, 77.02% and 77.54% VddL switches, respectively. dTLC-S and dTLC-LP achieve almost the same VddL switches.
Both of these two algorithms achieve more VddL switches than TLC-S. This is because that TLC uses a routing tree as the
assignment unit and does not allow the interface of different Vdd-levels with a routing tree.

Column 5-7 in Table IV present the overall interconnect power achieved by the three algorithms. Compared to TLC-S, dTLC-
S and dTLC-LP consume 13.07% and 14.87% less power, respectively. We also present the interconnect dynamic power and
leakage power in column 8-13. Compared to TLC-S, dTLC-S and dTLC-LP consume 13.87% and 15.76% less dynamic power,
6.73% and 6.90% less leakage power, respectivly. Clearly, dTLC-LP achieves the lowest interconnect power consumption. This
is because that dTLC-LP considers both the global and local optimality. Figure 8 compares the number of VddL switches
achieved by dTLC-LP before refinement and the estimated VddL switch number given by (11). It is clear that (11) consistently
gives a lower bound of VddL switch number that can be achieved. The average error due to estimation is 4.68%.
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Fig. 8. Comparison between VddL switch number achieved by dTLC-LP before refinement and the estimated VddL switch number.

For dTLC-LP, we also present the contribution of refinement step in column 4, column 7, column 10 and column 13
in Table IV. The refinement step achieves 3.71% VddL switches. Compared to TLC-S, the refinement step obtains 2.25%
interconnect power reduction, 2.65% interconnect dynamic power reduction and 1.17% interconnect leakage power reduction,
respectively. It is clear that the refinement step is effective to re-distribute surplus time slack and to further reduce interconnect
power after chip-level time slack allocation and net-level bottom-up assignment.

2) Runtime Comparison: Table V compares the runtime 4 between the three algorithms. TLC-S is the fastest among the
three algorithms. dTLC-S and dTLC-LP take 1.64X and 5.33X runtime compared to the fastest one. Solving the LP problem
contributes the largest part of the overall runtime of dTLC-LP. The refinement step in dTLC-LP takes less than 5% of the
overall runtime. For the largest circuit clma, dTLC-LP fails to solve the LP problem after running 30 hours. We believe that
the well developed linear programming solvers in the commercial world such as [26] can solve the LP problem for clma in a
much shorter time. Note that the MCNC benchmark circuits have already been partitioned into combinational circuit blocks.
In general, large circuits might be partitioned and the LP problem then might be solved for each partition to reduce runtime.
Compared to dTLC-LP, dTLC-S has slightly larger power consumption, but runs 3X faster and is effective for large circuits.
dTLC-LP is worthwhile for small circuits and can achieve best power reduction.

4The runtime includes single-Vdd placement and routing by VPR and generating the interface files between VPR and fpgaEva-LP2.
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1 2 3 4 5 6 7 8 9 10 11 12 13
% of VddL switches interconnect power interconnect dynamic power interconnect leakage power

circuit TLC-S dTLC-S dTLC-LP (due to TLC-S dTLC-S dTLC-LP (due to TLC-S dTLC-S dTLC-LP (due to TLC-S dTLC-S dTLC-LP (due to
refinement) (watt) refinement) (watt) refinement) (watt) refinement)

Circuit TLC-S dTLC-S dTLC-LP TLC-S dTLC-S dTLC-LP TLC-S dTLC-S dTLC-LP TLC-S dTLC-S dTLC-LP
alu4 33.52% 58.72% 60.36% (3.04%) 0.05225 -12.49% -14.70% (-1.07%) 0.04948 -12.75% -15.06% (-1.08%) 0.00277 -7.73% -8.25% (-0.92%)

apex2 39.74% 68.94% 69.69% (4.53%) 0.07022 -20.42% -24.01% (-2.46%) 0.06572 -21.13% -24.95% (-2.53%) 0.00450 -10.03% -10.29% (-1.56%)
apex4 31.97% 58.99% 58.25% (5.75%) 0.03340 -16.62% -21.00% (-1.75%) 0.03027 -17.42% -22.27% (-1.74%) 0.00312 -8.85% -8.61% (-1.87%)
bigkey 65.65% 76.83% 77.44% (2.01%) 0.09110 -9.52% -9.14% (-1.23%) 0.08601 -9.93% -9.52% (-1.28%) 0.00509 -2.55% -2.70% (-0.44%)

