
Chapter 1

DESIGN METHODS IN SUB-MICRON TECHNOLOGIES

Yan Lin and Lei He
Electrical Engineering Department

University of California, Los Angeles, CA 90095

Field Programmable Gate Arrays (FPGA) provides an attractive design plat-
form with low NRE (non-recurring engineering) cost and short time-to-market.
Due to a large number of transistors for field programmability and the low
utilization rate of FPGA resources, existing FPGAs consume more power com-
pared to Specific Integrated Circuits (ASICs). For example, [1] compared an
8-bit adder implemented in a Xilinx XC4003A FPGA with the same adder im-
plemented in a fully customized CMOS ASIC, and showed a 100X difference
in energy consumption (4.2mW/MHz at 5V for FPGA versus 5.5uW/Mhz at
3.3V for ASIC counterpart). As the process advances to nanometer technol-
ogy and low-energy embedded applications are explored for FPGAs, power
consumption becomes a crucial design constraint for FPGAs.

Meanwhile, modern VLSI designs see a large impact from process varia-
tion as devices scale down to nanometer technologies. Variability in device
parameters such as effective channel length, threshold voltage and gate oxide
thickness incurs uncertainties in both chip performance and power consump-
tion. For example, measured variation in chip-level leakage can be as high as
20X compared to the nominal value for high performance microprocessors [2].
In addition to meeting the performance constraint under timing variation, dies
with excessively large leakage due to such a high variation have to be rejected
to meet the given power budget. Although FPGA has a regular fabric with
replicated layout tiles, the design-dependent systematical variation can also be
significant in advanced technologies such as 65nm and below. Meanwhile, it
suffers from the increasingly large random variation like ASIC does.

This chapter addresses the design methods in sub-micron technologies con-
sidering optimization for power and process variation. The remaining of this
chapter is organized as the following. Section 1 presents architecture optimiza-
tion techniques for power and variation. Section 2 and Section 3 present power
and variation aware synthesis techniques, respectively.

1

2

1. Architecture Optimization

1.1 Power Optimization

1.1.1 Power Modeling and Evaluation Framework. In order to per-
form architecture optimization for low-power FPGAs, Several recent papers
have studied FPGA power modeling [3, 4, 5, 6]. Parameterized power models
were proposed for generic FPGA architectures first in [3] and [4]. However,
both [3] and [4] over-simplified the models for short-circuit and leakage power,
and verification by measurement or circuit-level simulation was not reported in
[3] [4]. One of the evaluation framework, fpgaEVA-LP2 [5, 6], improved the
power model in [4] and achieved high fidelity and accuracy in chip-level power
consumption compared to SPICE simulation.

fpgaEVA-LP2 includes a BC-netlist generator and a cycle-accurate power
simulator Psim. The BC-netlist generator takes placement and routing results by
VPR [7] and generates the Basic Circuit netlist (BC-netlist) annotated with post-
layout capacitance and delay. Psim then performs cycle-accurate simulation on
the BC-netlist to obtain FPGA power consumption. There are three types of
power sources in FPGAs, switching power, short-circuit power and static power.
The first two types of power contribute to the dynamic power and can only occur
when a signal transition happens at the gate output. There are two types of signal
transitions. Functional transition is the necessary signal transition to perform
the required logic functions between two consecutive clock ticks. Spurious
transition or glitch is the unnecessary signal transition due to the imbalanced
path delays to the inputs of a gate. Glitch power can be a significant portion
of the dynamic power. The short-circuit power is consumed when both PMOS
and NMOS transistors are turned on in a gate. The third type of power, static
(leakage) power, is the power consumed when there is no signal transition for
a gate or a circuit element.

In fpgaEVA-LP2, the power components of switching power, short-circuit
power and static power for logic blocks are pre-calculated per switch or per
unit time by SPICE simulation, and so is the leakage power for interconnects.
The interconnect switching power is calculated by a switch-level model with
extracted parasitics, and its short-circuit power is calculated as a portion of
switching power. This portion can be pre-calculated by SPICE simulation for a
variety of input signal transition time and load capacitances. It has been shown
in [5, 6] that fpgaEVA-LP2 achieves high fidelity as well as high accuracy. The
average absolute error is 8.26% compared to SPICE simulation.

1.1.2 Vdd-Programmable FPGA Circuits. To reduce FPGA power
consumption, power-efficient FPGA circuits and architectures have been stud-
ied. [8] studied region-based power-gating and placement to reduce leakage
power of unused FPGA logic blocks. [9] applied fine-grained power-gating

Design Methods in Sub-micron Technologies 3

to FPGA interconnects. [10, 11] proposed dual-Vdd and Vdd-programmable
FPGA logic blocks and simple yet effective CAD algorithms to reduce both dy-
namic and leakage power. Field programmability of supply voltage was shown
to be necessary to reduce FPGA power using dual-Vdd technique. Later on,
the concept of programmable-Vdd introduced in [11] was further extended to
FPGA interconnects in [12, 13, 14, 5, 15].

Figure 1.1 shows the Vdd-programmable logic block [11]. Two extra PMOS
transistors, called power switches or power transistors 1, are inserted between
the conventional logic block and the dual-Vdd power rails for Vdd selection and
power-gating. Normal-Vt power transistors with gate-boosting [11] are used to
reduce area overhead and achieve effective leakage reduction.

Logic Block
Conventional

VddH
VddL

Config. Bit
Config. Bit

power switch

Figure 1.1. Vdd-programmable logic block.

Vdd-programmability introduces extra configuration SRAM cells. The au-
thors in [5, 15] designed a new Vdd-programmable routing switch (see in
Figure 1.2 (b)). One extra SRAM is introduced for this Vdd-programmable
routing switch. Pass En can be generated by V ddH En and V ddL En

with a NAND2 gate. Similarly, Figure 1.2 (c) presents a new design of Vdd-
programmable connection block with reduced configuration SRAM cells. For
a connection block containing N connection switches, we use a dlog2Ne : N

decoder and 2N NAND2 gates as the control logic. There is a disable signal
Dec Disable for the decoder. Each decoder output is connected to Pass En

of one connection switch. Setting Pass En of a connection switch to ‘0’ can
power-gate this switch by setting both V ddH En and V ddL En to ‘1’ with
NAND2 gates. When the whole connection block is not used, all N outputs
of the decoder are set to ‘0’ to power-gate all the connection switches by as-
serting Dec Disable. When the connection block is in use, Dec Disable is
not asserted. By using dlog2Ne configuration bits for the decoder, only one
Pass En is set to ‘1’ and others are set to ‘0’, i.e., only one connection switch
inside the connection block is selected and connects the one track to the logic
block input, and other unused connection switches are power-gated. Another

1The terms power switch and power transistor are used interchangeably in this chapter.

4

configuration bit V dd Sel is used to select the Vdd-level for the selected con-
nection switch. Compared to a conventional connection block, only two extra
configuration SRAM cells are introduced. Power-gating unused switches can
reduce leakage power by more than 1000X [12].

