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ABSTRACT
Stochastic device noise has been a significant challenge for high-

precision analog/RF circuits, and it is particularly difficult to

correctly include both white noise and flicker noise into the tradi-

tional transient verification flow with efficient numerical solution.

In this paper, a Non-Monte-Carlo transient noise analysis is devel-

oped. Both white noise and flicker noise are considered in the Itô

integral based stochastic differential algebraic equation (SDAE),

which is further solved with one-time calculation of variance us-

ing the stochastic orthogonal polynomials (SoPs). This work is

the first to provide SoP based SDAE solution with application in

transient noise analysis. Experiments on a number of different

analog circuits demonstrate that the proposed method is up to

488X faster than Monte Carlo method with a similar accuracy,

and achieves on average 6.8X speedup over existing non-Monte-

Carlo approaches.

1. INTRODUCTION
Device noise is one of fundamental limits for circuit performance.
Noise-related issues are particularly critical for high-precision cir-
cuits implemented at nanometer-scale with low voltages or high
frequencies. For example, random device noise has a significant
impact on nanometer CMOS PLL phase noise and jitter[1]. Note
that the noise-sensitive analog/RF circuits such as ADCs and
PLLs are the core components for bio-sensory and wireless com-
munication systems. The device random noise is primarily com-
posed of white noise (thermal and shot) and flicker noise. Ther-
mal noise is broadband white noise that intensifies as temperature
increases. In contrast, flicker noise is due to defects in semicon-
ductor. The frequency at which the flicker-noise spectral density
intersects the flat white-noise spectral density is called 1/f corner
frequency. Both thermal and flick noise can be modeled inside
the device model for the transistor. The primary challenge is to
verify the transient noise behavior at circuit and system level with
multiple transistors. Mainly due to the stochastic verification of
device noise, the design for high-precision analog/RF components
is usually time-consuming. The traditional SPICE-like verifica-
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tion assumes either small-signal ac noise or periodic stead-state
noise analysis in a linear fashion, which cannot satisfy the need
to verify the nonlinear transient noise analysis. The efficient nu-
merical analysis of the transistor-level transient noise is required
to facilitating the high-precision analog/RF designs in the nano-
meter region.

A number of previous arts have been proposed to address the
aforementioned challenge when verifying the transient device noise.
Based on the Itô integral formulation, the transient noise can be
estimated by solving the stochastic differential algebraic equa-
tions (SDAE) either under Euler-Maruyama or Milstein method
[2, 3]. One recent work in [4] has applied the stochastic integral
scheme for SDAE, in particular stochastic analogues of the back-
ward differentiation formula (BDF) and implicit trapezoidal rule
(ITR) as in the traditional SPICE tools. However, this approach
still requires the expensive Monte-Carlo iterations with the use
of sampling-paths at each time point. Moreover, the expensive
correlation analysis is required to calculate the noise variance.
In addition, it is unknown how to model flicker noise inside this
framework.

In [5, 6], a time-domain non-Monte-Carlo noise simulation con-
sidering thermal noise has been developed. Device noises are
modeled as uncorrelated stochastic current sources. Since the
magnitude of the noise in a signal is much smaller when com-
pared to the magnitude of the signal itself, the solution of SDAE
can be first piecewise-linearized along the nominal trajectory. The
resulting reformulated SDAE is solved by the perturbation anal-
ysis. In order to calculate the noise variance, this approach also
needs to perform the correlation analysis with intensive matrix-
operations on the covariance matrix of circuit state variables at
each time point, though the need of Monte Carlo iterations is
avoided. The evaluation using the covariance matrix is expensive
for the large-scale transient analysis. More importantly, because
the perturbation analysis in [5, 6] is not applied to SDAE with
Itô-integral form, the reformulation of SDAE under perturbation
analysis might be inaccurate.

In this paper, we present an efficient and accurate non-Monte-
Carlo transient noise analysis to verify the stochastic noise of
high-precision analog/RF circuits. First, it can model both ther-
mal noise and flicker noise in the time domain by synthesized
RC networks with white noise current sources, which can be con-
nected to noise-free circuit elements. This lead to an Itô-integral
formed SDAE with only Wiener processes. Next, in order to avoid
inefficient Monte Carlo iterations and expensive co-variance ma-
trix analysis [4, 5] when calculating the noise variance, we propose
a one-time calculation with the use of stochastic orthogonal poly-
nomials (SoPs). To the best of our knowledge, it is the first time
to present the SoP solution for Itô integral based SDAE. Exper-
iments show that SoPs based method is up to 488X faster than
Monte Carlo method with similar accuracy. When compared with
previous work, SoPs method can provide on average 6.8X speedup
and higher accuracy.



The rest of the paper is organized as following: we first review
the background of the noise models and SoPs in Section 2. Then,
we briefly summarize previous work in Section 3 and propose
SoPs based method in Section 4. We show experimental results
in Section 4 and conclude the paper in Section 5.

2. BACKGROUND
2.1 Noise Models

In our noise analysis, we consider white noise and flicker noise.
Both thermal noise and shot noise are white noise and hence can
be treated similarly. In this section, we briefly review the noise
models.

2.1.1 White Noise Model
Both thermal noise and shot noise can be modeled as a white

Gaussian noise current source that is connected to an ideal circuit
element such as resistor or current source in parallel.

For instance, the thermal noise current for a resistor is

ith(t) =

√
2kT

R
ξ(t) (1)

where k is Boltzmann’s constant, T is the absolute temperature
and R is the resistance. ξ(t) is a standard Gaussian white noise
process, which is a stationary with a constant power spectral
density (PSD) in frequency domain.

Similarly, there exists thermal noise in the channel of one MOS
transistor associated with transconductance gm, which can be
modeled by:

ith(t) =
√

4kTθ · gm · ξ(t). (2)

where θ depends on channel length and the operating region [7]
which varys from 1/2 to 2/3.

2.1.2 Flicker Noise Model
Flicker noise is dominant in MOS transistors, which can be

modeled by a noise current in parallel. Also, the PSD of flicker
noise in MOS transistor can be generally written as

Si(f) =
i2f

∆f
=

KF

CoxWL
× g2

m × 1

f
(3)

where W is channel width, L is channel length and Cox is gate
oxide capacitance per unit area. Note that KF here is flicker noise
coefficient, a constant depending on the process technology.

From equation (3), flicker noise has a time-varying PSD as a
function of frequency, and thus it is a non-stationary noise pro-
cess. That is why only white noise is included in the transient
noise analysis for [4]. To include flicker noise during the tran-
sient noise analysis, we apply the synthesized RC circuit [5, 6]
to generate the summation of Lorentzian spectra in (4) which
approximates the 1/f noise PSD.

S(f) =
2kT

πCm

M∑

m=1

ϕm

ϕ2
m + f2

∝ 1

f
. (4)

Here ϕm is the pole-frequency and each Lorentzian spectra is
represented by a white noise current source in parallel with an
ideal group of resistor Rm and capacitor Cm shown in Fig(1).

In general, each flicker noise source can be represented by an
ideal voltage-controlled current source, where the flicker noise cur-
rent is i(t) = g(t)·v(t) with the output voltage v(t) of one Rm-Cm

group circuit in Fig(1) and a time-varying transconductance g(t).
When all capacitors Cm are fixed as constant value C, g(t) can
be written as

g(t) = gm

√
KF

CoxWL
· πC

2kT
(5)

Here, gm is the time-varying transconductance of MOS transistor.
This important result shows that one can still model flicker noise
by the synthesized RC network and white noise current source.
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Figure 1: Flicker current noise source synthesis

2.2 Stochastic Orthogonal Polynomial
One recent advance in stochastic analysis is to apply stochastic

orthogonal polynomial [8] or polynomial chaos to the nanometer
scale integrated circuit analysis [9]. Based on the Askey scheme,
any stochastic random variable can be represented by stochastic
orthogonal polynomials (SoPs), and the random variable with
different probability distribution type is associated with different
type of SoP.

For example, for white noise current source with random vari-
able ξ, its Gaussian distribution of f(ψ) can be spanned by Her-
mite polynomials Φ(ψ) = [1, ψ, ψ2 − 1, · · · ]T as follows

f(ψ) = α0Φ0 + α1Φ1 + α2Φ2 + · · · =
n∑

i=0

αiΦi. (6)

Note that SoPs satisfy the following orthogonal property under
so-called point-collocation:

〈Φi(ψ), Φj(ψ)〉 =
〈
Φ2

i (ψ)
〉 · δij (7)

where δij is the Kronecker delta and 〈∗, ∗〉 denotes an inner prod-
uct.

As such, when the SoP representation is available, the mean
and variance of f(ψ) can be obtained from one-time calculation
using collocation (up to the second order expansion) by:

E(f(ψ)) = α0

V ar(f(ψ)) = α1
2 + 2α2

2 . (8)

In this paper, we show how to apply the SoP technique for the
non-Monte-Carlo solution of the transient device noise analysis.

3. PREVIOUS WORK
One integrated circuit is composed of passive and active devices

described by a number of terminal-branch equations. According
to KCL’s law, one can obtain a differential-algebraic equation
(DAE) below

A
d

dt
q(x(t)) + f(x(t), t) = 0. (9)

Here, x(t) is vector of state variables consisting of node voltages
and branch currents. q(x(t), t) contains charges and fluxes and
f(x(t), t) describes current-voltage relation. The constant matrix
A is incidence matrix determined by circuit topology.

3.1 Itô Integral based SDAE
When device noises become the interest, they can be modeled

by noise current sources added to the deterministic DAE (9) by

A
d

dt
q(x(t)) + f(x(t), t)

︸ ︷︷ ︸
deterministic

+

m∑

r=1

gr(x(t), t)ξr(t)

︸ ︷︷ ︸
stochastic

= 0 (10)

gr(x(t), t) is vector of noise intensities, and ξr(t) is vector of
noise sources (White noise). (10) is called stochastic differential-
algebraic equation (SDAE). Although (10) only differs from (9)
by the stochastic noise sources, it requires a completely different
numeric analysis. The primary difficulty to solve SDAE is that



the required derivative of x(t) is unavailable since x(t) is nowhere
differentiable due to the influence of stochastic noise sources.

Note that (10) can be interpreted as a stochastic Itô integral
equation by integrating over one small time-interval [t0, t]:

Aq(x(s))|tt0 +

∫ t

t0
f(x(s), s)ds +

m∑

r=1

∫ t

t0
gr(x(t), t)dWr(t) = 0.

(11)
The second integral is called Itô Integral and thus equation (11)
is called Itô Integral based SDAE [10, 4]. Wr(t) denotes the
Brownian motion or the Wiener Process, obtained by integrating

the white noise: Wr(t) =
∫ t
0 ξr(s)ds =

∫ t
0 dWr(s). One Wiener

process is characterized by the initial value W (0) = 0 and the
independent non-overlapping increments ∆W (tn) = W (tn) −
W (tn−1) ∼ N(0, hn). Here, hn = tn − tn−1 is the integration
time-step.

Under the the form of Itô Integral based SDAE, the work in [10]
proved the existence and uniqueness of the solution. The work in
[4] further derived several stochastic integration methods. For ex-
ample, one stochastic two-step backward differentiation formula
(BDF2)-Maruyama method based discretization of (11) becomes

A
q(xn)− 4

3
q(xn−1) + 1

3
q(xn−2)

h
+

2

3
f(xn) +

m∑

r=1

gr(xn−1)
∆W r

n

h
− 1

3

m∑

r=1

gr(xn−2)
∆W r

n−1

h
= 0 (12)

At each time step, (12) can be solved by Newton method with
a number of Monte Carlo based sampling-paths for the Wiener
process ∆Wr. The noise variance is calculated afterward at each
time-step with Monte Carlo iterations. This is the key idea for the
transient noise analysis in [4, 10]. The limitation of this approach
is the inefficiency due to the Monte Carlo iterations where the
complexity increases with the number of noise sources and the
scale of circuit.