des 60.03% 79.90% 80.38% (2.68%) 0.10906 -11.40% -13.44% (-1.83%) 0.10266 -11.82% -13.97% (-1.91%) 0.00641 -4.80% -4.97% (-0.57%)
diffeq 80.52% 91.23% 91.56% (3.22%) 0.00771 -2.47% -2.17% (-4.72%) 0.00467 -1.85% -1.28% (-7.14%) 0.00304 -3.43% -3.54% (-1.00%)
dsip 61.01% 77.69% 78.01% (1.28%) 0.10546 -12.80% -12.91% (-1.09%) 0.10023 -13.29% -13.41% (-1.13%) 0.00524 -3.36% -3.43% (-0.27%)

elliptic 79.46% 93.69% 94.09% (1.51%) 0.02483 -3.01% -3.46% (-1.32%) 0.01685 -2.05% -2.64% (-1.70%) 0.00798 -5.05% -5.19% (-0.53%)
ex1010 43.93% 69.21% 69.66% (5.99%) 0.06501 -20.05% -22.93% (-1.37%) 0.05336 -22.59% -26.06% (-1.23%) 0.01164 -8.45% -8.60% (-2.00%)
ex5p 38.12% 65.50% 64.45% (4.72%) 0.02818 -14.68% -15.09% (-1.29%) 0.02512 -15.40% -15.89% (-1.27%) 0.00306 -8.84% -8.49% (-1.48%)
frisc 95.80% 99.06% 99.07% (8.99%) 0.02431 -1.25% -1.34% (-5.00%) 0.01167 -1.43% -1.61% (-7.16%) 0.01264 -1.08% -1.08% (-3.00%)

misex3 37.12% 64.58% 65.90% (3.26%) 0.05168 -14.90% -18.38% (-1.56%) 0.04869 -15.25% -18.92% (-1.59%) 0.00298 -9.10% -9.56% (-1.08%)
pdc 37.65% 71.34% 72.24% (3.79%) 0.09887 -23.32% -26.44% (-1.74%) 0.08346 -25.38% -29.01% (-1.82%) 0.01541 -12.17% -12.50% (-1.35%)
s298 39.18% 81.28% 81.88% (2.00%) 0.02445 -28.76% -31.04% (-0.39%) 0.02090 -31.21% -33.84% (-0.34%) 0.00355 -14.30% -14.50% (-0.68%)

s38417 75.16% 85.40% 86.31% (3.47%) 0.09803 -6.58% -9.88% (-3.43%) 0.08295 -7.20% -11.05% (-3.86%) 0.01508 -3.15% -3.43% (-1.04%)
s38584 87.56% 94.42% 94.56% (3.57%) 0.08829 -5.49% -6.74% (-1.56%) 0.07637 -6.00% -7.44% (-1.65%) 0.01192 -2.20% -2.26% (-1.02%)

seq 33.04% 61.38% 62.21% (3.38%) 0.07198 -18.36% -22.21% (-2.20%) 0.06765 -18.95% -23.03% (-2.28%) 0.00434 -9.13% -9.43% (-1.07%)
spla 32.08% 69.35% 70.69% (4.02%) 0.07343 -24.89% -27.87% (-2.24%) 0.06377 -26.72% -30.08% (-2.37%) 0.00966 -12.79% -13.26% (-1.34%)
tseng 93.34% 95.88% 96.55% (3.33%) 0.00850 -1.27% 0.22% (-6.49%) 0.00643 -1.40% 0.64% (-8.26%) 0.00207 -0.86% -1.08% (-1.00%)
avg. 56.05% 77.02% 77.54% (3.71%) - -13.07% -14.87% (-2.25%) -13.78% -15.76% (-2.65%) - -6.73% -6.90% (-1.17%)

TABLE IV
PERCENTAGE OF VDDL SWITCHES AND INTERCONNECT POWER ACHIEVED BY TLC-S, DTLC-S AND DTLC-LP.