SRSR

SR

SR

SR

SR

lo
g

 N
 S

R
A

M
 c

el
ls

2

VddL
VddH

Switch

VddH_En VddL_En Pass_En

(a) Vdd−Programmable switch

routing switch
(c) SRAM−efficientVdd−programmable connection block(b) SRAM−efficient Vdd−programmable

OutIn
Switch

VddH_En Pass_En
VddL_En

W
ir

e
tr

a
ck

s

V
d

d
L

_
E

n

N
 s

w
it

ch
esVdd_Sel

Dec_Disable

D
ec

od
er

Connection Switches

Logic block

in1

d1

dN
S

w
it

ch
V

d
d

H
_
E

n
P

a
ss

_
E

n
V

d
d

L
_
E

n

V
d

d
H

_
E

n
P

a
ss

_
E

n
S

w
it

ch

Figure 1.2. (a) Vdd-programmable switch (b) SRAM-efficient Vdd-programmable routing
switch; (c) SRAM-efficient Vdd-programmable connection block. (SR stands for SRAM cell)

Compared to Vdd-programmable switch, Vdd-gateable interconnect switch
proposed in [5] only provides two power states between a pre-determined Vdd-
level and power-gating, but it can dramatically reduce the number of extra
SRAM cells for Vdd programmability. Figure 1.3 (a) shows the circuit design
for a Vdd-gateable switch. Based on a conventional tri-state buffer, a PMOS
transistor M2 is inserted between the power rail and the tri-state buffer to provide
the power-gating capability. When a switch is not used, transistor M1 is turned
off by the configuration cell SR. At the same time, we can turn off M2 to
power-gate the unused switch. Similarly, both M1 and M2 are turned on by the
configuration cell SR when the switch is used. Thus, we do not need to introduce
an extra SRAM cell for power-gating capability. Figure 1.3 (b) presents Vdd-
gateable routing switches. We can reduce leakage power by a factor of over
1000 for an unused switch when it is power-gated. With the power transistor
properly sized, the delay overhead for a Vdd-programmable or Vdd-gateable
switch is bounded by 16%.

1.1.3 Architecture Optimization for Power Efficient FPGA. Previ-
ously, conventional FPGA architecture evaluation has been performed using

Design Methods in Sub-micron Technologies 5

S
w

it
ch

S
w

it
ch

D
ec

od
er

SR

SR

SR
lo

g
 N

 S
R

A
M

 c
el

ls
2

Switch

Switch

Logic block

in1

(b) Vdd−gateable routing switches

(a) Vdd−gateable switch

dN

d1

d1

dN

N

sw

it
c
h

e
s

(c) Vdd−gateable connection block

Connection switches

wire track

Dec_Disable

BA
M1

M2

Vdd

SR

BUFF
Switch

SR

SR

SR

SR

Figure 1.3. (a) Vdd-gateable switch; (b) Vdd-gateable routing switches; (c) Vdd-gateable con-
nection switches. (SR stands for SRAM cell)

metrics of area, delay and energy. [16] showed that LUT size 4 obtains the
smallest area, and [17] showed that LUT size 5 or 6 leads to the best perfor-
mance in non-clustered FPGAs. [18] evaluated cluster-based island style FP-
GAs using the metric of area-delay product in 0.35µm technology, and showed
that the range of LUT sizes from 4 to 6 and cluster sizes between 4 and 10
can produce the best area-delay product. The following work further extended
FPGA architecture evaluation considering energy. [3] showed that LUT size
3 consumes the smallest energy in 0.35µm technology. [4, 6] showed that
LUT size 4 consumes the smallest energy and LUT size 7 leads to the best
performance in 100nm technology.

However, the emerging power-efficient circuits and architectures, e.g. the
Vdd-programmable FPGA circuits, may lead to different FPGA power char-
acteristics, and therefore call for an architecture evaluation considering these
power optimization techniques. The authors in [5, 15] evaluated three architec-
ture classes Class1, Class2 and Class3 for Vdd-programmable FPGAs at 100nm
technology. Class1 applies programmable dual-Vdd to each logic block and
each interconnect segment, and inserts a configurable level conversion circuit
in front of each routing/connection switch as well as at the inputs/outputs of
the logic blocks. Class2 applies programmable dual-Vdd only to logic blocks,
and uses Vdd-gateable routing/connection switches in FPGA interconnects.
Class3 uses the same SRAM-efficient interconnect switches as FPGA architec-
ture Class1, but inserts level converters only at logic block inputs and outputs.
All these architecture classes are summarized in Table 1.1.

6

Architecture Class Logic block Interconnect
Class0 (baseline) single Vdd single Vdd
Class1 programmable dual-Vdd programmable dual-Vdd

w/ level converters
Class2 programmable dual-Vdd VddH and Vdd-gateable
Class3 programmable dual-Vdd programmable dual-Vdd

w/o level converters

Table 1.1. Summary of baseline architecture class and Vdd-programmable architecture classes
(LC denotes the level converter).

A simple yet practical design flow from [11] was applied for these architec-
ture classes. After placement and routing, a greedy algorithm is performed for
Vdd assignment considering iteratively updated timing slack. The assignment
unit is a logic block or an interconnect switch for Class1, or a logic block for
Class2. Since there is no level converter in the routing for Class3, the assign-
ment unit is a logic block or an interconnect routing tree to avoid low-Vdd
switch driving high-Vdd switches.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10 10.5 11 11.5 12 12.5 13
Critical Path Delay (ns)

T
ot

al
 F

P
G

A
 E

ne
rg

y/
C

yc
le

 (
nJ

)

Class 0 Class 1 Class 2 Class 3

(8, 7)

(6,7)

(6, 6)
(10, 5)

(8,5)

(12, 4) (8, 4)(6, 4)(8,7)

(10,6)(6,6) (8,6)
(10,5)

(12,4)

(6, 7)

(8, 5)

(8, 7)

(6, 7)
(6, 6)

(8, 6)
(10, 5)

(8, 5)(12, 4)

(8, 4)

(6, 5)

(6, 4)
(10, 4)

(8,7)
(6,7)

(10,6)(6,6)
(8,6)

(10,5) (12,4)(8,5)

Figure 1.4. Energy and delay tradeoff for all FPGA architecture classes. The figure only shows
relaxed energy-delay dominant solutions and the strictly dominant solutions are represented by
polylines.

Figure 1.4 presents the energy-delay tradeoff in terms of different architec-
tures, i.e., different combinations of cluster size N and LUT size k, for three
FPGA classes: Class0, Class1, Class2 and Class3. Similar to the baseline
FPGA Class0, the min-delay architecture is (N = 8, k = 7) for both Class1
and Class2. The min-energy architecture is (N = 8, k = 4) for Class1 and

Design Methods in Sub-micron Technologies 7

(N = 12, k = 4) for Class2. This shows that LUT size 7 gives the best per-
formance and LUT size 4 leads to the lowest energy consumption for these
Vdd-programmable FPGAs. FPGA Class1 and Class2 reduce energy-delay,
ED, product by 25.97% and 54.39%, respectively. Class3 achieves better
energy-delay tradeoff than architecture Class1, and is even better than Class2.
This is because FPGA Class3 removes the level converters in routing channels,
but still can reduce interconnect dynamic energy. This reduction is not available
in architecture Class2 which uses Vdd-gateable interconnect switches.

Considering area, energy and delay tradeoff, the best architecture class in
[5, 15] is Class2, which uses Vdd-programmable logic blocks and Vdd-gateable
interconnects It reduces the energy-delay product over the MCNC benchmark
set by 54.39% with 17% area increase and 3% more configuration SRAM cells
compared to the baseline architecture class using high-Vdd for both logic blocks
and interconnects.

1.1.4 Device and Architecture Concurrent Optimization. Vdd pro-
grammability introduces area overhead compared to single-Vdd architecture,
e.g. 17% area overhead with the best architecture in Section 1.1.3 [5, 15].
Meanwhile, device optimization considering supply voltage Vdd and thresh-
old voltage Vt has little chip area increase, but a great impact on power and
performance in the nanometer technology. The authors in [19, 20] studied
simultaneous evaluation of device and architecture optimization for FPGAs.
As shown in Figure 1.5, an efficient yet accurate timing and power evaluation
method, called trace-based model, was developed. By collecting trace infor-

Arch

Spec

Trace-Based

Estimation

Trace

Collection

 Chip Level Area,

Delay, and Power

Circuit Level

Area, Delay,

and Power

Figure 1.5. The novel trace-based evaluation flow.

mation from cycle-accurate simulation of placed and routed FPGA benchmark
circuits and re-using the trace for different Vdd and Vt, device and architecture
co-optimization considering hundreds of device and architecture combinations
was enabled. Compared to the baseline FPGA architecture, which uses the VPR
architecture model and the same LUT and cluster sizes as those used by the
Xilinx Virtex-II, Vdd suggested by ITRS, and Vt optimized with respect to the
above architecture and Vdd, architecture and device co-optimization can reduce
energy-delay product by 20.5% and chip area by 23.3%. Furthermore, consid-
ering power-gating of unused logic blocks and interconnect switches (in this

8

case sleep transistor size is a parameter of device tuning), our co-optimization
reduces energy-delay product by 55.0% and chip area by 8.2% compared to the
baseline FPGA architecture.