3.2 Perturbation based SDAE
Considering that the magnitude of noises (-100db) is much

smaller than the magnitude of signals, it is accurate to solve
SDAE for transient noise application by the perturbation analysis
from [5, 6]. One can first obtain the nominal transient trajectory

or solution x(0)(t) for (9). The SDAE in (10) is then piecewise-
linearized

A

[
d

d
q(x(0)(t)) +

∂q(x(t))

∂x

∣∣∣∣
x=x(0)

·
(
ẋ(t)− ẋ(0)(t)

)]

+

[
f(x(0)(t), t) +

∂f(x(t))

∂x

∣∣∣∣
x=x(0)

·
(
x(t)− x(0)(t)

)]

+

m∑

r=1

gr(x(0)(t), t)ξr(t) = 0 (13)

Based on the nominal solution of (9). For the simplicity of nota-
tion, one can define

C(0)(t) =
∂q(x(t))

∂x

∣∣∣∣
x=x(0)

, G(0)(t) =
∂f(x(t))

∂x

∣∣∣∣
x=x(0)

∆x = x(t)− x(0)(t), ∆ẋ = ẋ(t)− ẋ(0)(t)

F =
m∑

r=1

gr(x(t), t). (14)

As such, the linearized SDAE is simplified as

A · C(0)(t) ·∆ẋ + G(0)(t) ·∆x + F · ξ(t) = 0. (15)

Since C(0)(t) may have zero columns, [5] reordered variables

∆x so that zero columns of C(0)(t) are grouped at the right-hand
side of matrix. Hence, (15) becomes:

[
C11(t) 0

0 0

] [
∆ẋ1

∆ẋ2

]
+

[
G11(t) G12(t)
G21(t) G22(t)

] [
∆x1

∆x2

]

+

[
F1(t)
F2(t)

]
ξ = 0 (16)

where C11(t) consists of non-zero columns of A · C(0)(t). This
results in an inherent stochastic differential equation (SDE) with
one additional algebraic constraint by

G11(t)∆x1 + G12(t)∆x2 + C11(t)∆ẋ1 + F1(t)ξ = 0

G21(t)∆x1 + G22(t)∆x2 + F2(t)ξ = 0

∆x =
[

∆x1 ∆x2
]T

(17)

The first equation in (17) owns the standard SDE form.
Instead of performing Monte Carlo iterations to calculate the

noise variance, [5, 6] applied one non-Monte-Carlo approach to
calculate the noise variance from the covariance matrix. Based
on the Itô theorem[11], the covariance matrix K1(t) for the SDE
in (17) can be expressed in the differential Lyapunov matrix equa-
tion by

K̇1(t) = −
(
G11(t) + G12(t) ·

(
− (G22(t))−1 G21(t)

))
K1(t)

+K1(t)
[
−

(
G11(t) + G12(t) ·

(
− (G22(t))−1 G21(t)

))]T

+
[
−

(
F1(t) + G12(t) ·

(
− (G22(t))−1 F2(t)

))]

·
[
−

(
F1(t) + G12(t) ·

(
− (G22(t))−1 F2(t)

))]T
(18)

As such, the covariance matrix K1(tn) can be obtained from
the above correlation analysis at time step tn, and variances of
circuit variables at tn can be further extracted from the diag-
onal elements of K1(tn). Though this method avoids massive
samplings and iterations from Monte Carlo, there is a number of
time-consuming operations to solve the inherent SDE numerically
and to perform the operations on the Lyapunov matrix.

4. SOP BASED NMC TRANSIENT NOISE
ANALYSIS

As discussed in Section 3, the primary limitation of the cur-
rent transient noise analysis is lack of the efficiency. Moreover,
a complete transient noise solution needs to deal with not only
white noise but also flicker noise. Applying stochastic orthogonal
polynomials (SoPs) to obtain the mean and variance by one-time
calculation, we develop the non-Monte-Carlo numerical analysis
in this section.