runtime (s)
circuit # of nodes TLC-S dTLC-S dTLC-LP
alu4 10716 60.52 124.4 482.53

apex2 14860 180.75 378.59 1153.28
apex4 9131 66.93 177.52 461.37
bigkey 18622 321.22 416.42 1343.65
clma 91620 8763.24 16799.67 >30H
des 15243 176.65 287.81 1054.74

diffeq 13664 113.81 143.95 553.84
dsip 11444 96.45 131.62 406.96

elliptic 30192 607.85 913.04 3136.59
ex1010 33265 836.32 1422.79 5109.22
ex5p 8722 62.11 93.99 187.44
frisc 40662 1135.84 1912.15 6135.38

misex3 10271 74.35 106.72 276.41
pdc 40001 1254.57 2508.57 8210.07
s298 16852 179.72 238.18 837.22

s38417 57503 1821.09 2895.79 9152.52
s38584 46014 1255.31 1892.86 6863.62

seq 13426 129.22 203.01 509.22
spla 27908 524.76 1009.07 3339.51

tseng 9603 52.45 71.53 163.55
geometric mean 1X 1.64X 5.33X

TABLE V
RUNTIME COMPARISON BETWEEN TLC-S, DTLC-S AND DTLC-LP.

B. Comparison Between SLC, h2lLCi and dTLC-LP with Relaxed Timing Specification

In this section, we compare dTLC-LP, which obtains the lowest interconnect power consumption among TLC-S, dTLC-S and
dTLC-LP, to two previous approaches SLC [13] and h2lLCi [12]. SLC inserts a level converter in front of each interconnect
switch as well as each CLB input and output. A greedy sensitivity based assignment is performed for the Vdd-programmable
interconnects. [12] inserts a level converter either at each CLB input or output. A path-based assignment is perform for the
Vdd-programmable interconnects. It has been shown that h2lLCi, which inserts a level converter at each CLB input and
initializes all the circuit elements with VddH, achieves the lowest power consumption among all proposed approaches in [12].

1) Interconnect Power Comparison with Relaxed Timing Specification: The timing specification may be relaxed for certain
applications that are not timing-critical. In this case, more VddL switches can be achieved and therefore more power can be
reduced with relaxed timing specification. Figure 9 compares the percentage of VddL switches and relaxed critical path delay
tradeoff curves achieved by SLC, h2lLCi and dTLC-LP. The VddL switch percentage and critical path delay are the arithmetic
and geometric mean over the MCNC benchmark set, respectively. When the timing specification is not relaxed, SLC, h2lLCi
and dTLC-LP achieve 74.70%, 41.80% and 77.54%, respectively. Both of SLC and dTLC-LP achieve more VddL switches
than h2lLCi. It is because that all the trees driven by one CLB have the same Vdd-level as the source CLB and VddH circuit
element is not allowed to drive VddL circuit element without the presence of level converter in h2lLCi. dTLC-LP consistently
achieves the highest percentage of VddL switches compared to previous approach SLC 5 and h2lLCi at different relaxed delays.

Figure 10 compares the interconnect power and critical path delay tradeoff curves achieved by SLC, h2lLCi and dTLC-LP.
Both the interconnect power and critical path delay are the geometric mean over the MCNC benchmark set. Compared to SLC,

5Without considering the delay overhead of level converters, SLC [13] may achieve more VddL switches as the Vdd-programmable interconnects with level converters are more
flexible in Vdd-level assignment.
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Fig. 9. Percentage of VddL interconnect switches vs. critical path delay curves for SLC, h2lLCi and dTLC-LP.

h2lLCi and dTLC-LP reduce interconnect power by 55.45% and 64.06% without relaxing timing specification, respectively.
dTLC-LP consistently achieves the lowest power compared to SLC and h2lLCi at different relaxed delays. Compared to SLC
at the same relaxed delay, the LP based algorithm achieves 89.22% VddL switches and reduces interconnect power by 69.05%
when we relax critical path delay by 10%. The power gap between dTLC-LP and h2lLCi decreases at larger relaxed delay.
This is because that VddL eventually can be assigned to all switches (see Figure 9) and interconnect power reduction will
saturate if we allow sufficient critical path increase.
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2) Area Comparison: Table VI present the FPGA total area given by single-Vdd, SLC, h2lLCi and dTLC-LP, respectively.
We use the same area model from [22], in which area is counted in number of minimum width transistor areas with considering
the parallel diffusions technique for large transistors. Given a transistor with channel width W , the transistor area measured
by the minimum width transistor with channel width Wmin is:

Area(W ) = 0.5 +
W

2 · Wmin

(17)

As presented in the table, the area overhead given by SLC, h2lLCi and dTLC-LP are 151.33%, 65.02% and 65.53% compared
to the single-Vdd FPGA, respectively. h2lLCi and dTLC-LP have almost the same area, and TLC-S, dTLC-S and dTLC-LP
have the same area as all of them use the same Vdd-programmable interconnects with level converters inserted at CLB inputs
and outputs.