1.1.5 Architecture Optimization for Glitch Power Minimization. It
has been shown that the dynamic power contributes 62% amount of total power
for a commercial 90nm FPGA [21] and 30.8% of the switching is due to glitch
[22]. The authors in [22] described a technique that reduces dynamic power in
FPGAs by reducing the number of glitches in the global routing resources. The
technique involves adding programmable delay elements within the logic blocks
of an FPGA to align the arrival times of early-arriving signals to the inputs of
the lookup tables and to filter out glitches generated by earlier circuitry. On
average, the proposed technique eliminates 91% of the glitching, which reduces
overall FPGA power by 18%. The added circuitry increases overall area by 5%
and critical-path delay by less than 1%. Furthermore, since it is applied after
routing, the proposed technique requires no modifications to the existing FPGA
routing architecture or CAD flow.

1.2 Process Variation Optimization

1.2.1 Device and Architecture Concurrent Optimization. Existing
FPGA architecture evaluation has considered performance, area, and power
[7, 23, 18, 4]. Section 1.1.3 [5] evaluated new FPGA architectures consider-
ing field programmable supply voltage including dual-Vdd and power-gating.
Section 1.1.4 [19] showed that device and architecture co-optimization is able
to obtain the largest improvement in FPGA performance and power efficiency.
However, all these evaluation work did not consider process variations.

The authors in [24] proposed an analytical model for chip-level leakage
power and delay considering within-die and die-to-die variations. Leveraging
this analytical model, the authors in [24] also extended Ptrace in [19] and
performed device and architecture concurrent optimization considering process
variation. Similar to [25], the leakage current of one circuit element is modeled
as a lognormal variable. The chip-level leakage current is a sum of numerous
lognormal variables and is modeled as another lognormal variable. The delay
of one circuit element is modeled as a Gaussian variable. The chip-level delay
involves maximum and addition operations between Gaussian variables, and is
modeled as another Gaussian variable.

Figure 1.6 shows the full chip leakage power and delay variations in the
presence of inter-die and intra-die variations. 10% of the nominal value is
assumed as 3σ for all the process variation in gate length Leff , oxide thickness
Tox and threshold voltage Vth . Leakage may change significantly due to process
variations. When there is a ±3σ inter-die variation of Leff , the leakage power
has a 3X span. When no inter-die variation is present, there is still a 2X span in

Design Methods in Sub-micron Technologies 9

−4 −3 −2 −1 0 1 2 3 4
0.5

1

1.5

2

2.5

3

Global Leff Variation (σ)

N
or

m
al

iz
ed

 L
ea

ka
ge

 P
ow

er

3X

2X

−4 −3 −2 −1 0 1 2 3 4
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Global Leff Variation (σ)

N
or

m
al

iz
ed

 D
el

ay

1.9X
1.1X

Figure 1.6. Chip-level Leakage power and delay variations of architecture (N=8, K=4) with
ITRS 65nm device setting under intra-die and inter-die variations.

leakage power due to within-die variation in Leff and inter-die variations in Tox

and Vth. It is important to consider the impact of process variations on leakage
when determining the yield. On the other hand, there is a 1.9X span with ±3σ

inter-die Lg variation, and a 1.1X span without Lg variation. Clearly, delay is
more sensitive to inter-die variation than within-die variation. This is because
of the independence of local Leff variation between each element. Therefore
the effect of within-die Leff variation tends to average out when the critical
path is long enough.

Figure 1.7 presents the leakage and delay variation for the baseline case using
Monte Carlo simulation with Ptrace. It can be seen that a smaller delay leads
to a larger leakage in general. This is because of the inverse correlation between
circuit delay and leakage. A device with short channel length has a small delay
and consumes large leakage, which may lead to a high leakage. To calculate
the leakage and delay combined yield, the cutoff leakage is set as the nominal
leakage plus 30% that of the baseline, while the cutoff delay is 1.2X of each
architecture’s nominal delay.

It has been shown that heterogeneous-Vt and power-gating may have great
impact on energy delay tradeoff [19]. The impact of heterogeneous-Vt and
power-gating on the yield is further considered by comparing Homo-Vt (homo-
geneous Vt), Hetero-Vt (heterogeneous Vt) and Homo-Vt+G (homogeneous
Vt with power-gating) architecture classes in min-ED device setting. Table 1.2
presents the combined yield for Homo-Vt with ITRS device setting and all
classes with min-ED device setting. The area overhead introduced by power-
gating is also presented in the table. Comparing Homo-Vt with ITRS device
setting and min-ED device setting, the combined yield is improved by 21%.
Comparing the classes using min-ED device setting, Hetero-Vt has a 3% higher
yield than Homo-Vt due to heterogeneous-Vt while Homo-Vt+G has a 8% higher
yield than Homo-Vt due to power-gating. Homo-Vt+G has the highest combined
yield with an average of 16% area overhead. Device tuning and power-gating

10

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.5

1

1.5

2

2.5

3

Normalized Delay

N
or

m
al

iz
ed

 L
ea

ka
ge

 P
ow

er

130% Leakage

120% Delay

Figure 1.7. Leakage and delay of baseline architecture (N=8, K=4) with ITRS setting under
process variations.

ITRS Min-ED
(N,K) Homo-Vt Homo-Vt Hetero-Vt Homo-Vt+G

Y(%) Y(%) Y(%) Y(%) Area Inc(%)
(6,4) 71 83 83 86 18
(8,4) 67 81 81 86 14

(10,4) 65 81 81 86 17
(12,4) 48 77 81 87 20
(6,5) 79 85 84 90 14
(8,5) 55 81 86 89 15

(10,5) 55 81 86 89 19
(6,6) 49 77 82 88 15
(8,6) 49 75 80 88 16
(6,7) 45 73 77 86 10
Avg 58 79 82 87 16

Table 1.2. Combined Leakage-delay yield between FPGA Classes.

improve yield by 29% comparing Homo-Vt+G with min-ED setting to Homo-
Vt with ITRS setting. This table also shows that architectures with LUT size 5
gives the highest yield within each class. This is because it has both a relatively
high leakage yield as well as timing yield.

1.2.2 An Adaptive FPGA Architecture. It has been shown in Sec-
tion 1.2.1 that process induced threshold voltage variations bring about fluc-
tuations in circuit delay, that act the FPGA timing yield. The authors in [26]
proposed an adaptive FPGA architecture that compensates for these fluctua-
tions. The architecture includes an additional characterizer circuit that classi-

Design Methods in Sub-micron Technologies 11

fies logic and routing blocks on each die according to their performance. Based
on this classification, the architecture adaptively body-biases these resources
by either speeding up the slow blocks or by slowing down the leaky ones. This
procedure mitigates the effect of the variations and provides a better yield. We
further diminish leakage by slowing down areas of the FPGA that have a positive
slack. Overall, this architecture minimizes the timing variance of within-die
and die-to-die Vth variations by up to 3.45X and reduces leakage power in the
non-critical areas of the FPGA by 3X with no ect on frequency.

2. Power Aware FPGA Synthesis

In this section, we present power aware synthesis techniques for FPGAs
in sub-micron technologies. Section 2.1 targets at the power reduction of the
conventional FPGAs and presents a low-power CAD flow from technology
mapping to routing, and the impact of pipelining on energy at system-level. We
then presents the techniques for the emerging Vdd-programmable FPGAs in
Section 2.2.

