UCLA TRIO Package

Jason Cong, Lei He Cheng-Kok Koh, and David Z. Pan

UCLA Computer Science Dept Los Angeles, CA 90095

Optimal Interconnect Synthesis

Automatic solutions guided by accurate interconnect models

UCLA TRIO Package

- Technology advances lead to the need for interconnectdriven design
- Interconnect optimization techniques for performance and signal integrity
 - Topology optimization
 - Buffer(repeater) insertion
 - Device sizing, wire sizing and spacing
- TRIO: Tree, Repeater, and Interconnect Optimization
- Goal: to develop a unified framework to apply various interconnect layout optimization techniques independently or simultaneously

Components of TRIO

Optimization engine

- Tree construction
- Buffer (repeater) insertion
- Device sizing, wire sizing and spacing

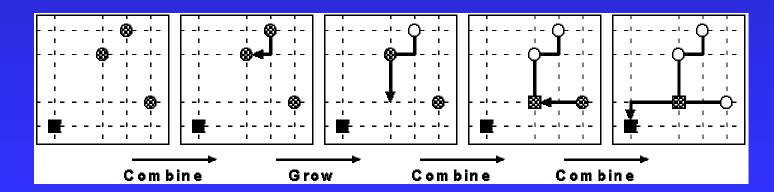
Delay computation

- ♦ Elmore delay model
- Higher-order delay model
- Device delay and interconnect capacitance model
 - Simple formula-based model
 - Table look-up based model

Optimization Engines of TRIO

Tree construction

- ◆ A-tree, buffered A-tree, and RATS-tree
- Buffer insertion
- Wire sizing and spacing
 - Single-source wire sizing
 - Multi-source wire sizing
 - Global wire sizing and spacing with coupling cap
- Simultaneous device and interconnect optimization:
 - Simultaneous buffer insertion and wire sizing
 - Simultaneous device and wire sizing
 - simple models for device delay and interconnect cap
 - Simultaneous device sizing, and wire sizing and spacing
 - table-based models for device delay and coupling cap

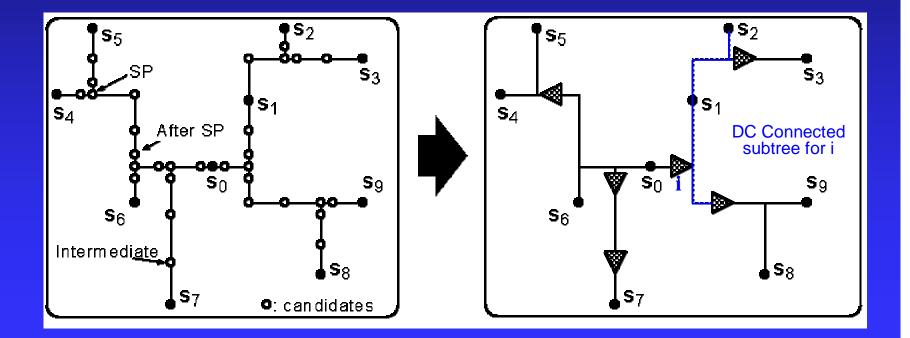

Classification of TRIO Algorithms

Bottom-up approach

- ◆ A-tree [Cong-Leung-Zhou, DAC'93]
- Buffered and wiresized A-tree [Okamoto-Cong, ICCAD'96]
- ◆ RATS-tree [Cong-Koh, ICCAD'97]
- Simultaneous buffer insertion and wire sizing [Lillis-Cheng-Lin, ICCAD'95]
- Global interconnect sizing and spacing with coupling cap [Cong-He-Koh-Pan, ICCAD'97]
- Local-refinement (LR) based approach
 - Single-source wire sizing [Cong-Leung, ICCAD'93]
 - Multi-source and variable-segmentation wire sizing [Cong-He, ICCAD'95]
 - Simultaneous driver/buffer and wire sizing [Cong-Koh, ICCAD'94, Cong-Koh-Leung, ISLPED'96]
 - Simultaneous device sizing, and wire sizing and spacing using table-based models for device delay and coupling cap [Cong-He, ICCAD'96, TCAD'99]