VI. CONCLUSIONS

Considering the need to remove Vdd-level converters in routing channels that introduce large leakage overhead, we have
proposed two ways to avoid using level converters in interconnects. In the first approach, we enforce that there is only one
Vdd-level within each routing tree, namely, tree based level converter insertion (TLC). In the second approach, we can have
different Vdd-levels within a routing tree, but no VddL switch drives VddH switches, namely, dual-Vdd tree based level
converter insertion (dTLC).

We propose a few Vdd-level assignment algorithms considering time slack allocation to maximize power reduction. Our
Vdd-level assignment algorithms include power sensitivity based algorithms, TLC-S and dTLC-S for TLC and dTLC problem
respectively, and a linear programming (LP) based algorithm dTLC-LP for dTLC problem. TLC-S and dTLC-S implicitly
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circuit single-Vdd SLC h2lLCi dTLC-LP
area area overhead area overhead area overhead

alu4 2925831 7136109 143.90% 4779206 63.35% 4795092 63.89%
apex2 4384857 11078412 152.65% 7215910 64.56% 7237060 65.05%
apex4 3007921 7534174 150.48% 4903820 63.03% 4917356 63.48%
bigkey 8614605 19628149 127.85% 14192729 64.75% 14261255 65.55%
clma 36361942 100634278 176.76% 61402657 68.87% 61531343 69.22%
des 12371141 28245400 128.32% 20338979 64.41% 20435235 65.18%

diffeq 3185418 7667824 140.72% 5199431 63.23% 5217855 63.80%
dsip 9718346 22792498 134.53% 15986128 64.49% 16054654 65.20%

elliptic 9056268 23394478 158.32% 15004948 65.69% 15046402 66.14%
ex1010 11605734 30506887 162.86% 19308966 66.37% 19358692 66.80%
ex5p 3106231 7808090 151.37% 5061245 62.94% 5074781 63.37%
frisc 17028484 46672107 174.08% 28575123 67.81% 28633873 68.15%

misex3 3063483 7548212 146.39% 5009146 63.51% 5025032 64.03%
pdc 15929127 43487207 173.00% 26652048 67.32% 26706192 67.66%
s298 3947796 9485182 140.27% 6470105 63.89% 6494169 64.50%

s38417 15975183 40827249 155.57% 26625521 66.67% 26710121 67.20%
s38584 13005036 33144130 154.86% 21637358 66.38% 21705884 66.90%

seq 4384857 11078412 152.65% 7215910 64.56% 7237060 65.05%
spla 9664508 25585907 164.74% 16038715 65.95% 16076315 66.34%
tseng 2275254 5397201 137.21% 3698578 62.56% 3712114 63.15%
avg. - - 151.33% - 65.02% - 65.53%

TABLE VI
FPGA AREA COMPARISON BETWEEN SINGLE-VDD, SLC, H2LLCI AND DTLC-LP. AREA IS IN NUMBER OF MINIMUM WIDTH TRANSISTORS. WE USE

210X AND 4X PMOS POWER TRANSISTORS FOR CLBS AND 7X SWITCHES, RESPECTIVELY.

allocate time slack first to interconnects with higher sensitivity and assign VddL to them for more power reduction. dTLC-LP
first explicitly allocate time slack to each routing tree by formulating the problem as an LP problem to maximize a lower
bound of power reduction, and then Vdd-level assignment is solved optimally within each routing tree given the allocated time
slack. Compared to [13], the best algorithm dTLC-LP reduces total interconnect power by 64.06% without performance loss.
In contrast, the best approach h2lLCi proposed in [12] achieves 55.45% power reduction. Compared to dTLC-LP, dTLC-S
obtains slightly smaller power reduction but runs 3X faster.

