Simultaneous Test Pattern Compaction, Ordering and X-Filling for Testing Power Reduction

Ju-Yueh Lee¹ Yu Hu¹ Rupak Majumdar² Lei He¹

Department of Electrical Engineering
Department of Computer Science
University of California Los Angeles
(This research is partially supported by the NSF and Actel.)

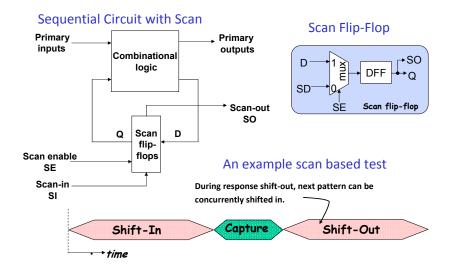
International Symposium on Quality Electronic Design, 2009

▲日▼▲□▼▲□▼▲□▼ □ ののの

Outline

Introduction

Preliminaries


Problem Formulation and Algorithms

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Experimental Results

Conclusions and Future Work

Scan-Based Testing

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへ()・

Increasing Testing Power Concerns

- 1. Testing power is several times higher than normal mode power
 - Requirements of test time reduction
 - Increasing test concurrency (Test multiple modules simultaneously)
 - Increasing frequency of scan shift
 - Requirements of test data volume reduction
 - Compression and compaction techniques elevate circuit switching

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Various stressful conditions (voltage and temperature)
- Redundant switching in circuit logic during scan shift

Increasing Testing Power Concerns

- 1. Testing power is several times higher than normal mode power
 - Requirements of test time reduction
 - Increasing test concurrency (Test multiple modules simultaneously)
 - Increasing frequency of scan shift
 - Requirements of test data volume reduction
 - Compression and compaction techniques elevate circuit switching

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Various stressful conditions (voltage and temperature)
- Redundant switching in circuit logic during scan shift
- 2. Excessive testing power causes
 - Low reliability
 - Structural damage to the silicon or package
 - Large voltage drop, leading to erroneous data

Test Power Breakdown

- 1. Average power vs. peak power
 - Average power: reliability (temperature, EM)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Peak power: packaging issues, IR drop

Test Power Breakdown

 $1. \ \mbox{Average power vs. peak power}$

- Average power: reliability (temperature, EM)
- Peak power: packaging issues, IR drop
- 2. Shift power vs. capture power
 - Low Frequency Shifts: Average Shift power may be a concern
 - High Frequency Shifts: Peak and Average power becomes a concern

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Capture power: Fast capture pulses in transition patterns cause Peak power (IR drop) issues

Test Power Breakdown

1. Average power vs. peak power

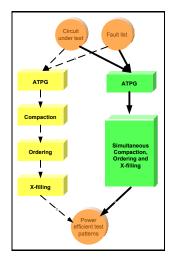
- Average power: reliability (temperature, EM)
- Peak power: packaging issues, IR drop
- 2. Shift power vs. capture power
 - Low Frequency Shifts: Average Shift power may be a concern
 - High Frequency Shifts: Peak and Average power becomes a concern

- Capture power: Fast capture pulses in transition patterns cause Peak power (IR drop) issues
- 3. Our approach
 - considers both shift and capture power
 - can be applied to both average and peak power

1. Design For Test (DFT)

- 1. Design For Test (DFT)
- 2. Automatic Test Pattern Generation (ATPG)
 - Test patterns consist of care bits and don't-care bits, e.g., a pattern (0XXX1XX) has 5 don't care bits and 2 care bits
 - ATPG decides both fill of don't-care bits and the order of a sequence of test vectors

▲日▼▲□▼▲□▼▲□▼ □ ののの


- 1. Design For Test (DFT)
- 2. Automatic Test Pattern Generation (ATPG)
 - Test patterns consist of care bits and don't-care bits, e.g., a pattern (0XXX1XX) has 5 don't care bits and 2 care bits
 - ATPG decides both fill of don't-care bits and the order of a sequence of test vectors

3. Three major techniques for power-aware ATPG have been proposed, i.e., compaction, ordering and X-filling

- 1. Design For Test (DFT)
- 2. Automatic Test Pattern Generation (ATPG)
 - Test patterns consist of care bits and don't-care bits, e.g., a pattern (0XXX1XX) has 5 don't care bits and 2 care bits
 - ATPG decides both fill of don't-care bits and the order of a sequence of test vectors
- 3. Three major techniques for power-aware ATPG have been proposed, i.e., compaction, ordering and X-filling
- 4. However, most previous researches perform the three optimizations sequentially, which may cause loss of optimality

Major Contributions

- 1. Propose an optimal formulation for simultaneous test pattern compaction, ordering and X-filling for test mode power minimization.
 - A uniform pseudo Boolean (PB)-based algorithm, applicable to both average and peak power minimization.
 - Reduce power dissipation by 47%, compared to sequential approach.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pseudo-Boolean (PB) Problem

Pseudo-Boolean (PB) Constraint is an inequality

$$C_0p_0 + C_1p_1 + \cdots + C_{n-1}p_{n-1} \ge C_n,$$

where p_i is a literal and C_i is an integer coefficient for each *i*.

- An objective function is a sum of weighted literals on the same form as PB constraints.
- The Pseudo-Boolean Constraint Problem is to find a satisfying assignment to a set of PB-constraints that minimizes a given objective function.
- PB Problem can be solved by
 - A generic 0-1 ILP solver, e.g., mosek
 - ► A specialized SAT-based solver, e.g., minisat+

Test Power Modeling

Scan energy for the test vectors, $\overrightarrow{s_1}, \cdots, \overrightarrow{s_n}$ is

$$E_{reg}(\overrightarrow{s_1},\cdots,\overrightarrow{s_m}) = \sum_{i=1}^m \sum_{j=1}^{K-1} (w_{ij}) \cdot |s_i^j - s_i^{j+1}|,$$

where w_{ij} is the weight to characterize the loading capacitance of the scan-chain registers and the weighted transition count (WTC), which has been normalized based on the K.

Test Power Modeling

• Scan energy for the test vectors, $\overrightarrow{s_1}, \cdots, \overrightarrow{s_n}$ is

$$E_{reg}(\overrightarrow{s_1},\cdots,\overrightarrow{s_m}) = \sum_{i=1}^m \sum_{j=1}^{K-1} w_{ij} \cdot |s_i^j - s_i^{j+1}|,$$

• Capture energy due to the switch of two test vectors, $\overrightarrow{s_i} \rightarrow \overrightarrow{s_{i+1}}$, is

$$E_{cap}(\overrightarrow{s_{i}} \rightarrow \overrightarrow{s_{i+1}}) = \sum_{g \in G} C_{g} \cdot |v_{g}(\overrightarrow{s_{i}}) - v_{g}(\overrightarrow{s_{i+1}})|$$

where C_g is the loading capacitance of gate or register g in the circuit which is calculated based on Weighted Switching Activity (WSA). $v_g(\overrightarrow{s_i})$ is the logic value at gate g under test vector $\overrightarrow{s_i}$.

Test Power Modeling

• Average test power for test vectors, $\vec{s_1}, \cdots, \vec{s_m}$, is

$$P(\overrightarrow{s}, \hat{m}) = \frac{E_{reg}(\overrightarrow{s_1}, \cdots, \overrightarrow{s_{\hat{m}}}) + \sum_{i=1}^{\hat{m}-1} E_{cap}(\overrightarrow{s_i} \to \overrightarrow{s_{i+1}})}{\hat{m}}$$

• Peak test power for test vectors, $\overrightarrow{s_1}, \cdots, \overrightarrow{s_m}$, is

$$P(\overrightarrow{s}) = \max(\max_{i} (\sum_{j=1}^{K-1} w_{ij} \cdot |s_{i}^{j} - s_{i}^{j+1}|), \max_{i} (C_{g} \cdot |v_{g}(\overrightarrow{s_{i}}) - v_{g}(\overrightarrow{s_{i+1}})|))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Problem Formulation: simultaneous test pattern compaction, ordering and X-filling (COX) for test power minimization

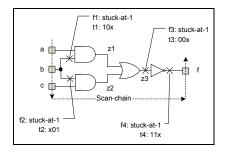
Given a set of test patterns $\overrightarrow{t_1}, \cdots \overrightarrow{t_m}$, find an ordered set of test vectors $\overrightarrow{s_1}, \cdots \overrightarrow{s_m}$ such that

- ▶ each $\overrightarrow{s_i} \in \{0,1\}^K$ (i.e., contains no don't-care terms),
- ▶ $\hat{m} \leq m$,
- ▶ fault coverage is preserved (i.e., for each $\overrightarrow{t_i}$ there is some $\overrightarrow{s_j}$ such that $\overrightarrow{s_j} \dashv \overrightarrow{t_i}$),

 the testing power dissipation objective (either overall dissipation or peak dissipation) is minimized.