4.1 Itô Integral based SDAE with Flicker Noise
To include flicker noise into the Itô integral based SDAE in

(10), we denote the synthesized RC network for flicker noise as
synthesized circuit. There are two equivalent approaches to cal-
culate the contribution of flicker noise:

• Static Method: Flicker noise is computed beforehand by
performing the transient noise analysis on the synthesized
circuit using (12). Afterward, the flicker noise is injected
into the original circuit later for the total transient noise
analysis.

• Dynamic Method: The original circuit is first augmented
with the corresponding synthesized circuits. Then, the
transient noise analysis is performed on the augmented cir-
cuit using (12).

The dynamic method requires to create extra nodes for the syn-
thesized circuit and thus increases the complexity. In this paper,
we take the static method as an example for the illustration, but
the proposed SoP techniques can also be applied to the case of
dynamic method in a similar fashion.

Let ikf (t) be the value of k-th white noise current source for

the flicker noise. Since flicker noises can be modeled as addictive
noise current sources, (10) becomes

A
d

dt
q(x(t)) + f(x(t), t)

︸ ︷︷ ︸
noise free

+
n∑

k=1

Tk · ik
f (t)

︸ ︷︷ ︸
flicker noise

+
m∑

r=1

gr(x(t), t)ξr(t)

︸ ︷︷ ︸
thermal noise

= 0 (19)



where Tk is topology matrix determining how to connect flicker
noise current sources into the circuit.

Similarly, in order to obtain the Itô integral based SDAE with
flick noise, (19) can be integrated over the time-interval and be-
comes

Aq(x(s))|tt0 +

t∫

t0

f(x(s), s)ds +
∑

k

t∫

t0

Tk · ikf (t) · ds

+
m∑

r=1

t∫

t0

gr(X(t), t)dWr(t) = 0 (20)

The corresponding BDF2-Maruyama method with only incre-
ments of Wiener process at n-th discretized time instant is derived
by

A
q(xn)− 4

3
q(xn−1) + 1

3
q(xn−2)

h
+

2

3
f(xn)

+
1

2

∑

k

Tk · ikf (tn) +
m∑

r=1

gr(xn−1)
∆W r

n

h

−1

3

m∑

r=1

gr(xn−2)
∆W r

n−1

h
= 0 (21)

Table 1: SoP Expansions for Random Variables.

Random Variables SoP Expansion

known
variables

ikf (tn) g(tn) · (γk
0 (tn)Φ0 + γk

1 (tn)Φ1 + · · · )
∆W r

n αr
0(tn)Φ0 + αr

1(tn)Φ1 + · · ·
unknown
variables

q(xn) q(x
(0)
n ) + C

(0)
n · (β1(tn)Φ1 + · · · )

f(xn) f(x
(0)
n ) + G

(0)
n · (β1(tn)Φ1 + · · · )

xn x
(0)
n Φ0 + β1(tn)Φ1 + · · ·

4.2 SoP Collocation of Itô Integral based SDAE
The above equation (21) and (12) can be solved with Monte

Carlo iterations, which is very inefficient. Therefore, we develop
one efficient Non-Monte-Carlo (NMC) transient noise analysis us-
ing the stochastic orthogonal polynomials (SoPs). This leads to
one-time calculation of the noise variance. We will discuss how to
represent the random variables in (21) by SoPs and further solve
xn by collocation. Note that the random variables in this section
include q(xn), f(xn), ∆W r

n , ikf (t) and xn. In the following, we

show derivations of their SoP representations one by one, respec-
tively. The results of SoP expansions are summarized in Table
1.

4.2.1 SoP Expansions of q(xn) and f(xn)

The magnitudes of both white noise and flicker are much smaller
than the one of signal, therefore, one can first obtain the nomi-

nal transient solution x
(0)
n . And accordingly, q(x

(0)
n ) and f(x

(0)
n ).