The state-of-art commercial FPGAs have applied uni-directional level-restore routing switch in routing architecture [29]–[31].
Our methodology proposed in this paper can be directly used for the interconnects with these novel features. We believe that
dTLC formulation can still outperform TLC and h2lLCi as dTLC allows interface of different Vdd-levels within a routing tree
and is able to effectively leverage the time slack existing in FPGA designs, which can be verified as the future work.

In the future, we will study simultaneous Vdd-level assignment for logic block and interconnects. The algorithms proposed
in this paper allocate time slack first to logic blocks followed by interconnects. Allocating time slack to both logic blocks and
interconnects in a uniform fashion may reduce more power. In our study, we perform Vdd-level assignment based on single-
Vdd routing, which may be sub-optimal for Vdd-programmable interconnects. In the future, we will also study power-driven
routing, which simultaneously performs routing and Vdd-level assignment for Vdd-programmable interconnects.
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APPENDIX

proof of Theorem 1:
For a one sink routing tree R containing Ns switches as shown in Figure 11, given the allocated slack s1 for Sink1, the number
of VddL switches that can be achieved is N = s1. According to (9), the estimated VddL switch number is F =

∑Ns−1
j=0

s1

l1
= s1,

where l1 = Ns as there is only one sink in R. It is obvious that F ≤ N , and therefore (9) gives a lower bound of VddL
switch number that can be achieved for 1-sink tree R.
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Fig. 11. A 1-sink routing tree R.

We will prove Theorem 1 by induction. Suppose Theorem 1 holds for any tree Rn−1 with n− 1 sinks, we are to prove that
is true for any n-sink tree Rn. Let sk denote the allocated slack for kth sink in Rn, and lk denote the number of switches in
the path from the source to kth sink in Rn. Without lost of generality, we arrange the sink order such that for nth sink,

sn

ln
= min(

sk

lk
: ∀1 ≤ k ≤ n) (18)

We trace back Rn from nth sink and find the first branching point. Let b̂n be the branch from the immediate downstream
switch of the branching point to nth sink, and l̂n denote the number of switches in b̂n. Note that the switches in b̂n are
restricted only by sn. Suppose we remove the branch b̂n from Rn and keep the allocated slacks for the remaining n− 1 sinks
unchanged, we can get a sub-tree Rn−1 with n−1 sinks. VddL may or may not be assigned to the immediate upstream switch
of the removed branch b̂n in Rn−1. We discuss these two situations as following.

Figure 12 shows the situation in which VddL cannot be assigned to the switch that drives the branch b̂n in Rn−1. As there
is no level converter in Rn, all the upstream switches of b̂n have to stay VddH. Note that VddL cannot be assigned to the
upstream switches of b̂n regardless of sn as they are restricted by the slacks other than sn. Let Nn and Fn denote number
and estimated number of VddL switches that can be achieved in Rn, respectively. Let Nn−1 and Fn−1 denote number and
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Fig. 12. A n-sink routing tree Rn in which VddL cannot be assigned to the switch that drives bbn in Rn−1 .

estimated number of VddL switches that can be achieved in the subtree Rn−1, respectively. If sn < l̂n (see Figure 12(a)), we
can assign VddL to the bottom sn switches in b̂n, and we have

Fn = Fn|Rn−1 + Fn|bbn
= Fn|Rn−1 +

sn

ln
· l̂n

≤ Fn−1 + sn ≤ Nn−1 + Nn|bbn

= Nn|Rn−1 + Nn|bbn
= Nn (19)

where Fn|Rn−1 and Fn|bbn
are the estimated VddL switch number in Rn−1 and b̂n considering all the slacks including sn,

respectively. Fn|Rn−1 ≤ Fn−1 because of (18). Therefore, considering sn could only decrease or maintain the slacks distributed
to the switches in Rn−1. We have known Fn−1 ≤ Nn−1 by induction. Nn−1 = Nn|Rn−1 because sn ≤ l̂n and therefore sn

does not affect the Vdd-level assignment in Rn−1. It is clear that sn

ln
· l̂n ≤ sn as l̂n ≤ ln.