2.1 Synthesis for Conventional FPGAs

2.1.1 Power-Aware FPGA CAD Flow. The authors in [27] proposed
power-aware FPGA CAD algorithms including technology mapping, cluster-
ing, placement and routing. The interaction between these CAD stages has also
been studied in [27].

The power-aware technology mapping algorithm in [27] reduces power by
minimizing the switching activity of the wires between LUTs. In FPGAs,
these wires are implemented using routing tracks with significant capacitance;
charging and discharging this capacitance consumes a significant amount of
power. The capacitance of high activity wires between LUTs can be minimized
during technology mapping by implementing LUTs that encapsulate high ac-
tivity wires, thereby removing them from the netlist. Another power reduction
technique adopted in [27] is to minimize the number of wires between LUTs.
This is be achieved by minimizing node duplication while still keeping logic
depth optimal. The authors in [28] further improved the technology mapping
algorithm in [27] by considering glitch power reduction explicitly.

Traditional clustering goals include minimizing area and delay, and maxi-
mizing routability. Based on one of the representative clustering algorithm [7],
the cost function in the power-aware clustering algorithm in [27] is extended
to minimize the switching activity of connections between logic blocks by at-
tracting high activity nets inside the logic blocks. This cost function favors the
LUTs that share high activity nets with the packed LUTs in the current logic
block.

12

After being packed, the clusters are placed and routed to physical locations
on the FPGA. The power-aware placement in [27] tries to place those clusters
connected by high-activity nets near each other. As a result, these high-activity
nets will likely be short, and thus, consume less power. Unlike technology
mapping, a placement algorithm cannot eliminate high-activity nets all together,
it can only make these nets shorter. In cases when there are many high-activity
nets, it may not be possible to place all clusters connected by these nets close
together. The power-aware router in [27] tries to reduce power by using low
capacitance resource node for nets with high switching activities. The authors
in [29] also proposed a leakage-aware routing algorithm to encourage more
frequent use of routing resources that have low leakage power consumptions.

The experimental results in [27] showed that the individual savings of the
power-aware technology-mapping, clustering, placement, and routing algo-
rithms were 7.6%, 12.6%, 3.0%, and 2.6% respectively. The majority of the
overall savings were achieved during the technology mapping and clustering
stages of the power aware FPGA CAD flow. In addition, the savings were
mostly cumulative when the individual power-aware CAD algorithms were ap-
plied concurrently with an overall energy reduction of 22.6%.

Motivated by the fact that the leakage consumption depends on the state of
gate inputs, the authors in [29] proposed an input vector configuration method
to reduce active leakage after placement and routing. This leakage reduction
technique leverages a fundamental property of basic FPGA LUTs that allows a
logic signal in an FPGA design to be interchanged with its complemented form
without any area or delay penalty. This property is applied to select polarities
for logic signals so that FPGA hardware structures spend the majority of time
in low-leakage states. The experimental results showed that leakage power can
be reduced by 25% for a 90nm commercial FPGA.

2.1.2 Impact of Pipelining. One of the simplest but effective ways of re-
ducing the energy per operation of a circuit is pipelining. A highly pipelined cir-
cuit typically has fewer logic levels between registers, and may reduce glitches
and therefore dynamic power compared to the unpipelined circuit. The au-
thor in [30] investigated experimentally the quantitative impact of pipelining
on energy per operation for two representative FPGAs under 130nm and 180nm
CMOS technologies.

For each circuit, several versions are created with a different degree of
pipelining. For some circuits, pipeline stages are added by modifying the
original hardware description code by hand. For other circuits, an automatic
synthesis tool is used to generate circuits with differing degrees of pipelining.
In all cases, the function of all versions of each circuit is the same, except for
the additional latency imposed by pipeline stages. For each design, a version
with a pipeline stage after every logic element is also created. Unlike all other

Design Methods in Sub-micron Technologies 13

versions of the circuit, this version is likely to have a different behavior from
the original circuit, since paths containing different numbers of logic elements
may have different numbers of registers. The results from this version of each
circuit may give an estimate of the best possible optimization achievable using
pipelining.

For the 64-bit unsigned multiplier with the 130nm high performance FPGA,
the difference in dynamic system energy between the most pipelined version
and the least pipelined version is 81%. For the other benchmark circuits, this
difference ranges from 40% to 82%. For the dynamic logic block energy, the
difference is as high as 98%. In contrast, as shown in Section 2.1.1, lower-level
physical design optimizations can typically reduce energy by up to 23% [27].
System-level optimizations such as pipelining can have a far more significant
impact on the overall energy dissipation.

The “maximally pipelined” version of each benchmark circuit, in which a
register is used at the output of every logic block, obtains the smallest energy
compared to all the other versions. However, the difference in energy between
the maximally pipelined version and the next-most pipelined version is small.
This implies that there is little opportunity of reducing glitch energy further
by increasing the number of pipeline stages in these circuits. The impact of
pipelining on dynamic power reduction for a low-power 180nm FPGA is similar
to that for the high-performance 130nm chip, although less pronounced.

Figure 1.8. Power-aware and non-power aware clustering results.

The authors in [30] also investigated whether the effectiveness of lower-level
tools is affected by pipelining at the system level. Clustering was focused, since
it has been shown in Section 2.1.1 that clustering is more effective at reducing
power than other low-level CAD stages [27]. Figure 1.8 shows the results for
two designs. The horizontal axis on each graph is the number of pipeline stages,

14

and the vertical axis is the measured system (board) dynamic power, which is
proportional to the energy per operation of the circuit. The top line in each
graph represents the energy obtained when using the non-power-aware cluster
algorithm, while the lower line represents the energy obtained when using the
power-aware cluster algorithm. As the figures show, the improvements obtained
by pipelining are much more significant than those obtained by making the
cluster algorithm power-aware.

The figure also illustrates the interaction between the two optimization schemes:
the reduction achieved by the cluster algorithm varies as the degree of pipelin-
ing changes. In general, for the array multiplier, the reduction achieved by
the cluster algorithm decreases as the degree of pipelining increases. For both
circuits, the power-aware cluster algorithm is ineffective at reducing power for
the most heavily pipelined variants, since it has fewer high activity nets to work
with.

These results are significant. They indicate that for most circuits, it does
make sense to optimize for power both at the system level as well as during
low-level synthesis and physical design. The results also show, however, that
it is not reasonable for a designer to rely on pipeline-aware synthesis and phys-
ical design. Incorrect system-level design decisions, such as a bad choice for
pipelining depth, can not be “made up for” by low-level CAD tools.

2.2 Synthesis for Vdd-Programmable FPGAs

Vdd-programmability has been proposed in [10, 11] to reduce FPGA logic
block power and extended to interconnects in [12, 13]. In Section 1.1.1, we
have presented FPGA Vdd-programmable circuits and architecture optimiza-
tion. In this section, we present the synthesis algorithms including technology
mapping, clustering, placement and post-layout physical synthesis for Vdd-
programmable FPGAs.

2.2.1 Dual-Vdd Technology Mapping and Clustering. The authors
in [31] studied the technology mapping problem of FPGA architectures with
dual supply voltages for power optimization. This was done with the guarantee
that the optimal mapping depth of the circuit with single-Vdd is not increased
with dual-Vdd. Low Vdd is used for the LUTs on the non-critical paths. The
experimental results in [31] showed that the dual-Vdd mapping algorithm can
improve power savings by up to 11.6% over the single-Vdd mapper.

Similarly, the authors in [32] proposed delay optimal FPGA clustering al-
gorithm with Vdd-programmability. The clustering procedure guarantees the
optimal delay of the circuit obtained under the general delay model. In the mean-
time, logic blocks on the non-critical paths can be driven by low-Vdd (VddL)
to save power. Experimental results showed that our clustering algorithm can

Design Methods in Sub-micron Technologies 15

achieve power savings by 20.3% on average compared to the clustering result
for an FPGA with a single high-Vdd (VddH).

