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ABSTRACT
We describe In-Place Reconfiguration (IPR) for LUT-based
FPGAs, an algorithm that maximizes identical configura-
tion bits for complementary inputs of a LUT thereby re-
ducing the propagation of faults seen at a pair of comple-
mentary inputs. Based on IPR, we develop a fault-tolerant
logic resynthesis algorithm which decreases the circuit fault
rate while preserving functionality and topology of the LUT-
based logic network. Since the topology is preserved, the
resynthesis algorithm can be applied post-layout and with-
out changes in physical design. Compared to the state-of-
the-art academic technology mapper Berkeley ABC, IPR re-
duces the relative fault rate by 48% and increases MTTF by
1.94× with the same area and performance, and IPR com-
bined with a previous fault-tolerant logic resynthesis algo-
rithm (ROSE) reduces the relative fault rate by 49% and
increases MTTF by 2.40× with 19% less area but same per-
formance. The above improvement assumes a stochastic sin-
gle fault and more improvement is expected for multi-fault
models.

1. INTRODUCTION
Compared to ASIC, FPGA is more vulnerable to soft errors due

to a large number of SRAM cells used for configurability. This is
not a critical concern when FPGA is used for prototypes, but it must
be addressed when FPGA is used in system implementations such
as internet routers. While robustness needs to be researched for
different design stages of FPGA-based systems, this paper studies
logic design and synthesis that explicitly accounts for and tolerates
faults including soft errors.

For FPGAs, arobust logic resynthesis technique called ROSE
has recently been proposed [1] as an effective design optimization
for improving fault tolerance. This technique rewrites an LUT-
based Boolean network and inserts logic masking to prevent the
propagation of stochastic faults. It obtains 2× MTTF improvement
with no area and performance overhead compared to the state-of-
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the-art FPGA logic synthesis tool ABC [2]. ROSE is orthogonal
to the existing fault tolerance techniques such as [3, 4, 5, 6, 7], but
with advantages of negligible overhead on area, performance, and
testing. However, ROSE can change the topology of the LUT-based
logic network, and as we explain next, this can limit its applicabil-
ity in the overall design flow.

In the overall CAD flow for FPGAs (see Figure 1), logic resyn-
thesis is usually performed after logic synthesis and before phys-
ical design. Because of dominant or non-negligible interconnect
effects, the interaction of logic and physical syntheses must be con-
sidered and multiple iterations of logic and physical syntheses may
be needed. For example, the modification of the LUT-based logic
network due to resynthesis requires a new round of physical design,
which is not only time-consuming, but also delays convergence be-
tween logic and physical syntheses. In addition, using more ac-
curate fault information from physical design1, logic resynthesis
can selectively strengthen logic masking for more critical parts of
a circuit. Unfortunately, a resynthesis that changes the topology
of the LUT-based logic network is problematic for design closure
as the criticality might change drastically in the next iteration of
placement and routing. However, ROSE as well as the majority of
existing fault tolerance techniques do not preserve the topology and
therefore physical synthesis of the LUT-based logic network.

In this paper, we propose anin-place logic resynthesis algo-
rithm, which performs logic transformation while preserving the
function and the topology of the LUT-based logic network. There-
fore, it does not require a redoing of the physical design and leads
to a faster design closure. Our core algorithmIn-Place Reconfigu-
ration (IPR) maximizes identical configuration bits corresponding
to complementary inputs of an LUT such that the faults seen at a
pair of complementary inputs has less possibility of propagation
and the overall reliability is optimized. IPR is iteratively carried
out by simultaneously reconfiguring multiple adjacent LUTs with-
out changing the function and topology of the LUT-based logic
network. IPR applies to both combinational and sequential cir-
cuits. For sequential circuits, IPR applies to each combinational
logic block.

Compared with ROSE, IPR scales to larger networks. IPR solves
the LUT reconfiguration by a one-time Boolean satisfiability (SAT).
In contrast, ROSE needs to solve a sequence of SAT problems and
the length of the sequence is exponential to the number of con-
figuration bits in an LUT. We observe over 50X speedup by IPR
compared with ROSE in our experiments.

1While design closure for timing has been well understood,
an example of reliability convergence could be caused by
bridging faults, where the possibility of a bridging fault be-
tween two gates is high if their input wires use adjacent
routing tracks but such information is unknown until phys-
ical synthesis.
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Figure 1: A simplified synthesis flow for FPGAs

Compared to the state-of-the-art academic technology mapper
Berkeley ABC without considering faults explicitly, IPR reduces
relative fault rate by 48% and increases MTTF by 1.94×. IPR
is complementary to ROSE since we can first perform ROSE to
increase the robustness before physical design and then carry out
IPR as a post-physical design optimization for further reliability
enhancement. Combining ROSE and IPR reduces the relative fault
rate by 49% and increases MTTF by 2.40X compared with ABC.
All the above improvement assumes a single fault, and more im-
provement can be expected for multi-fault models.

The remainder of this paper is organized as follows: Section 2
provide the in-place LUT reconfiguration algorithm. The experi-
mental results are given in Section 3 and the paper is concluded
with future research directions in Section 4.

2. ALGORITHM

2.1 Informal Overview
In-place resynthesis is a technique that optimizes a circuit after

the placement and routing while preserving the results of physical
design. The inherent flexibility of FPGAs makes in-place resyn-
thesis particularly useful for various optimizations of FPGAs [8,
9]. Our algorithm introduces logic masking in the circuit using
in-place LUT reconfiguration that reconfigures multiple LUTs si-
multaneously.

We represent a Boolean circuit after placement and routing as
a DAG with LUTs as nodes and interconnects as edges [1]. Our
resynthesis starts with a full-chip simulation to compute the logic
signature and observability don’t-care (ODC) mask using the tech-
niques presented in [6]. The ODC mask is used to compute the
criticality of each LUT, which is defined as the percentage of ones
in the ODC mask. It is used as a measure of the contribution of the
LUT to the circuit fault rate. The nodes are ordered in descending
order of criticality. The algorithm iteratively selects the next node
in the ordering and tries to reduce its criticality as follows. For each
selected nodenopt, a cone (i.e., a logic block that includes multiple
LUTs) containingnopt is formed, and the LUTs inside the cone are
reconfigured using anin-place Boolean matching that preserves
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Figure 2: Motivation of IPR

both the logic function and the topology of the cone. The objective
of the reconfiguration is maximize the logic masking to prevent the
propagation of faults. After each iteration, the logic signature and
ODC mask are updated incrementally. The details of the algorithm
are described in the following subsections.

2.2 In-Place LUT Reconfiguration
In-place LUT reconfiguration is the key design freedom that we

propose for our fault-tolerant resynthesis. As mentioned above,
we try to maximize the “logic masking” in order to increase the
robustness of a circuit w.r.t. faults. Specifically, we maximize the
number of identical LUT configuration bits so that we can logically
mask the faults originated upstream.

The logic output for an input vector of a LUT is specified by the
configuration bit corresponding to the input, e.g., for 4-LUT, the
input vector 0011 generates logic output 0 if the configuration bit
c0011 is 0. Therefore, the input vector and the configuration bit have
a one-to-one relationship. For an input pini of aK-LUT, there are
2K−1 pairs of configuration bits associated with it, e.g., for a 2-
LUT, the pairs (c00, c10) and (c01, c11) are pairs of configuration
bits associated with input pin 1.

Figure 2 shows an example for the motivation of IPR. Consider
the 2-LUTs A and B, and input sequences to A and B from a LUT
nopt. When a fault happens tonopt making some 0s innopt’s
output sequence flip to 1s, LUT A’s output changes, while LUT
B’s does not. This is because LUT B’s configuration pairs (c00,
c10) and (c01, c11) each have the same logic outputs (1 for both
c00, c10 and0 for both c01, c11) while LUT A’s do not. There-
fore, to reduce the propagation of faults fromnopt, intuitively, we
want to have more identical pairs of configuration bits in a fanout
LUT of nopt. Naively, such reconfiguration most likely changes
the function of an LUT (indeed, LUTs A and B implement dif-
ferent functions). Yet, it may be possible to reconfigure multiple
LUTs simultaneously to maximize the number of identical pairs
and at the same time, preserve the functionality and topology of the
LUT-based logic network.
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Figure 3: Illustration of cone construction

2.3 Criticality for Configuration Bit
Given the complementary inputs of an LUT, sometimes, we can-

not set all the pairs of configuration bits identical. That setting
which pairs of configuration bits identical is most beneficial be-
comes a problem. Therefore, we have to define the criticality of
configuration bit. High priority should be given to the configuration
bits which can mask more faults after setting as identical. Suppose
Nsequence denotes the length of the sequence of input vectors used
for full-chip functional simulation,Nvector is the number of input
vectors associated with the configuration bitc in the sequence, and
Rtolerate is the fraction of input vectors among theNvector input
vectors for which the fault is not propagated to the primary output
when the input of the LUT is defected.Rtolerate can be derived
from ODC mask. 1-Rtolerate represents the fault rate gap that the
immediate fanout can fill. The criticality of configuration bitc of a
LUT n can be formulated as follows:

Criticality bit(c) =
Nvector

Nsequence

(1 − Rtolerate) (1)

Equation (1) shows that the more there is room for the immediate
fanout to optimize, the higher its criticality is.