Similarly, if sn ≥ l̂n (see Figure 12(b)), VddL can be assigned to all the switches in b̂n while the upstream switches of b̂n

have to stay VddH, and we have

Fn = Fn|Rn−1 + Fn|bn
= Fn|Rn−1 +

sn

ln
· l̂n

≤ Fn−1 + l̂n ≤ Nn−1 + Nn|bbn

= Nn|Rn−1 + Nn|bbn
= Nn (20)

sn

ln
· l̂n ≤ l̂n because of the upper bound constraint of useful slack, i.e., sn ≤ ln. Note that sn does not affect the Vdd-level

assignment in Rn−1 even when sn ≥ l̂n. Only the upstream switches of b̂n are restricted by sn while they are also restricted
by slacks other than sn in Rn−1. Therefore, those upstream switches have to stay VddH regardless of sn. For other switches
in Rn1 , they are not restricted by sn, and therefore sn does not affect the assignment for them.

Figure 13 shows the situation in which VddL can be assigned to the switch that drives b̂n in Rn−1. Rn−1 is further
partitioned into two sub-trees as shown in the figure. We trace back from the switch driving b̂n until we reach a VddH switch.
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Fig. 13. A n-sink routing tree Rn in which VddL can be assigned to the switch that drives bbn in Rn−1 .

The first sub-tree RB is rooted at the immediate downstream switch of that VddH switch while it does not include b̂n. As
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there is no level converter in the tree, VddL has to be assigned to all the switches in RB without considering sn. The second
sub-tree RA contains all the switches not in b̂n and RB .

We first discuss the case in which sn ≤ l̂n as shown in Figure 13 (a). VddH has to be assigned to all the upstream switches
of b̂n in RB considering sn. We use b̃n be the set of the switches in RB that are assigned to VddH considering sn and l̃n
denote the number of switches in b̃n. The switches in RB − b̃n can stay VddL as they are not restricted by sn. Hence we have

Fn = Fn|RA
+ Fn|RB

+ Fn|bbn

≤ Fn−1|RA
+ Fn|RB−ebn

+ Fn|ebn
+ Fn|bbn

≤ Nn−1|RA
+ Nn|RB−ebn

+
sn

ln
· l̃n +

sn

ln
· l̂n

≤ Nn−1|RA
+ Nn|RB−ebn

+ sn

= Nn|RA
+ Nn|RB−ebn

+ Nn|ebn
+ Nn|bbn

= Nn (21)

where Fn|RA
, Fn|RB

and Fn|bbn
are the estimated VddL switch number in RA, RB , and b̂n considering all the slacks including

sn. Fn|RA
≤ Fn−1|RA

because of (18). We have known Fn−1|RA
≤ Nn−1|RA

by induction. As VddL is assigned to all the
switches in RB − b̃n, Nn|RB−ebn

is the number of switches in RB − b̃n, i.e., |RB − b̃n|. Fn|RB−ebn
≤ |RB − b̃n| as the slack

distributed to each switch is smaller than 1. Therefore, Fn|RB−ebn
≤ Nn|RB−ebn

. It is obvious that sn

ln
· l̃n + sn

ln
· l̂n ≤ sn as

l̃n + l̂n ≤ ln. Nn−1|RA
= Nn|RA

because sn does not affect Vdd-level assignment in RA in this case. The number of VddL
switches we can achieve in b̃n and b̂n is sn, i.e., Nn|ebn

+ Nn|bbn
= sn.

Similarly, if sn ≥ l̂n as shown in Figure 13 (b), some upstream switches of b̂n in RB may have to be assigned to VddH.
We have

Fn = Fn|RA
+ Fn|RB

+ Fn|bbn

≤ Fn−1|RA
+ Fn|RB−ebn

+ Fn|ebn
+ Fn|bbn

≤ Nn−1|RA
+ Nn|RB−ebn

+
sn

ln
· l̃n +

sn

ln
· l̂n

≤ Nn−1|RA
+ Nn|RB−ebn

+ min(sn, l̂n + l̃n)

= Nn|RA
+ Nn|RB−ebn

+ Nn|ebn
+ Nn|bbn

= Nn (22)

Note that the upstream switches of b̂n in RA have to stay VddH as they are restricted by slacks of some sinks other than sn.
As sn ≤ ln ∧ l̂n + l̃n ≤ ln, we have sn

ln
· l̃n + sn

ln
· l̂n ≤ min(sn, l̂n + l̃n), where min(sn, l̂n + l̃n) is the number of VddL

switches in b̂n and the upstream switches of b̂n. Based on (19) ∼ (22), we have proved Theorem 1. �




