
Rewiring For Robustness

Manu Jose1, Yu Hu3, Rupak Majumdar1 and Lei He2

1. Computer Science Department, University of California, Los Angeles
2. Electrical Engineering Department, University of California, Los Angeles
3. Electrical and Computer Engineering Department, University of Alberta ∗

ABSTRACT
Logic synthesis for soft error mitigation is increasingly im-
portant in a wide range of applications of FPGAs. We
present R2, an algorithm for rewiring a post-layout LUT-
based circuit that reduces the overall criticality of the cir-
cuit, where criticality is the fraction of primary inputs that
lead to observable errors at the primary outputs if an sin-
gle event upset inverts a configuration bit. Our algorithm
explicitly optimizes the robustness of the interconnect, the
dominant component of FPGAs. The key idea of R2 is to
exploit Boolean flexibilities in the circuit implementation
to replace wires with high criticality with those with lower
criticality while preserving the circuit functionality. We esti-
mate criticalities using a Monte Carlo fault simulation. We
represent flexibilities using SPFDs (Set of Pairs of Func-
tions to be Distinguished), and use criticality information
to choose candidates for rewiring, assigning the maximum
flexibility to high criticality wires. Compared to IPR, a re-
cent robust logic optimization, our implementation increases
MTTF (Mean Time to Failure) by 24%, showing for the
first time, the advantages of exploiting Boolean flexibilities
in optimizing for robustness. In addition, R2 achieves 5%
and 2% more reduction on the number of wires and LUTs
in an FPGA than that obtained by the existing rewiring
algorithm for area minimization.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated circuits – Design aids

General Terms
Algorithms, Reliability
∗Manu Jose was supported in part by the DARPA grant
HR0011-09-1-0037. The project was partially funded by
the discovery program in National Sciences and Engineer-
ing Research Council of Canada. Part of Yu Hu’s work was
performed when he was with Electrical Engineering Depart-
ment, UCLA, and part of Lei He’s work was performed dur-
ing his visit to the State Key Laboratory for ASIC, Fudan
University, Shanghai China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2010, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM ACM 978-1-4503-0002-5 /10/06...$10.00

Keywords
SPFD, FPGA, Rewiring, Logic synthesis, Soft Errors

1. INTRODUCTION
Field programmable gate arrays (FPGAs) are built upon

memory elements that are particularly vulnerable to soft
errors (e.g., caused by single event upsets (SEUs)). Due to
the aggressive CMOS scaling and the emerging nano devices,
soft error mitigation for SRAM-based FPGAs has become
increasingly important for a wide range of applications from
internet line cards to enterprise servers [17]. An effective ap-
proach for reducing the impact of the soft errors can lead to
higher mean-time-to-failure (MTTF), reduced maintenance
cost, and increased QoS (quality of service).

Among all memory elements in an FPGA, 99% are config-
uration bits (the rest are user bits, e.g., flip-flops and on-chip
memory data) [15]. An analysis [11] of the failure modes
of FPGA-based designs shows that failures due to routing
structures (i.e. interconnect) is dominant, about 80% of all
failures. In this paper, we specifically take the impact of
soft error on interconnect into consideration, and focus on
error mitigation techniques based on logic resynthesis that
interact with physical design in the CAD flow.

The idea of robust logic synthesis, which performs logic
resynthesis with reliability as the primary optimization cri-
terion, has been explored in several recent papers [16, 18,
20, 21]. The main insight in these papers is logic masking
insertion, in which a logic block is rewritten for maximal
logic masking in order to prevent the propagation of faults
through the block. For example, [18] introduce logic mask-
ing by a template with reconvergent paths for technology
mapping and resynthesis, and [20] rewrites LUT configura-
tion bits for local logic masking while maintaining the cir-
cuit topology. Compared with Triple Modular Redundancy
(TMR) [14], a widely applied technique for soft error miti-
gation, logic masking-based fault tolerance has much lower
area, performance and power overhead.