2.4 Cone Construction
During the resynthesis algorithm, when a nodenopt is selected,

a cone surrounding this node needs to be chosen for reconfigura-
tion. GivenS, a subset of fanouts ofnopt, the cone construction
routine builds a cone containing all LUTs inS. In addition, the
cone should not include all the first-order fanins for LUTs inS,
which guarantees that the criticality of configuration bits inS do
not change after LUT reconfiguration. We ensure this since LUT
reconfiguration may have reduced benefits if the criticality of these
configuration bits is changed. Figure 3 shows an example of cone
construction. LUTsa, b, andc are fanouts ofnopt. SupposeS
contains only one fanoutc. LUTs nopt, d ande are first-degree
fanins of LUTc. We choose one of fanouts ofc as Root. From the
Root, we construct the cone represented by the shaded triangle, and
it contains the fanoutc, and all the first-order fanins of LUTc, i.e.,
nopt, d, ande, are not included in the cone.

2.5 In-place Boolean Matching
Given a coneCF constructed based on the method presented

in Subsection 2.4, we performin-place Boolean matching (IP-

BM) to check if we can reconfigure LUTs within the cone and
while greedily maximizing identical pairs of configuration bits. If
such a reconfiguration exists, IP-BM will return a set of feasible
reconfigurations for all LUTs within the cone. Similar to the con-
ventional Boolean matching, IP-BM preserves the logic function
of the cone. In addition, IP-BM also preserves the topology of the
cone, i.e., the interconnects among the LUTs within the cone do
not change after IP-BM.

IP-BM is based on the SAT-based Boolean matching proposed
in [10, 11, 12]. Suppose the coneCF hasm inputsx1, · · · , xm,
one outputF , p LUTs: L0, · · · , Lp−1, and intermediate wires
z1 · · · zp. From the coneCF , we can define a Boolean formula
Ψ(CF ) with free variables ranging over the configuration bits of
thep LUTs such that a satisfying assignment to the formula (set-
ting values to the configuration bits) ensures the topological struc-
ture and the functionality of the cone is preserved [10, 12]. To
make a pair of configuration bits(ci, cj) in LUT L identical, we
conjoin withΨ(CF ) the extra constraintci ↔ cj ensuring(ci, cj)
is identical.

Our algorithm for IP-BM iteratively checks if

Ψ(CF ) ∧
^

(ci,cj)∈S

ci ↔ cj (2)

is satisfiable for sets of pairs of configuration bitsSP , which is ini-
tialized as all the pairs of configuration bits of all the LUTs inS,
a subset of fanouts ofnopt. If (2) is satisfiable, there is a feasible
reconfiguration of the cone such that all pairs of configuration bits
in setSP can be set to identical values, and the configuration bits
of LUTs can be obtained based on the satisfying assignment. Since
the topology of the cone is constrained by the characteristic func-
tion, it is not changed after reconfiguration. If(2) is unsatisfiable,
we reduce the size of setSP for the configuration bits that we want
to make identical, and solve the IP-BM with fewer constraints until
either a solution is found or all combinations of LUT configurations
have been tried (i.e.,SP = ∅).

3. EXPERIMENTAL RESULTS
We have implemented IPR in C++ and used miniSAT2.0 [13] as

the SAT solver. All experimental results are collected on a Ubuntu
workstation with 2.6GHZ Xeon CPU and 2GB memory. We test
our algorithms on QUIP benchmarks [14]. We assume that all con-
figuration bits have an equal possibility to be defective during IPR
optimization. For verification, the fault rate of the chip is the per-
centage of the primary input vectors that produce the defective out-
puts. We calculate the fault rate by Monte Carlo simulation with
20K iterations where one bit fault is randomly injected in each iter-
ation for 1k input vectors.

As shown in Figure 4, we first map each benchmark by the Berke-
ley ABC mapper [2] for 4-LUTs, then perform and compare the
following synthesis flows: (1) ABC followed by physical synthesis,
VPR [15], without any defect-oriented logic resynthesis, (2) ABC
followed by physical synthesis, and finally in-place optimization by
IPR, and (3) ABC followed by ROSE and physical synthesis, and fi-
nally in-place optimization by IPR. In each synthesis flow, the logic
depth produced by ABC is preserved. The number of configuration
bits in the interconnects is extracted after the routing. Considering
faults in configuration bits of both LUTs and interconnects, Monte
Carlo simulation is performed to calculate the full-chip fault rate,
with results summarized in Table 1.