2.2.2 Region-Constrained Placement with Power-Gating. The au-
thors in [8] proposed region-constraint placement (RCP) to reduce leakage
energy for FPGAs with power-gating capability. There are 4 to 256 basic logic
elements (or logic slices) in each region. Each unused region can be power-
gated with power transistor inserted to reduce leakage. A larger region may
have smaller area overhead due to the inserted power transistor.

Figure 1.9. Different placements for an example design. In part (c), each module is bounded
by a polygon.

The traditional placement due to lack of region concept tends to scatter the
utilized slices across different regions (See Figure 1.9 (a)). Since the regions
with partially used slices cannot be power-gated, the potential for leakage energy
savings reduces. On the other hand, RCP takes into account the region concept
explicitly. The basic principle of RCP is to constrain the placement of the design
to specific regions of the FPGA (See Figure 1.9 (b)) and leave some regions
of the FPGA completely unused, so that they can be power gated. This in turn
helps to maximize the potential leakage savings. Experimental results in [8]
showed that RCP reduces leakage energy by 11% on average with the region
size of 256 slices while the normal placement only reduces leakage energy by
2%.

RCP is essentially a static technique where the unused FPGA space (regions)
can be shut off at configuration time (before the execution). While it is easy to
implement, it may not be as effective in designs that occupy large portion of the
FPGA space (which in turn limits the potential leakage savings). However, for

16

the designs with modules that remain inactive over significant durations of time,
a time-based control scheme can be applied, which reduces leakage even in the
utilized portions of the FPGA by switching off/on the power supply, exploiting
the idleness in portions of the design. Specifically, the time-based scheme turns
off power supply to all regions containing only idle modules. The authors in [8]
investigated the time-based control scheme with RCP. The module-level RCP
places each module of the design that exhibits a distinct idleness profile using
RCP individually, and turns off power supply to all regions containing only idle
modules.

Figure 1.9 (c) shows an example design placement using module-level RCP
for time-based leakage control. Modules of the design get placed on non-
overlapping regions, thus maximizing the number of regions that can be dy-
namically switched-off. Note that this slightly decreases the statically unused
portion on the FPGA (because in order to ensure the inter-module region exclu-
sivity needed for module-level RCP, some regions can only be partially filled).
The experiments in [8] showed a significant increase in leakage savings due
to module-level RCP. Assuming that reconfiguration incurs a 10% increase in
overall execution time and consequent leakage energy penalty, module- level
RCP with time-based leakage control provides 19% (is 27% without reconfig-
uration overhead) more leakage savings compared to RCP.

2.2.3 Post-layout Synthesis. After placement and routing, Vdd-level
assignment is performed to select Vdd-level for Vdd-programmable FPGAs. A
straight-forward greedy assignment based on power sensitivity was proposed
for logic block Vdd-level selection in [10, 11]. Before the assignment, all
logic blocks use high-Vdd. In the iterative assignment, the logic block with
the largest power sensitivity is assigned to low-Vdd. If the new critical path
delay exceeds the user-specified delay increase bound, low-Vdd assignment is
reversed. Otherwise, this assignment is accepted. In either case, the logic block
selected in this iteration may not be re-visited in other iterations.

A similar assignment algorithm was proposed in [12] for Vdd-programmable
interconnects, where a Vdd-level converter is inserted in front of each inter-
connect switch. However, it has been shown that these Vdd-level converters
consume a large amount of leakage [5, 15, 33, 34]. As shown in Figure 1.10,
the authors in [33, 34] proposed two ways to avoid using level converters in in-
terconnects, tree based level converter insertion (TLC) and dual-Vdd tree based
level converter insertion (dTLC). TLC enforces that there is only one Vdd-level
within each routing tree while dTLC can have different Vdd-levels within a
routing tree, but no VddL switch drives VddH switches. Dual-Vdd assign-
ment algorithms considering chip-level time slack allocation were developed
for maximum power reduction. These algorithms included TLC-S and dTLC-S,
two power sensitivity based algorithms with implicit time slack allocation and

Design Methods in Sub-micron Technologies 17

0
1
2
3

0 1 2 3

connection block
switch block

VddH routing tree

VddL routing tree

0
1
2
3

VddH routing treeVddL routing tree

0 1 2 3

connection block
switch block

Vdd interface within a tree

(a) (b)

Figure 1.10. (a) Tree based level converter insertion (TLC); (b) Dual-Vdd tree based level
converter insertion (dTLC).

dTLC-LP, a linear programming (LP) based algorithm with explicit time slack
allocation. All allocated time slack first to interconnects with higher power sen-
sitivity and assign low-Vdd to them for more power reduction. Experiments in
[33] showed that dTLC-LP obtains the lowest power consumption. Compared
to dTLC-LP, dTLC-S obtains slightly higher power consumption but runs 3X
faster. Compared to the existing segment-based level converter insertion (SLC)
for dual-Vdd, dTLC-LP reduces interconnect power by 52.90% without per-
formance loss for the MCNC benchmark circuits. The authors in [35] further
extended the LP based algorithm dTLC-LP to EdTLC-LP for the interconnects
with wire segments of mixed lengths.

However, it takes a long time to solve the LP problem for time slack allo-
cation. The authors in [36] reformulated the LP based problem to min-cost
network flow based problem for runtime reduction. The algorithm, EdTLC-
NW, was proposed in [36]. EdTLC-NW achieves as good results as EdTLC-LP
but runs 8X faster on average. Furthermore, the speedup increases for larger
circuits and EdTLC-NW is 20X faster for the largest circuit.

The authors in [35] also presented a Mixed Integer and Linear Programming
(MILP) based approach for simultaneous retiming and slack budgeting (SRSB)
to further reduce interconnect power for FPGAs. The motivation of this idea is
illustrated in Figure 1.11, where circuits in (A), (B) and (C) have the same clock
period of 4 units. To change a buffer from VddH to VddL, one needs a slack
of 2 units. If circuit (A) is decomposed to its combinational sub-components
(B) and dual-Vdd budgeting is performed, no extra buffer can be powered by
VddL. On the other hand, one extra buffer can be powered by VddL in (C),
which can be obtained from (A) by retiming under the same clock period.
Therefore, SRSB is able to reduce more power than slack budgeting alone in
[34]. To minimize the distortion of the placement and routing, the placement and
flip-flop (FF) binding constraints are considered during the retiming process.

18

4 (0) 4 (0)

3 (1)3
 (

1
)

4 (0) 4 (0)

2 (2)4
 (

0
)

4 (0)

4 (0)

3 (1)

3
 (

1
)

(A) (B) (C)

Interconnect
D el a y

Timing Slack

Figure 1.11. Comparison of effectiveness for power reduction by sequential approach and simul-
taneous approach. (A) original circuit, (B) sequential approach (retiming followed by budgeting),
(C) simultaneous retiming and dual-Vdd budgeting. The number outside (inside) the brackets
associated in each edge denotes the interconnect delay (timing slack) of that edge, respectively.
The thick, red lines are interconnects driven by VddH while the thin, blue lines are interconnects
driven by VddL.

Compared to the sequential approach (min-clock retiming followed by dual-
Vdd budgeting), experimental results in [35] showed that the MILP based SRSB
approach achieves 7.7% and 3.8% interconnect power reduction on average for
MCNC and industrial circuits, respectively.

0%

5%

10%

15%

20%

25%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

(a) normalized path length distribution

Sinlg-Vdd
VddP (EdTLC-NW)

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

(b) delay distribution (ns)

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n
(P

D
F

)

Single−Vdd
VddP (EdTLC−NW)

yield loss

Figure 1.12. (a) Path-length distribution; (b) delay distribution with variation (circuit: s38417).