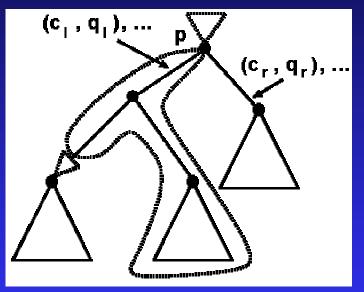
A-tree Algorithm [Cong-Leung-Zhou, DAC'93]

- A-tree: Rectilinear Steiner arborescence (shortest path tree)
- **Resistance ratio: Driver resistance vs. unit wire resistance**
- As resistance ratio decreases, min-cost A-tree has better performance than Steiner minimal tree
- A-tree algorithm
 - Start with a forest of n single-node A-trees, repeatedly
 - Grow an existing A-tree, or



Combine two A-trees into a new one

Buffer Insertion Algorithm


[van Ginneken, ISCAS'90]

Given topology, buffer types, and candidate buffer locations, insert buffers to minimize maximum sink delay

Optimal Buffer Insertion by Dynamic Programming

Bottom-up computation of irredundant set of options (c,q)'s at each buffer candidate location

Option (c,q),
c: Cap. of DC-connected subtree
q: Req. arrival time corresponding to c
Pruning Pulse, For (a g) and (a², g²).

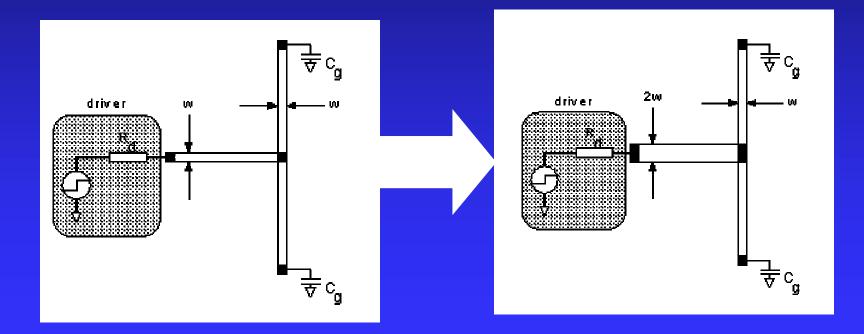
◆ Pruning Rule: For (c,q) and (c', q'), (c', q') is redundant if c' ≥ c and q' < q

 Total number of options in the source is polynomial-bounded

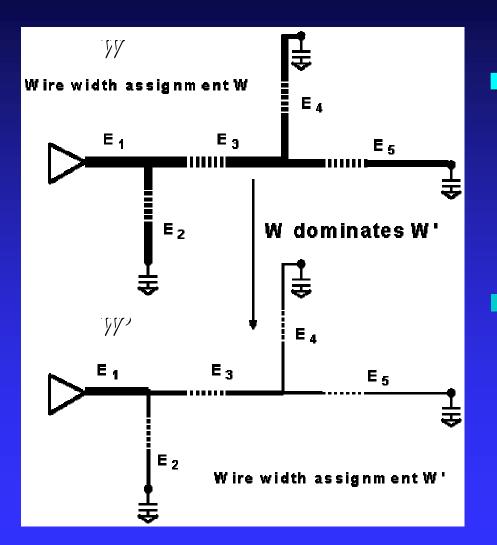
Top-down selection of optimal buffer types and buffer locations

Further Works on Bottom-up Approach

- Simultaneous buffer insertion and wire sizing [Lillis-Chen-Lin, ICCAD'95]
- Wiresized Buffered A-tree (WBA-tree) [Okamoto-Cong, ICCAD'96]
 - Combination of A-tree, simultaneous buffer insertion and wire sizing
- Global interconnect sizing and spacing considering coupling cap [Cong-He-Koh-Pan, ICCAD'97]
- **RATS-tree** [Cong-Koh, ICCAD'97]
 - Extension to higher-order delay model via bottom-up moment computation