In the Table, flow 1 is calledABC, flow 2 calledIPR and flow
3 calledROSE+IPR. ROSE has two options, one using area-
efficient templates to optimize both area and robustness, and the
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Figure 4: Experimental Flows

other using a path-reconvergent template for more robustness im-
provement with slightly more area. We use the area-efficient tem-
plates for flow 3 as it leads to better robustness and area for ROSE+IPR.

We use ABC as the baseline for comparison. One can see from
the Table, IPR reduces the fault rate by 48% without area overhead.
The best flow in terms of the robustness and area is ROSE+IPR,
which reduces fault rate by 49% with 19% smaller area. Table 1
also reports MTTF. Because we assume that all the testing condi-
tions are the same for ABC and IPR, MTTF is inversely propor-
tional to the product of fault rate and area. Compared to ABC,
IPR and ROSE+IPR increases MTTF by 1.94× and 2.40×, respec-
tively.

In addition, compared to the case where ROSE is performed be-
fore placement and routing, the flows IPR and ROSE+IPR have
better design closure between logic and physical synthesis as IPR
is performed after placement and routing. This is important as con-
figuration bits in FPGA interconnects dominate the total number
of configuration bits, therefore pre-layout ROSE is less accurate or
optimized.

QUIP Benchmark

Fault Rate LUT# Runtime
ABC IPR ROSE ABC IPR ROSE IPR

+IPR +IPR (s)
barrel64 2.02% 0.93% 0.94% 1931 1931 1484 19.46

fip cordic cla 1.92% 0.78% 0.79% 1042 1042 802 6.11
fip cordic rca 1.91% 0.83% 0.77% 981 981 751 5.71
mux8 128bit 5.37% 2.84% 2.74% 1923 1923 1796 1.52

oc ata ocidec1 2.98% 1.83% 1.80% 695 695 632 4.52
oc ata ocidec2 3.20% 1.69% 1.73% 840 840 742 4.89

oc ata v 2.15% 1.13% 1.11% 514 514 411 1.43
oc dct slow 1.55% 0.90% 0.85% 509 509 439 4.91

oc des area opt 1.59% 0.98% 0.99% 1190 1190 1007 20.51
oc des des3area 1.68% 1.16% 1.23% 1782 1782 1479 39.64

oc rtc 1.59% 0.72% 0.77% 879 879 591 3.90
oc sdram 1.97% 0.89% 0.86% 729 729 553 1.89

os sdram16 1.65% 0.79% 0.80% 947 947 719 5.28
GeoMean 2.12% 1.09% 1.09% 977.72 977.72 791.10 5.58

Ratio 1 0.52 0.51 1 1 0.81
MTTF 1 1.94 2.40

Table 1: Summary of experimental results

4. CONCLUSION
Our preliminary experiments with IPR are encouraging. IPR in-

creases MTTF by 2× over ABC, the state-of-the-art academic tech-

nology mapper. More importantly, unlike its predecessors, IPR pre-
serves the topology of the logic network for a faster design closure
between physical and logic syntheses. In addition, IPR is comple-
mentary to existing fault-tolerant resynthesis algorithms. Combin-
ing IPR and ROSE, the best design flow for reliability and design
closure is to perform pre-layout ROSE and post-layout IPR.

Although our experiments assume single fault, the proposed al-
gorithm can deal with multiple uncorrelated faults, which will be
explored in future work. We will also extend the proposed algo-
rithm to consider given correlations between faults.

While our criticality calculation in this paper does not consider
interconnect explicitly, IPR algorithm can be used without change
if interconnects are taken into consideration for criticality. In addi-
tion, the current algorithm tolerates interconnect defects implicitly
by modeling them as defects on outputs of an LUT. Our experi-
ments in fact have taken into account both interconnect and LUT
configuration bits for defects and have shown clearly improvement.
In the future, we will extend IPR with criticality considering inter-
connects explicitly.

As our proposed IPR tends to increase logic masking to prevent
the propagation of faults, it inevitably lowers the testability of a
circuit. Particularly, IPR may produce some random pattern resis-
tant (RPR) faults [16], which have very low detection probabilities
and therefore are hard to detect in the random pattern-based testing.
In this case, specifical treatments (e.g., BIST or logic re-synthesis
[16]) can be performed for those RPR faults to enhance the testa-
bility.
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