However, in most existing fault-tolerant resynthesis algo-
rithms, a logic block to be restructured is expressed by the
completed specified function (CSF) derived from the LUTs
inside this block. In other words, the Boolean flexibility
due to the rest of the network outside the logic block is not
taken into consideration, and therefore the opportunity of
resynthesis is limited. In contrast, we in this paper explore
the opportunity of using Boolean flexibility in robust logic
synthesis. Specifically, we propose a rewiring algorithm for
a post-layout circuit to improve reliability. Since rewiring
optimizes interconnect, the most soft error-susceptible com-

469

28.3

ponent in an FPGA, the intuition is that a rewiring opti-
mization will increase reliability.

We use Set of Pairs of Functions to be Distinguished
(SPFD) [5]) as our representation for Boolean flexibilities.
Our choice is driven by two factors. First, SPFDs can repre-
sent more flexibilities than don’t-cares [7], and therefore give
us more potential to insert logic masking. Second, SPFDs
have previously been used successfully for rewiring of LUT-
based circuits for area [5, 9], delay and routability optimiza-
tion [10].

Our main contribution is an algorithm for robust rewiring,
called R2. The R2 algorithm takes a post-layout circuit
and performs rewiring, i.e., finds alternatives for a wire and
replaces it with the one for maximal robustness. R2 uses
Monte Carlo simulation to estimate the criticality for each
configuration bit (i.e., the fraction of primary inputs that
lead to observable errors at the primary outputs if an SEU
inverts the configuration bit). The key idea in R2 is to re-
place the most critical wires with those with lower critical-
ity, where the candidates for replacement are found based
on SPFD computations.

Unlike SPFD-based rewiring for area optimization [5],
during the course of resynthesis, R2 re-assigns the SPFD
according to the criticality of a wire to maximize the oppor-
tunity of the replacement of the highly critical wires. We
compare our results against a baseline produced by IPR [20],
a recent robust resynthesis for LUT reconfiguration. The
R2 algorithm increases the MTTF by 24% and decreases the
numbers of wires and LUTs by 5% and 2% respectively at
the same time, over the IPR baseline. In fact, we see slight
decreases in wire and LUT numbers (2% and 1%) over an
area-minimizing rewiring technique [5] as well.

Flexibilities have been widely used in various resynthe-
sis algorithms for area [9], power [6], or floorplanning and
placement [8] optimization. To the best of our knowledge,
this paper is the first to apply the design freedom offered by
flexibilities to optimize for reliability in FPGA designs.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the preliminaries. Section 3 introduces the
proposed R2 algorithm. Section 4 shows the experimental
results, and the paper is concluded in Section 5.

2. PRELIMINARIES

2.1 Boolean Network
A LUT-based Boolean network is represented as a di-

rected acyclic graph (DAG) whose nodes represent LUTs
and whose directed edges correspond to wires connecting
the LUTs. For a wire (n, n′), we say n is the source and n′

the target of the wire. A sequential circuit can be treated as
a combinational one by removing the registers. The nodes
in the lowest level of the DAG are called circuit inputs (CIs),
which include the primary inputs (PIs) and the outputs of
registers. The nodes in the highest level are called circuit
outputs (COs), which include primary outputs (POs) and
the inputs to registers. The transitive fanin (TFI) (resp.
fanout (TFO)) cone of node n is a sub-network whose nodes
can reach the fanin edges of n (resp. can be reached from
the fanout edges of n).

A circuit is K-LUT mapped iff each node has a single out-
put pin p0 and up to K input pins p1, · · · , pu, for u ≤ K.
Each node has an internal logic function p0 = f(p1, · · · , pu)
that defines the logic relationship between the output and

input pins of the node. Each pin can be associated with
a global logic function g1, · · · , gu, respectively, in terms of
the CIs of the circuits, defined inductively as follows. The
global function associated with a CI x is x itself. The global
function associated with the output pin p0 of a node with in-
put pins p1, · · · , pu is f(g1, · · · , gu), where g1, · · · , gu are the
global functions associated with pins p1, · · · , pu respectively
and f is the logic function for the node.

2.2 SPFD
For a Boolean function f , we write f for the function such

that f(x) = 0 iff f(x) = 1 for each input x. For two Boolean
functions f1 and f2, we say f2 covers f1, written f1 ≤ f2, if
whenever f1 = 1 we have f2 = 1. Let (π1, π0) be a pair of
logic functions such that π0 and π1 are non empty and they
do not overlap (π1 �= 0, π0 �= 0, and π1∧π0 = 0). A function
f can distinguish (π1, π0) if π1 ≤ f ≤ π0 or π0 ≤ f ≤ π1.
I.e., there is no overlap between on-set of π1(π0) and off-set
of π0(π1).

An SPFD [5]

R(x, x′) = {(π11(x), π10(x
′)), · · · , (πm1(x), πm0(x

′))},
is a set of pairs of Boolean functions, where variable x ranges
over some space X. A Boolean function f satisfies an SPFD
R(x, x′) iff f distinguishes all m functions pairs in R(x, x′).
Note that SPFD is a way to express the flexibility in a
Boolean network.

Given a Boolean network, [5] proposed the following al-
gorithm to compute the SPFD for each node and each wire
(i.e., an edge in the Boolean network graph). There are
two passes in the computation. The first, forward traversal
(from CIs to COs) of the network is used to compute the
global logic function of each node. The second, backward
traversal computes the SPFDs at each pin.. At each pin,
the SPFD is computed as follows.

1. At each CO node, Oj , the SPFD can be obtained as

Rj(X, X ′) = (fon
j , foff

j), where fon and foff repre-
sents the on-set and off-set of function f , respectively,
and X represents the vector in the CI space.

2. At the output pin of a node, the SPFD is the union of
its fanout pins’ SPFDs.

3. For an input wire (i, j) of a node j, its SPFD
Rij(X, X ′) is obtained by decomposing its output
SPFD Rj(X, X ′) into minterms and assigning the
function pairs backwards to input pins.

Rewiring is a technique that replaces a wire in the Boolean
network with another while maintaining functional equiva-
lence. An SPFD-based rewiring algorithm was proposed in
[5, 9]. A wire (i, j) can be replaced by the output of a node
q without changing the logic functionality of the COs if the
SPFD of the output pin of node q satisfies Rij(X, X ′), the
SPFD of (i, j). After the wire replacement, the logic func-
tion of LUT j might need be changed according to the logic
functionality of q. When a wire (i, j) does not provide any
unique information to the sink node j, it can be removed
from the network. Again, the function at LUT j has to
be changed to account for the different flow of information.
The algorithm proceeds in topological order from primary
inputs to primary outputs and attempts to change the wiring
of each node in the network, if some gain is obtained by the
replacement.

470

28.3

Place&Route

Fault Simulation

Synthesis

Rewiring

Incremental
Routing

Figure 1: CAD flow

3. ROBUST REWIRING
We propose a rewiring algorithm whose objective is to

improve the robustness of a circuit to single-event upsets.
As shown in Figure 1, our proposed algorithm is applied
after placement and routing, since we can get accurate fault
information (particularly for interconnect) only after that
phase.

3.1 Fault Model and Fault Simulation
Following [20, 18], we assume a single fault model, i.e., at

most one single event upset (SEU) occurs in a clock period.
This assumption is valid, given the real SER for commercial
SRAM-based FPGAs [19]. We consider SEUs on both LUT
configuration bits and routing. An SEU that occurs in an
LUT configuration bit results in the flip of the logic value
(i.e., “0” (“1”) changes to “1” (“0”)) in the corresponding
SRAM bit, and consequently changes the logic function en-
coded by the LUT.

An SEU that occurs in a configuration bit of a connection
box or a switch box for the routing resource can cause the
following three faults: (1) stuck-at fault (mis-connected to a
“0” or “1” signal), (2) stuck-open fault (two originally con-
nected wires are broken), (3) bridging fault (multiple wires
are mis-connected) [15]. Given a FPGA-based design, a de-
tailed analysis of the impact of these faults at the physical
level is expensive. For example, the logic value associated
with a faulty routing signal due to a bridging fault depends
on both the logic value and the individual driving strength
of the bridged nets. In our experiments, we make the follow-
ing simplified assumption: an SEU that occurs in a routing
configuration always causes the flip of the logic value of the
corresponding routing signal. In other words, an SEU in a
routing signal always changes the logic value that it carries.
Note that this is a pessimistic assumption and estimates an
upper bound of the fault rate.

While we make this simplifying assumption for efficient
fault simulation, our proposed algorithm can be applied to
more sophisticated fault models (e.g., [15]) by replacing our
fault simulator with a more sophisticated one.

Using the fault model, we perform fault simulation using
Monte Carlo sampling to estimate the criticality of a con-
figuration bit. The criticality of a configuration bit c is the
percentage of CI vectors that cause erroneous values for COs
due to the flip of the logic value of c.

Intuitively, the criticality of a configuration bit shows how
likely is the flip of this bit observed at the COs. The higher
the criticality of a configuration bit is, the more input vec-
tors may sensitize the SEU that occurs at this bit. This
definition quantitatively measures the impact of the SEU in
the bit level on the mean time to failure (MTTF). It is easy
to show that MTTF is inversely proportional to the average
criticality of all configuration bits of a design.

3.2 The R2 Algorithm

Figure 2: A LUT Network

Given a K-LUT mapped circuit, the objective of the
rewiring for robustness algorithm is to find alternatives for
potential interconnects to minimize the overall criticality of
configuration bits in the entire circuit, while keeping the
total number of wires under a threshold.

We present an algorithm, called R2, for rewiring for ro-
bustness. We start with an example to illustrate the in-
tuition behind the algorithm. Figure 2 shows a fraction
of a circuit during the course of the resynthesis. This re-
gion contains five 3-LUTs (L1, · · · , L5), where L1, L2, L3

are the fanins of L4 with wire connections w1, w2, w3, re-
spectively. Suppose that there are three primary inputs
X = {x1, x2, x3} and that for each LUT L, the function
F (L) at the output of L is represented based on X space
as shown in Figure 3. The SPFD at the output of L4 on Y
space is

R4(Y, Y ′) = {m001, m111} ⊗ {m000, m011, m101, m110},
where my1y2y3 is a minterm in Y -space of L4 and ⊗ is the
cartesian product of the two sets of minterms.

Assume the criticalities of w1, w2, and w3 are c1, c2, and
c3 respectively, and that c3 > max (c1, c2). R2 identifies
wires such as w3 with the maximum criticality in the region
of resynthesis, and tries to find a replacement wire for w3

which will result in a lower criticality of the network.
Formally, R2 works as follows.

1. Perform fault simulation to estimate criticality for each
wire and sort wires according to criticality.

471

28.3

2. Choose the wire w with the maximum criticality as a
potential target for replacement.

3. Compute the flexibility of w. In contrast to the
method in [5], in the course of backward propagation
of the SPFD computation, we try to minimize the size
of w (i.e., the number of minterms needed to be dis-
tinguished by w), giving it the maximal flexibility. In-
tuitively, the more flexibility a wire has, the more po-
tential replacement nodes in its transitive fanin (TFI)
can be found.

4. Search nodes in the transitive fanin that could replace
w, i.e., find a node whose function satisfies the SPFD of
w. Let n′ be such a node. Make a temporary connec-
tion w′ from n′ to the target of w and remove w. This
may require reprogramming the LUTs in the transitive
fanout (TFO) of n′.

As an example, consider the LUT L5 with function
F (L5), which satisfies the SPFD of w3 as shown in
Figure 3. We make a temporary connection w5 and
remove w3. As a consequence, we may need to modify
the internal logic of L4. Such programming can be
always carried out as SPFD of w5 inherenlty assumes
that the internal logic of L4 can be freely changed.

5. Update the criticality of the changed wires and nodes
through fault simulation, and reject the rewiring if the
total criticality increases.