All the above Vdd-level assignment algorithms are deterministic. However,
these deterministic Vdd assignment algorithms leverage timing slack exhaus-
tively and significantly increases the number of near-critical paths, which results
in a degraded timing yield with process variation. As shown in Figure 1.12,
the usage of programmable Vdd increases the percentage of near-critical paths
(with delay larger than 90% critical path delay) from 0.26% to 4.7%, which
degrades the timing yield from 97.7% to 89.2%. The authors in [37] presented
two statistical Vdd assignment algorithms. The first greedy algorithm is based
on sensitivity while the second one is based on timing slack budgeting. Both
minimize chip-level interconnect power without degrading timing yield. Eval-
uated with MCNC circuits, the statistical algorithms reduce interconnect power

Design Methods in Sub-micron Technologies 19

by 40% compared to the single-Vdd FPGA with power gating. In contrast,
the deterministic algorithm reduces interconnect power by 51% but degrades
timing yield from 97.7% to 87.5%.

3. Variation Aware FPGA Synthesis

It has been shown that the FPGA chip-level variations in leakage and delay
could be 3X and 1.9X respectively in Figure 1.6. We have presented architecture
level optimization to combat with process variation in Section 1.2. In this sec-
tion, we present variation aware FPGA synthesis algorithms. These algorithms
could be categorized into two main groups, stochastic and chipwise synthesis
algorithms. The stochastic algorithms apply the same synthesis results across
different chips and optimize timing statistically considering process variation.
On the other hand, the chipwise algorithms apply different synthesis results and
optimize timing for each chip or each bin of chips individually. We present the
stochastic and chipwise synthesis in Section 3.1 and Section 3.2, respectively.

3.1 Stochastic Synthesis

Process variation and pre-routing interconnect delay uncertainty affect timing
and power for modern VLSI designs in nanometer technologies. The authors
in [38] presented the first in-depth study on stochastic physical synthesis algo-
rithms leveraging statistical static timing analysis (SSTA) with process variation
and pre-routing interconnect delay uncertainty for FPGAs Interconnect delay
is modeled as a Gaussian random variable considering interconnect uncertainty
and process variation. SSTA instead of static timing analysis (STA) is performed
to analyze statistical criticality, i.e. the probability for each timing edge/node
to be timing critical with variation. Statistical criticality is then leveraged for
statistical timing optimization.

3.1.1 Stochastic Clustering. The stochastic clustering, ST-VPack in
[38] is extended based on the deterministic timing driven clustering, T-VPack
[7]. The deterministic timing model with constant interconnect delay used in
T-VPack leads to some inaccuracy in estimation of where the critical path lies.
T-VPack may try to shorten a path which is not part of the post-routing critical
path due to this inaccurate estimation. Furthermore, any near-critical paths may
become critical considering process variation. ST-VPack, leverages a statistical
timing model and optimizes timing statistically. It has been shown in [38] that
the timing gain in stochastic clustering is mainly due to modeling pre-routing
interconnect uncertainty instead of process variation. This can be explained by
Figure 1.13, which compares the probability density functions (PDF) for post-
routing delay normalized with respect to the estimated one during clustering
and post-routing delay with process variation normalized with respect to the

20

nominal one. The statistics are based on all global interconnects of all designs.
Clearly, interconnect uncertainty leads to a more significant delay variance in
clustering stage.

On average, ST-VPack reduces the nominal, mean and standard deviation
of delay by 3.7%, 5.0%, and 6.4%, respectively. The impact of ST-VPack
on timing distribution (mean and standard deviation) is larger than that on the
nominal delay due to the fact that we are aiming to optimize timing statistically
for ST-VPack. In addition, ST-VPack does not have area, post-routing wire
length and runtime overhead compared to T-VPack. Clearly, ST-VPack is able
to effectively improve timing statistically and therefore improve yield without
routability, area and runtime overhead compared to T-VPack.

0 1 2 3 4
0

1

2

3

4

5

6

7

8

Normalized interconnect delay

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n
(P

D
F

)

delay normalized w.r.t. the estimated one during clustering
delay with process variation normalized w.r.t. the nominal one

Figure 1.13. Comparison between probability density functions (PDF) for (i) post-routing delay
normalized with respect to (w.r.t.) the estimated delay during clustering, and (ii) post-routing
delay with process variation normalized w.r.t. the nominal one.

3.1.2 Stochastic Placement. After packing, clusters are placed to physi-
cal locations on the FPGA chip. For FPGAs, the typical placement algorithm is
simulated annealing as in the timing-driven algorithm, T-VPlace [39], in VPR
[7]. The authors in [40, 38] extended T-VPlace to the stochastic placement
ST-VPlace for process variation and interconnect uncertainty. The interconnect
delay estimated in T-VPlace is based on 2-pin net routing for each pair of loca-
tions without considering congestion. The actual delay after routing may differ
from the estimated delay in placement, mainly due to the impact of conges-
tion and multi-terminal nets. This introduces interconnect delay uncertainty in
placement. In addition, any near-critical paths may become critical with process

Design Methods in Sub-micron Technologies 21

variation. Figure 1.14 compares the PDFs for post-routing delay normalized
with respect to the estimated one during placement and post-routing delay with
process variation normalized with respect to the nominal one. The statistics
are based on near-critical interconnects (static criticality greater than 0.9 after
routing) of all designs. As shown in this figure, process variation leads to a
much wider delay spread compared to interconnect uncertainty. The statistics
show that more than 70% of interconnects have an estimation error within 1%
while the relative standard deviation is 6% due to process variation. It is clear
that process variation leads to a more significant delay variance and needs to
be considered in placement. Interconnect uncertainty can be modeled as an in-
dependent Gaussian with a small relative standard deviation with respect to the
estimated delay. Such a small relative standard deviation, e.g. 0.5%, however
has little impact on the timing.

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

Normalized interconnect delay

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n
(P

D
F

)

delay normalized w.r.t. the estimated one during placement
delay with process variation normalized w.r.t. the nominal one

Figure 1.14. Comparison between probability density functions (PDF) for (i) post-routing delay
normalized w.r.t. the estimated delay during placement, and (ii) post-routing delay with process
variation normalized w.r.t. the nominal one.

On average, ST-VPlace reduces the nominal, mean and standard deviation of
delay by 3.3%, 4.0%, and 6.1%, respectively. Similar to the stochastic clustering
ST-VPack, ST-VPlace has larger impact on timing distribution than that on the
nominal delay due to its statistical fashion. The impact of ST-VPlace on timing
is similar to that of ST-VPack. Nevertheless, the gain of ST-VPlace mainly
comes from considering process variation, different from ST-VPack where the
gain is mainly due to modeling interconnect uncertainty. On the other hand,
ST-VPlace increases the total wire length after routing by 1.3% and takes 3.1X
runtime compared to T-VPlace.

22

3.1.3 Stochastic Routing. After clusters are placed to physical locations
on the FPGA, routing is performed to determine which programmable inter-
connect switches should be turned on to connect required interconnects. The
stochastic routing algorithm, ST-PathFinder in [38, 41] is extended based on the
deterministic routing algorithm, PathFinder [42, 7]. In the routing stage, the
interconnect estimation occurs when predicting delay from the current partial
routing to the target sink, and has the highest accuracy within all design stages.
On the other hand, timing analysis is only performed after an entire routing
iteration. Interconnect uncertainty has little impact on one of the key param-
eters, static criticality, in PathFinder. Therefore ST-PathFinder only considers
process variation in SSTA.