Classification of TRIO Algorithms

Bottom-up approach


- ◆ A-tree [Cong-Leung-Zhou, DAC'93]
- Buffered and wiresized A-tree [Okamoto-Cong, ICCAD'96]
- ◆ RATS-tree [Cong-Koh, ICCAD'97]
- Simultaneous buffer insertion and wire sizing [Lillis-Cheng-Lin, ICCAD'95]
- Global interconnect sizing and spacing with coupling cap [Cong-He-Koh-Pan, ICCAD'97]
- Local-refinement (LR) based approach
 - Single-source wire sizing [Cong-Leung, ICCAD'93]
 - Multi-source and variable-segmentation wire sizing [Cong-He, ICCAD'95]
 - Simultaneous driver/buffer and wire sizing [Cong-Koh, ICCAD'94, Cong-Koh-Leung, ISLPED'96]
 - Simultaneous device sizing, and wire sizing and spacing using table-based models for device delay and coupling cap [Cong-He, ICCAD'96, TCAD'99]

Discrete Wiresizing Optimization [Cong-Leung, ICCAD'93]

- Given: A set of possible wire widths { W₁, W₂, ..., W_r }
- Find: An optimal wire width assignment to minimize weighted sum of sink delays

Dominance Relation and Local Refinement [Cong-Leung, ICCAD 93]

■ Dominance Relation For all E_j, W(E_j)≥W'(E_j) ↓ W dominates W'

Local Refinement of E

Given wire width assignment W compute optimal wire width of E assuming other wire width fixed in W

Dominance Property for Optimal Wiresizing

Theorem (Dominance Property):

Assignment W dominates optimal assignment W*
W' = local refinement of W
Then, W' dominates W*

If W is dominated by W*
W' = local refinement of W
Then, W' is dominated by W*

Application of Dominance Property

 $W_{0} = Min Width Assignment (dominated by opt. sol.)$ $W_{1} = Local-Refinement(W_{0})$ $W_{1} = Local-Refinement(W_{1})$ $W_{1} dominated by opt. sol. \Rightarrow lower bound computation$

Further Works on LR-based Approach

- Multi-source wire sizing optimization with variable segmentation [Cong-He, ICCAD'95]
 - Bundled local refinement (BLR) that is 100x faster than local refinement (LR)
- Simultaneous driver/buffer and wire sizing [Cong-Koh, ICCAD'94, Cong-Koh-Leung, ISLPED'96]
- Simultaneous device and wire sizing [Cong-He, PDW'96, ICCAD'96]
- General case: extended local refinement (ELR) for three classes of CH-programs [Cong-He, ISPD'98, TCAD'99]
 - e.g., simultaneous device sizing, wire sizing and spacing under table models rather than simple models in most works
- LR to minimize maximum delay via Lagrangian Relaxation [Chen-Chang-Wong, DAC'96]

Table-based Model for Device

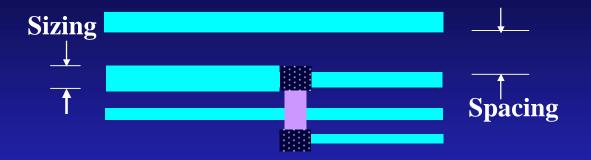
effective-resistance \mathbf{R}_0 for unit-width n-transistor

size = 100x			size = 400x				
$\mathbf{c}_{\mathbf{l}} \setminus \mathbf{t}_{\mathbf{t}}$	0.05ns	0.10ns	0.20ns	$\mathbf{c}_{\mathbf{l}} \setminus \mathbf{t}_{\mathbf{t}}$	0.05ns	0.10ns	0.20ns
0.225pf	12200	12270	19180	0.501pf	12200	15550	19150
0.425pf	8135	9719	12500	0.901pf	11560	13360	17440
0.825pf	8124	8665	10250	1.701pf	8463	9688	12470

R₀ depends on size, input transition time and output loading

- Neither a constant nor a function of a single variable
- Device sizing problem no longer has a unique local optimum
- Lower and upper bounds of exact solution can be computed by ELR operation [Cong-He, ISPD'98, TCAD'99]

Experiment Results:


- SPICE-delay comparison
 - sgws: LR-based simultaneous gate and wire sizing
 - stis: LR-based simultaneous transistor and wire sizing

DCLK	simple-model	table-model
sgws	1.16 (0.0%)	1.08 (-6.8%)
stis	1.13 (0.0%)	0.96 (-15.1%)
2cm line	simple-model	table-model
2cm line sgws	simple-model 0.82 (0.0%)	table-model 0.81 (-0.4%)

Runtime

- Total LR-based optimization
- ~10 seconds
- ♦ Total HSPICE simulation ~3000 seconds
- **Manual optimization of DCLK**
 - ♦ delay is 1.2x larger, and power is 1.3x higher

Global Interconnect Sizing and Spacing (GISS)

- SISS: Single-net interconnect sizing and spacing
- GISS: Global interconnect sizing and spacing
 - GISS/DP: Bottom-up based approach [Cong-He -Koh -Pan, ICCAD'97]
 - **GISS/ELR:** ELR based approach [Cong-He, ISPD'98, TCAD'99]
- All use table-based capacitance model with coupling capacitance [Cong-He-Kahng-et al, DAC'97]

Experiment Results

Center spacing	Ave	erage Delays(n	ns) Runtimes (s)			
	SISS	GISS/DP	GISS/ELR	GISS/DP	GISS/ELR	
1.10um	1.31	0.79 (-39%)	0.79 (-39%)	183	2.0	
1.65um	0.72	0.53 (-26%)	0.52 (-27%)	189	2.4	
2.20um	0.46	0.42 (-8.7%)	0.42 (-8.7%)	511	2.3	
2.75um	0.38	0.37 (-2.6%)	0.36 (-2.6%)	1086	4.9	
3.30um	0.35	0.34 (-2.9%)	0.32 (-8.6%)	1379	7.7	

• 16-bit bus each a 10mm-long line, 500um per segment

- **GISS is up to 39% better than SISS**
- ELR-based approach achieves best results and is 100x faster than bottom-up based approach

Flexibility of TRIO

Different combinations of optimization techniques, e.g.,

- T+B+W: Topology (T), followed by optimal buffer insertion and sizing (B), then followed by optimal wire sizing (W)
- TB+BW: Simultaneous T and B, followed by simultaneous buffer and wire sizing (BW)
- ◆ **TBW:** Simultaneous topology, buffer, and wire optimization
- **Different models**
 - Simple or table-based model for device delay and interconnect cap
 - Elmore or higher-order delay models
- **Different objective functions:**
 - Minimize delay under size constraints
 - Minimize power under required arrival time constraints
- Integrated under an interactive user front-end
 - Unified input format, data structure and GUI

Example: Trade-off of Run-Times and Solution Quality

- T+B+W:Topology (T), followed by optimal buffer insertion and sizing B (B=10) then followed by optimal wire sizing (W=18)
- TB+BW: Simultaneous T and B (B=3), followed by simultaneous driver/buffer and wire sizing (BW) with B=40, W=18
- Tbw+BW: Simultaneous TBW with small number of B=3 and W=3, then followed by BW as above
- TBW: Simultaneous TBW with larger number of B=10 and W=8

Trade-off of Run-Times and Solution Quality

		Algorithms				
		T+B+W	TB+BW	Tbw+BW	TBW	
5-pin nets	Delay	0.40	0.39	0.35	0.34	
	(nS)	0.47	0.48	0.38	0.38	
		0.42	0.41	0.36	0.35	
	CPU (S)	0.1	0.1	1.4	15	
10-pin nets	Delay	0.42	0.37	0.34	0.33	
	(nS)	0.56	0.56	0.44	0.44	
		0.47	0.45	0.38	0.38	
	CPU (S)	0.8	1.0	6.4	76	
20-pin nets	Delay	0.45	0.43	0.38	0.39	
	(nS)	0.54	0.48	0.42	0.41	
		0.46	0.43	0.38	0.38	
	CPU (S)	1.6	4.0	27.6	350	

Tbw+BW achieves "identical" delays as TBW with 10X smaller run-time