Step 2 is the key difference between the area-minimizing
SPFD computation and the one used in R2. Essentially, to
calculate the SPFD at the fanin of a node j, we assume
that the SPFD Rj , has been computed. We need to give an
ordering on the fanin pins of ni. Such an arbitrary order-
ing is decided in the area-minimizing SPFD computation
proposed in [5]. However, in robust rewiring we take the
advantage of the known information of the criticality of a
wire and use it to give the privilege (highest flexibility) to
the most critical wire, and therefore a replacement for this
wire is more likely to be found. Specifically, suppose that
the fanin wire (i, j) of node j has the highest criticality, its
SPFD is formally given as

Rij = Rj ∧ (yi �= y′
i) ∧

Y

u∈fanin(j)∧u�=i

(yu = y′
u).

That is, the SPFD of fanin wire (i, j) is the set of minterms
that can only be distinguished by fanin wire (i, j) but not
by any of the fanin wires of node j.

Now back to the example in Figure 2, the area-minimizing
SPFD computation might result in

Rarea
3,4 = {(m001, m000), (m111, m110), (m111, m000)}.

Note that the pair (m111, m000) can be distinguished by w1

or w2, and therefore it does not have to be assigned to the
SPFD of w3. Thus, our SPFD computation for R2 gives the
SPFD for w3,

Rrobust
3,4 = {(m001, m000), (m111, m110)},

which is the minimum set of minterms that have to be dis-
tinguished by w3. Obviously, function of L5 does not satisfy
Rarea

3,4 and therefore we lose the opportunity of replacing the

highly critical wire w3 in area-minimizing SPFD computa-
tion. On the other hand, the new SPFD computation in
R2 makes such a replacement possible.

During the SPFD computation, if we find a wire (i, j) with
empty SPFD with respect to the primary outputs, then that
wire is redundant and can be removed from the network.
After this removal, if node i had only a single fanout and it
is not a primary output then node i can be removed from
the network. The removal of wires and nodes during the
robust rewiring helps to minimize the area of the network.

Figure 3: Functions of LUT in the network

4. EXPERIMENTAL RESULTS
We have implemented the R2 algorithm and tested it on

MCNC [2] and IWLS [12] benchmarks. We consider the
combinational logic in the benchmark circuits. Using the
same settings as [5], a circuit is synthesized, optimized and
mapped to 5-LUTs using SIS [3] with the following com-
mand:

“eliminate 2 gkx -ac; simplify -d; xl part coll -
m -g 2; xl coll ck; xl partition -m; simplify;
xl imp; xl partition -t; xl cover -e 30 -u 200;
xl coll ck -k;”.

Taking the mapped combinational circuit, we first per-
form in-place reconfiguration (IPR) using the algorithm in
[20] to reconfigure the LUTs for logic masking. The result-
ing circuit is referred as “IPR” in our comparison (see Table
1). Then, we perform a fault simulation to obtain the criti-
cality of the wires (edges) and LUTs (nodes) assuming that
there is one configuration bit in each wire. The result of
this simulation is used as a guidance to choose wires dur-
ing the optimization where 2,000 random input vectors are
used in each run of the fault simulator. The total critical-
ity for a circuit is computed by adding the criticality of all

472

28.3

Table 1: Summary of results

Total criticality Wire# Node#
Circuit IPR Yamashita R2 IPR Yamashita R2 IPR Yamashita R2
Apex6 839.95 704.82 646.34 897 896 889 329 329 328

x3 1167.7 1088.32 1081 935 914 887 340 338 333
example2 1153 932.45 921 451 425 449 190 186 190

C1908 1874.32 1971.13 1794.03 430 428 430 136 136 136
too large 1230.5 839,47 778.79 883 875 882 227 227 227

apex7 669.87 575.96 492.8 294 284 273 122 121 119
frg2 3843.98 3396.59 2977.17 1319 1234 1193 482 481 477
ttt2 369.77 364.87 310.75 238 234 211 77 77 72
dalu 2316.32 2316.85 2139.97 1381 1230 1254 404 390 393
apex2 8125.03 7641.13 5958.61 4743 4663 4718 1162 1162 1159

x4 948.3 845.39 801.61 598 570 491 234 233 213
t481 2849.17 2449.03 2218.67 1722 1688 1721 416 416 416
seq 10162.70 9231.63 8008.22 4490 4409 4468 1109 1108 1107

pci spoci ctrl 1801.05 2476.14 1722.06 1438 1359 1422 431 425 429
ss pcm 418.91 377.70 356.41 466 465 457 226 226 226
usb phy 471.53 409.00 406.19 552 549 547 278 278 278
mem ctrl 31540.17 19180.03 18730.20 16031 14580 12844 5182 4633 4576