On average, ST-PathFinder reduces the nominal, mean and standard devi-
ation of delay by 1.4%, 1.4% , and 0.7%, respectively. Compared to cluster-
ing and placement stages, the impact of stochastic routing on timing is much
smaller due to the fact that routing stage has the smallest design flexibility. In
addition, ST-PathFinder reduces the total wire length after routing and overall
runtime by 4.5% and 4.2%, respectively. Although SSTA is more expensive
than STA, SSTA or STA is only performed once after one entire routing itera-
tion. ST-PathFinder reduces the average number of routing iterations required
for a successful routing from 22 to 15 compared to PathFinder and therefore
consumes less runtime. It is due to the fact that ST-PathFinder uses statisti-
cal criticality to achieve a better balance between weights of timing and wire
lengths in the cost function for each net. Besides of a 4.2% of runtime reduc-
tion, ST-PathFinder also reduces the total wire length after routing by 4.5% due
to this better balanced cost function.

3.1.4 Interaction Between Clustering, Placement and Routing. In
addition, the authors in [38] studied the interaction between each individual
design stage. Table 1.3 presents the results including the nominal, mean and
standard deviation of circuit delay, runtime and average yield improvement
for all combinations of algorithms in The delay values are presented in the
difference compared to the flow consisting of all deterministic algorithms. The
runtime is also normalized with respect to the deterministic flow. The yield
improvement is calculated as the difference between the yields obtained by the
deterministic flow and each stochastic flow when each stochastic flow achieves
a yield of 90% or 95%.

When applying stochastic clustering and placement concurrently, we can
achieve a smaller nominal, mean and standard deviation of delay than applying
any one of them alone. However, there exists some overlap between gains in
clustering and placement. On the other hand, the routing stage has less im-
provement. Compared to the deterministic flow, the stochastic clustering and
placement increase total wire length by 0.8% and 1.3%, respectively. When

Design Methods in Sub-micron Technologies 23

clustering D S D D S S D S
placement D D S D S D S S

routing D D D S D S S S
Tnom(ns) 21.2 -3.7% -3.3% -1.4% -6.4% -4.1% -3.6% -6.3%
Tmean(ns) 22.9 -5.0% -4.0% -1.4% -5.9% -4.7% -4.0% -6.2%
Tsigma(ns) 3.4 -6.4% -6.1% -0.7% -8.8% -6.1% -6.3% -7.5%

runtime 1.0X 0.99X 3.1X 0.96X 3.0X 0.97X 3.1X 3.0X
wire length 27610 0.8% 1.3% -4.5% 3.2% -3.4% -3.4% -1.6%

average yield improvement
90% yield - 9.9% 8.0% 2.3% 12.3% 9.3% 8.7% 12.6%
95% yield - 7.0% 5.6% 1.5% 8.9% 6.5% 6.2% 9.1%

Table 1.3. Combined results. ‘D’ and ‘S’ stand for deterministic and stochastic, respectively
(based on the results of 20 MCNC designs).

applying stochastic clustering and placement concurrently with deterministic
routing, the wire length overhead increases to 3.2%. On the other hand, the
stochastic routing reduces wire length by 4.5%. When applying stochastic rout-
ing with stochastic placement, clustering or both concurrently, the wire length
is reduced by 3.2%, 3.4% and 1.6% respectively compared to the deterministic
flow.

When all stochastic algorithms are applied concurrently, the stochastic flow
reduces the nominal, mean and standard deviation of delay by 6.3%, 6.2% and
7.5% respectively but takes 3.0X runtime compared to the deterministic flow.
In addition, the stochastic flow can improve the yield by 12.6% (or 9.1%) when
a yield of 90% (or 95%) is obtained by the stochastic flow. For a good gain
with less runtime, only stochastic clustering with deterministic placement and
routing may be applied. This flow reduces the nominal, mean and standard
deviation of delay by 3.7%, 5.0% and 6.4% respectively, and reduces runtime
slightly.

3.2 Chipwise Synthesis

The programmability of FPGAs offers a unique opportunity to leverage pro-
cess variation and improve circuit performance. For custom ICs, physical de-
sign for a targeted circuit must be the same for all chips. For FPGAs, however,
we can potentially place (and route) each pre-fabricated FPGA chip differently
for the same application. Compared to manufacturing level process control,
this chipwise physical design technique only involves post-silicon design opti-
mization and is more cost-effective.

The authors in [43] considered placement and proposed the following varia-
tion aware chipwise design flow (see Fig. 1.15). For a given set of FPGA chips,
the variation map for each chip is first generated, which may be obtained by syn-

24

thesizing test circuits for each chip. Based on the variation map, the potential
delay improvement of chipwise placement is then estimated. If the improve-
ment is large, it is worthwhile to perform placement for each chip; otherwise, the
conventional design flow is adopted, which uses the same placement and route
for all chips. A similar approach leveraging multiple routing configurations has
been presented in [44]. For each application, multiple configurations are first
generated. Each FPGA chip is then tested using each individual configuration.
The best implementation is then selected for each particular chip.

Figure 1.15. Design flow of variation aware chipwise placement.

The authors in [43] first proposed an efficient high-level trace-based esti-
mation method to evaluate the potential performance gain achievable through
chipwise FPGA placement without detailed placement. Such estimation may
provide a lower bound of the performance gain of detailed placement. The
authors in [43] then developed a variation-aware detailed placement algorithm
vaPL within the VPR framework [7] to leverage process variation and opti-
mize performance for each chip. Chipwise placement vaPL is deterministic
for each chip when the variation map of the chip is known, and leads to different
placements for different chips of the same application.

Table 1.4 compares the circuit performance between vaPL and the deter-
ministic placement T-VPlace (or dtPL) [7] for all benchmarks. The chip size
for each benchmark is decided so that the utilization rate is about 90%. For
the chips obtained from dtPL, the 3-sigma timing, according to the existing
practice for FPGA designs without considering process variation, is obtained by
taking the worst-case delay for all circuit elements on the critical path. Results
from this approach is reported under column 3 in Table 1.4. This approach is
apparently too pessimistic, as it is very unlikely for all circuit elements on the
critical paths to have the worst-case delay at the same time because of the spatial
correlation. To reduce pessimism and consider correlated process variation, the
true 3-sigma timing as a measure of chip performance can be used. The true
3-sigma timing can be approximated by using the maximum delay among all
tested variation maps. The approximated true 3-sigma timing for chips from
both dtPL and vaPL are reported under columns 4 and 5 in Table 1.4.

Design Methods in Sub-micron Technologies 25

Comparing columns 3 and 4 in Table 1.4, the worst-case timing is indeed
too pessimistic compared to the true 3-sigma one, and the relative pessimism
reduction by using the true 3-sigma timing is about 49.5% on average. Com-
paring columns 4 and 5, placement results from vaPL are always better than
those from dtPL even when both use the true 3-sigma performance as a metric.
The performance improvement for vaPL is up to 10%, or 5.3% on average.

1 2 3 4 5
Bench- Chip dtPL (ns) vaPL (ns)
mark size WC 3-sigma 3-sigma
alu4 13× 13 35.8 19.0 (-46.9%) 18.4 (-3.2%)

apex2 15× 15 43.8 24.3 (-44.5%) 21.9 (-9.9%)
apex4 12× 12 35.3 19.7 (-44.3%) 17.4 (-11.6%)
clma 37× 37 79.0 41.4 (-47.6%) 39.7 (-4.1%)
diffeq 14× 14 54.3 24.5 (-55.0%) 23.6 (-3.7%)
elliptic 21× 21 67.5 34.5 (-48.8%) 32.9 (-4.6%)
ex5p 12× 12 37.4 20.8 (-44.4%) 19.9 (-4.3%)

misex3 13× 13 35.9 19.8 (-44.9%) 19.4 (-2.0%)
s298 16× 16 80.5 41.3 (-48.7%) 39.5 (-4.4%)

s38584.1 27× 27 41.3 21.6 (-47.8%) 20.6 (-4.6%)
seq 15× 15 33.1 18.5 (-44.3%) 18.0 (-2.7%)
spla 20× 20 50.0 28.4 (-43.3%) 26.0 (-8.5%)

average - 49.5 26.2 (-46.7%) 24.8 (-5.3%)
Table 1.4. Performance comparison between vaPL and dtPL.