PB Formulation for COX Problem

COX problem


- the testing power dissipation objective is minimized.
- fault coverage is preserved,
- test vectors contain no don't-care terms,

▶
$$\hat{m} \le m$$
,

PB-based formulation

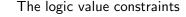
 $\begin{array}{ll} \text{minimize} & P(\overrightarrow{s}, \widehat{m}) \\ \text{subject to} \\ \text{CNF}_{G}(\overrightarrow{s_{i}}) & \text{for } i = [1, m], \\ \bigvee_{j=1}^{\widehat{m}} (\overrightarrow{s_{j}} \dashv \overrightarrow{t_{i}}) & \text{for } i = [1, m], \\ s_{i}^{j} \in \{0, 1\} & \text{for } i = [1, m], \\ j = [1, K], \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Nine 0-1 variables (literals) are needed:

$$\overrightarrow{s_1} = (s_1^1, s_1^2, s_1^3) \in \{0, 1\}^3 \overrightarrow{s_2} = (s_2^1, s_2^2, s_2^3) \in \{0, 1\}^3 \overrightarrow{s_3} = (s_3^1, s_3^2, s_3^3) \in \{0, 1\}^3$$

the objective function is

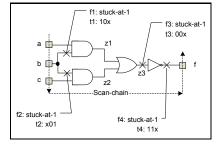

$$\begin{array}{ll} E_{reg} & = \sum_{i=1}^{3} \sum_{j=1}^{2} |s_{i}^{j} - s_{i}^{j+1}| \\ E_{cap} & = \sum_{i=1}^{2} \sum_{g \in G} C_{g} \cdot |v_{g}(\overrightarrow{s_{i}}) - v_{g}(\overrightarrow{s_{i+1}})|, \end{array}$$

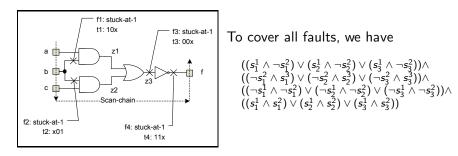
where $G = \{z_1, z_2, z_3, f\}.$

• $|x_1 - x_2| = x_1 \oplus x_2$ can be rewritten in CNF:

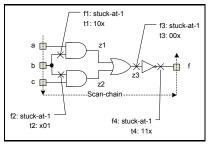
$$(\neg x_1 \lor \neg x_2 \lor y) \land (x_1 \lor x_2 \lor y) \land (\neg x_1 \lor x_2 \lor \neg y) \land (x_1 \lor \neg x_2 \lor \neg y).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


$$\mathsf{CNF}_G(\overrightarrow{s_i}), \text{ for } i = [1, m],$$


are as follows.

$$\begin{split} & (s_i^1 \lor \neg v_{z_1}^i) \land (s_i^2 \lor \neg v_{z_1}^i) \land (\neg s_i^1 \lor \neg s_i^2 \lor v_{z_1}^i) \land \\ & (s_i^3 \lor \neg v_{z_2}^i) \land (s_i^2 \lor \neg v_{z_2}^i) \land (\neg s_i^3 \lor \neg s_i^2 \lor v_{z_2}^i) \land \\ & (\neg v_{z_1}^i \lor v_{z_3}^i) \land (\neg v_{z_2}^i \lor v_{z_3}^i) \land (v_{z_1}^i \lor v_{z_2}^i \lor \neg v_{z_3}^i) \land \\ & (\neg v_{z_3}^i \lor \neg v_{z_4}^i) \land (v_{z_3}^i \lor v_{z_4}^i) \land \end{split}$$


where v_g^i denotes $v_g(\vec{s_i})$, and the above four constraints represents the characteristic function to compute the logic value of AND gates z_1 and z_2 , OR gate z_3 and INV gate f, respectively, under test vector $\vec{s_i}$, for $i = 1, \dots, 3$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