GEOMEAN 1756.34 1568.11 1410.84 1052.34 1016.26 996.43 353.39 349.39 345.76
Estimated MTTF Ratio Ratio of Num. of Wires Ratio of Num. of Nodes

1.00 1.12 1.24 1.00 0.97 0.95 1.00 0.99 0.98
1.00 1.11 1.00 0.98 1.00 0.99

wire and LUT configuration bits, where the criticality of a
configuration bit is the percentage of random input vectors
that showed a difference in some primary output when the
configuration bit at the wire or the LUT was flipped. Two
different rewiring algorithms, the area-minimizing rewiring
of [5] (the resulting circuit is referred as “Yamashita”) and
our proposed R2 are performed. After the rewiring, the fault
simulator with more (100,000 in our experiment) random in-
put vectors are used to calculate the final criticality of wires
and LUTs in the resynthesized circuits. The detailed com-
parisons are shown in Table 1.

According to [20], the IPR algorithm can achieve up to
50% criticality reduction compared to the state of the art
logic synthesis tool ABC [13]. R2 reduces the total criticality
of the IPR-optimized circuit (called “IPR” in Table 1), by
20% while also reducing the total number of wires and nodes
by 5% and 2%, respectively. Compared with Yamashita’s
rewiring, R2 reduces the total criticality by 11%. It is inter-
esting that our R2 results in fewer wires and nodes compared
with the area-minimizing Yamashita’s algorithm. The rea-
son might be due to the heuristic of R2 that re-assigns the
SPFD to nodes with high criticality in exchange for more re-
placement opportunity, and therefore more wires/nodes are
removed. The running time of R2 is comparable to that of
Yamashita’s rewiring approach.

In Table 1, we also compare the estimated MTTF, which
is the commonly used system-level metric for robustness.
Based on [20], MTTF is inversely proportional to the fault
rate, i.e., the average criticality of all configuration bits of
the wires and the LUTs. Therefore MTTF is inversely pro-
portional to the total criticality, assuming the same FPGA
chip (with the same amount of configuration bits) and the
uniform distribution of single soft error. Our MTTF ignores
the reduction of LUTs (nodes) and wires, and therefore it is
underestimated. We report MTTF normalized with respect
to that for IPR. The criticality reduction by R2 is equiva-

lent to 24% and 11% MTTF increase compared to IPR and
Yamashita respectively. It should be noted that Yamshita
method also increases the MTTF by 12%, this is becuase
Yamashita method reduces the number of LUTs and wires
in the circuit and this can lead to a reduction in the total
criticality of the circuit.

5. CONCLUSIONS AND FUTURE WORK
We have presented R2, a robust rewiring algorithm that

performs wire replacement in order to reduce the criticality
of the interconnects in an FPGA-based design. The prelimi-
nary experimental results show that the proposed algorithm
increases MTTF (mean time to failure) by 24% compared
with IPR [20], a recently proposed LUT reconfiguration ap-
proach. This clearly shows the need of taking Boolean flex-
ibility into consideration for fault tolerance in order to fully
explore the design space.

Compared to both IPR and exiting rewiring for area re-
duction, R2 reduces area as it reduces LUT and wire num-
bers in addition to increasing MTTF. Note that our reported
MTTF increase is underestimated, as we do not consider
area reduction by R2 in MTTF calculation. Furthermore,
we assume that there is only one configuration bit per wire
in our experimental settings. This may also underestimate
MTTF improvement by R2.

In the future, we will further test R2 with a more fine-
grained physical-level fault model, where the increased num-
ber of configuration bits per wire potentially lead to more
improvement. It is interesting to see the improvement even
at logic level, and since R2 leads to lower area and reduction
in the number of wires, it is quite possible that this could
lead to better routability and timing. Our current SPFD
calculation uses BDDs and it cannot accommodate bigger
circuits. We plan to to do a SAT-based SPFD calculation
which would allow us to rewire bigger circuits with poten-

473

28.3

tially more room for rewiring.