References

[1] E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,” in
Proc. Intl. Symp. Low Power Electronics and Design, pp. 155–160, August
1998.

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
Proc. Design Automation Conf., June 2003.

[3] K. Poon, A. Yan, and S. Wilton, “A flexible power model for FPGAs,” in
Proc. of 12th International conference on Field-Programmable Logic and
Applications, Sep 2002.

[4] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for power-
efficient FPGAs,” in Proc. ACM Intl. Symp. Field-Programmable Gate
Arrays, Feb 2003.

[5] Y. Lin, F. Li, and L. He, “Power modeling and architecture evaluation for
FPGA with novel circuits for vdd programmability,” in Proc. ACM Intl.
Symp. Field-Programmable Gate Arrays, February 2005.

[6] F. Li, Y. Lin, L. He, D. Chen, and J. Congs, “Power modeling and charac-
teristics of field programmable gate arrays,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, pp. 1712–1724, Nov.
2005.

[7] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, Feb 1999.

[8] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “Reducing leakage energy in FPGAs using region-constrained
placement,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays,
February 2004.

[9] Y. Lin, F. Li, and L. He, “Routing track duplication with fine-grained
power-gating for FPGA interconnect power reduction,” in Proc. Asia South
Pacific Design Automation Conf., Jan 2005.

27

28

[10] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined
dual-vdd/dual-vt fabrics,” in Proc. ACM Intl. Symp. Field-Programmable
Gate Arrays, February 2004.

[11] F. Li, Y. Lin, and L. He, “FPGA power reduction using configurable dual-
vdd,” in Proc. Design Automation Conf., June 2004.

[12] Fei Li and Yan Lin and Lei He, “Vdd programmability to reduce FPGA
interconnect power,” in Proc. Intl. Conf. Computer-Aided Design, Novem-
ber 2004.

[13] Jason H. Anderson and Farid N. Najm, “Low-power programmable rout-
ing circuitry for FPGAs,” in Proc. Intl. Conf. Computer-Aided Design,
November 2004.

[14] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “A dual-vdd low power FPGA architecture,” in Proc. Intl. Conf.
Field-Programmable Logic and its Application, August 2004.

[15] F. L. Yan Lin and L. He, “Circuits and architectures for field programmable
gate array with configurable supply voltage,” IEEE Trans. VLSI Syst.,
2005.

[16] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic functionality on area ef-
ficiency,” IEEE Journal of Solid-State Circuits, 1990.

[17] S. Singh, J. Rose, P. Chow, and D. Lewis, “The effect of logic block
architecture on FPGA performance,” IEEE Journal of Solid-State Circuits,
1992.

[18] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density,” in Proc. ACM Intl. Symp.
Field-Programmable Gate Arrays, pp. 3–12, Feb 2000.

[19] L. Cheng, P. Wong, F. Li, Y. Lin, and L. He, “Device and architecture
co-optimization for FPGA power reduction,” in Proc. Design Automation
Conf., June 2005.

[20] L. Cheng, F. Li, Y. Lin, P. Wong, and L. He, “Device and architecture
cooptimization for fpga power reduction,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 19, pp. 1211–1221, July
2007.

[21] T. Tuan and et al, “A 90nm low-power FPGA for battery-powered ap-
plication,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays,
February 2006.

REFERENCES 29

[22] J. Lamoureux, G. Lemieux, and S. Wilton, “GlitchLess: An active glitch
minimization Techniques for FPGAs,” in Proc. ACM Intl. Symp. Field-
Programmable Gate Arrays, February 2007.

[23] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and buffer-
ing to optimize speed and density,” in Proc. ACM Intl. Symp. Field-
Programmable Gate Arrays, Feb 1999.

[24] H.-Y. Wong, L. Cheng, Y. Lin, and L. He, “FPGA device and architecture
evaluation considering process variations,” in Proc. Intl. Conf. Computer-
Aided Design, Nov 2005.

[25] R. Rao, A. Devgan, D. Blaauw, and D. Sylvester, “Parametric yield estima-
tion considering leakage variability,” in Proc. Design Automation Conf.,
June 2004.

[26] G. Nabaa, N. Azizi, and F. Najm, “An adaptive FPGA architecture with
process variation compensation and reduced leakage,” in Proc. Design
Automation Conf., June 2006.

[27] J. Lamoureux and S. J. Wilton, “On the interaction between power-aware
FPGA CAD algorithms,” in Proc. Intl. Conf. Computer-Aided Design,
pp. 701–708, November 2003.

[28] L. Cheng, D. Chen, and D. Wong, “GlitchMap: An FPGA Technology
Mapper for Low Power Considering Glitches,” in Proc. Design Automa-
tion Conf., June 2007.

[29] J. H. Anderson and F. N. Najm, “Active leakage power optimization for
FPGAs,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, March 2006.

[30] S. Wilton, S. Ang, and W. Luk, “The Impact of Pipelining on Energy
per Operation in Field-Programmable Gate Arrays,” in Proc. Intl. Conf.
Field-Programmable Logic and its Application, August 2004.

[31] D. Chen, J. Cong, F. Li, and L. He, “Low Power Technology Mapping
for FPGA Architectures with Dual Supply Voltages,” in Proc. ACM Intl.
Symp. Field-Programmable Gate Arrays, February 2004.

[32] D. Chen and J. Cong, “Delay optimal low-power circuit clustering for
FPGAs with dual supply voltages,” in Proc. Intl. Symp. Low Power Elec-
tronics and Design, August 2004.

[33] Y. Lin and L. He, “Leakage efficient chip-level dual-vdd assignment with
time slack allocation for FPGA power reduction,” in Proc. Design Au-
tomation Conf., June 2005.

30

[34] Y. Lin and L. He, “Dual-vdd interconnect with chip-level time slack al-
location for fpga power reduction,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, Oct. 2006.

[35] Y. Hu, Y. Lin, L. He, and T. Tuan, “Simultaneous time slack budgeting
and retiming for dual-vdd FPGA power reducti on,” in Proc. Design Au-
tomation Conf., July 2006.

[36] Y. Lin, Y. Hu, L. He and V. Raghunat, “An efficient chip-level time slack
allocation algorithm for dual-vdd FPGA power reduction,” in Proc. Intl.
Symp. Low Power Electronics and Design, October 2006.

[37] Y. Lin and L. He, “Statistical Dual-Vdd Assignment for FPGA Inter-
connect Power Reduction,” in Design Automation and Test in Europe,
pp. 636–641, April 2007.

[38] Y. Lin and L. He, “Stochastic Physical Synthesis for FPGAs with Pre-
routing Interconnect Uncertainty and Process Variation,” in Proc. ACM
Intl. Symp. Field-Programmable Gate Arrays, February 2007.

[39] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FP-
GAs,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays, Feb
2000.

[40] Y. Lin, M. Hutton, and L. He, “Placement and timing for FPGAs consid-
ering variations,” in Proc. Intl. Conf. Field-Programmable Logic and its
Application, August 2006.

[41] S. Sivaswamy and K. Bazargan, “Variation-aware routing for FPGAs,” in
Proc. ACM Intl. Symp. Field-Programmable Gate Arrays, February 2007.

[42] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in Proc. ACM Intl. Symp. Field-
Programmable Gate Arrays, Feb 1995.

[43] L. Cheng, J. Xiong, L. He, and M. Hutton, “FPGA performance opti-
mization via chipwise placement considering process variations,” in In-
ternational Conference on Field-Programmable Logic and Applications,
August 2006.

[44] Y. Matsumoto and et al, “Performance and yield enhancement of fpgas
with with-in die variation using multiple configurations,” in Proc. ACM
Intl. Symp. Field-Programmable Gate Arrays, Feb. 2007.