After solving the above PB constraint problem, the optimal solution returned by PB solver is

$$\overrightarrow{s_1}=(0,0,1)$$

 $\overrightarrow{s_2}=(1,1,1)$
 $\overrightarrow{s_3}=(1,0,0)$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

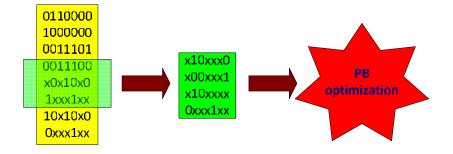
Peak Power Minimization

Original formulation

$$\begin{array}{ll} \text{minimize } P(\overrightarrow{s}) = & \max(\max_{i,j}(w_{ij} \cdot |s_i^j - s_i^{j+1}|), \\ & \max_i(C_g \cdot |v_g(\overrightarrow{s_i}) - v_g(\overrightarrow{s_{i+1}})|)) \\ \text{subject to} & \text{all constraints from average power minimization} \end{array}$$

PB-based formulation

minimize subject to

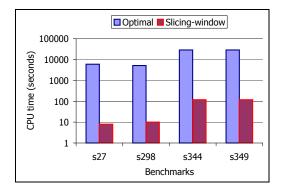

$$t \ \sum_{j=1}^{K-1} w_{ij} \cdot |s_i^j - s_i^{j+1}| \leq t \ \mathcal{C}_g \cdot |v_g(\overrightarrow{s_i}) - v_g(\overrightarrow{s_{i+1}})| \leq t$$

all other constraints from average power minimization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Can be solved by the binary search of t.

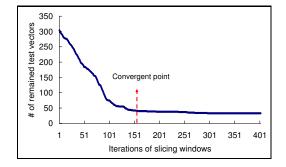
Speedup By Slicing Window



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Experimental Settings

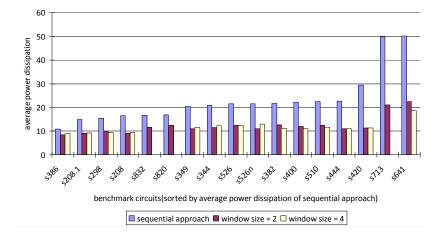
- ISCAD'89 benchmark circuits
- Test pattern generated by ATALANTA
- PB problem solved by minisat+
- Baseline sequential algorithm ("seq")
 - Compacted by ATALANTA
 - X-filled by repeated filling [Costa, IWLS'98]
 - Ordered by a TSP-based algorithm [Costa, IWLS'98]


Optimal vs. Slicing Window (SW)-Based Heuristic

- Due to the capability of PB solver, four small circuits (s27, s298, s344, s349) are tested using 20 test patterns
- The same results are obtained by the two approaches.
- SW is three orders of magnitude faster.

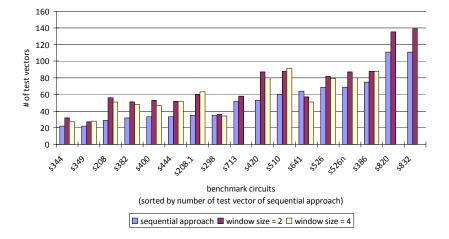
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convergency Slicing Window

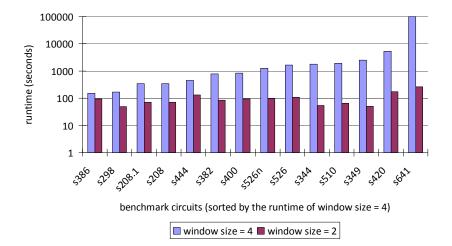


- Window size 4
- Benchmark: s298
- SW converges when 150 windows are passed, i.e. 4 iterations

(日) (同) (日) (日)


э.

Power Dissipation Comparisons



▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQQ

Test Set Size Comparisons

Runtime Comparisons

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● の Q ()・

Conclusions and Future Work

- A uniformed formulation for the problem of simultaneously compacting, ordering, and Xfilling to minimize power dissipation is proposed
- Our proposed approach reduces average power by 47% compared to the conventional sequential approach
- In the future, we will
 - conduct experiments on average power minimization under peak power constraint

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

futhere improve the efficiency of the proposed algorithm