6. REFERENCES
[1] H. Savoj and R. K. Brayton. The Use of Observability

and External Don’t Cares for Simplification of
Multi-Level Networks. In Proc. Design Automation
Conf, 1990.

[2] S. Yang. Logic synthesis and optimization
benchmarks, Version 3.0. Technical report,
Microelectronics Center of North Carolina (MCNC),
1991.

[3] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan,
Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. SIS: A system for sequential
circuit synthesis. Technical Report UCB/ERL
M92/41, EECS Department, University of California,
Berkeley, 1992.

[4] Ellen M. Sentovich, Vigyan Singhal, and Robert K.
Brayton. Multiple boolean relations. In International
Workshop on Logic Synthesis, 1993.

[5] S. Yamashita, H. Sawada, and A. Nagoya. A new
method to express functional permissibilities for LUT
based FPGAs and its applications. In Proc. Int. Conf.
on Computer Aided Design, 1996.

[6] J.-M. Hwang, F.-Y. Chiang, and T.-T. Hwang. A
Reengineering Approach to Low Power FPGA Design
Using SPFD. In Proc. Design Automation Conf, 1998.

[7] S. Sinha, R and K. Brayton. Implementation and Use
of SPFDs in Optimizing boolean Networks. In Proc.
Int. Conf. on Computer Aided Design, 1998.

[8] P. Chong, Y. Jiang, S. Khatri, F. Mo, S. Sinha, and
R. Brayton. Don’t Care Wires in Logical/Physical
Design. In International Workshop on Logic Synthesis,
2000.

[9] J. Cong, Y. Lin, and W. Long. SPFD-Based Global
Rewiring. In Proc. ACM Intl. Symp.
Field-Programmable Gate Arrays, 2002.

[10] J. Cong, Y. Lin and W. Long. A New Enhanced
SPFD Rewiring Algorithm. In Proc. Int. Conf. on
Computer Aided Design, 2002.

[11] P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson,
P. Sundararajan, and C. Patterson. Consequences and
categories of SRAM FPGA configuration SEUs. In
Proceedings of the Military and Aerospace Applications
of Programmable Logic Devices , 2003

[12] IWLS 2005 benchmarks. In
http://iwls.org/iwls2005/benchmarks.html.

[13] ABC: A system for sequential synthesis and
verification. In
http://www.eecs.berkeley.edu/ alanmi/abc/.

[14] Xilinx TMRTool. Product brief. In Xilinx
Corporation, 2006.

[15] H. Asadi, M.B. Tahoori, B. Mullins, D. Kaeli, and K.
Granlund. oft Error Susceptibility Analysis of
SRAM-Based FPGAs in High-Performance
Information Systems. In IEEE Transactions on
Nuclear Science (TNS), December 2007.

[16] S. Krishnaswamy, S.M. Plaza, I.L.Markov and
J.P.Hayes. Enhancing Design Robustness with
Reliability-aware Resynthesis and Logic Simulation. In
Proc. Int. Conf. on Computer Aided Design, 2007.

[17] S. Mukherjee. Architecture design for soft errors.
Morgan-Kaufman, 2008.

[18] Y. Hu, Z. Feng, R. Majumdar, and L. He. Robust
FPGA resynthesis based on fault tolerant boolean
matching. In Proc. Int. Conf. on Computer Aided
Design, 2008.

[19] K. Chapman and L. Jones. SEU Strategies for
Virtex-5 Devices. In Xilinx Corporation, XAPP864,
2009.

[20] Z. Feng, Y. Hu, R. Majumdar, and L. He. IPR:
In-Place Reconfiguration for FPGA Fault Tolerance.
In Proc. Int. Conf. on Computer Aided Design, 2009.

[21] Ju-Yueh Roy Lee, Yu Hu, Rupak Majumdar, Lei He,
and Minming Li. Fault-tolerant resynthesis with
dual-output luts. In Proc. Asia South Pacific Design
Automation Conf., 2010.

474

28.3