Along this nominal transient trajectory, xn, q(xn) and f(xn) can
be further piecewise-linearized by

xn = x
(0)
n + ∆xn

q(xn) = q(x
(0)
n ) +

∂q

∂x

∣∣∣∣
x=x

(0)
n

·∆xn

f(xn) = f(x
(0)
n ) +

∂f

∂x

∣∣∣∣
x=x

(0)
n

·∆xn. (22)

Therefore, one only needs to further solve ∆xn = xn−x
(0)
n instead

of xn.

Note that ∆xn is the stochastic perturbation to x
(0)
n with the

Gaussian distribution. Therefore, the noise mean is E(∆xn) =

0 and hence E(xn) = x
(0)
n . Moreover, the noise variance is

V ar(xn) = V ar(∆xn), which leads to the SoP expansions of xn

and ∆xn by

∆xn = 0 · Φ0 + β1(tn)Φ1 + · · ·
xn = x

(0)
n + ∆xn = x

(0)
n Φ0 + β1(tn)Φ1 + · · · (23)

Accordingly, one can obtain the SoP expansions of q(xn) and
f(xn) by

q(xn) = q(x
(0)
n ) + C

(0)
n · (β1(tn)Φ1 + · · · )

f(xn) = f(x
(0)
n ) + G

(0)
n · (β1(tn)Φ1 + · · · ) . (24)

Here, the capacitive and conductive Jacobians are used for the
simplicity of notation

C
(0)
n =

∂q

∂x

∣∣∣∣
x=x

(0)
n

; G
(0)
n =

∂f

∂x

∣∣∣∣
x=x

(0)
n

.

4.2.2 SoP Expansion of ∆W r
n and ikf (tn)

The increments of Wiener process ∆W r
n ∼ N(0, hn) can be

represented by SoPs as

∆W r
n = αr

0(tn)Φ0 + αr
1(tn)Φ1 + αr

2(tn)Φ2 + · · · (25)

With techniques in [9], αr
i (tn) can be obtained with known dis-

tribution of ∆W r
n . Take the first order expansion as an example,

αr
0(tn) = E(∆W r

n) = 0, and (αr
1(tn))2 = V ar(∆W r

n) = hn.
In addition, the SoP expansion of k-th flicker noise current

source ikf (tn) becomes

ikf (tn) = g(tn) · v(tn) = g(tn) ·
[
γk
0 (tn)Φ0 + γk

1 (tn)Φ1 + · · ·
]

.

(26)
Here, g(t) is the transconductance defined in (5). v(t) is the out-
put voltage of flicker noise synthesized circuit in Fig.(1), which
only contains thermal noises and can be solved with BDF2-Maruyama
method in (12) under the scheme of static method.

4.2.3 Solution of γi by SoP Collocation
Because the static method is considered to calculate the con-

tribution of flicker noise, {γi} needs to be first determined by
SoP collocation. By expanding q(xn), f(xn) and ∆W r

n via SoPs
for the synthesized circuit, one obtain a new SDAE under BDF2-
Maruyama discretization described in (27). By applying the inner-
product with Φi (i = 0, 1, · · · ) to (27), one can obtain a set of
equations corresponding to the order of SoP for γi(tn). For ex-
ample, the resulting Φ1 becomes

A
C

(0)
n · γ1(tn)− 4

3
C

(0)
n−1 · γ1(tn−1) + 1

3
C

(0)
n−2 · γ1(tn−2)

h

+

(
2

3
G

(0)
n · γ1(tn)

)
+

2

3

m∑

r=1

gr · α1(tn)

h
= 0 (28)

As a result, γi(tn) can be solved from (28).

4.2.4 Solution of xn by SoP Collocation
When the contribution from the flicker noise is obtained, one

can further obtain the total transient noise by one more SoP
collocation. By applying the inner-product with Φi (i = 0, 1, · · · )
to (21), coefficients βi of SoP expansion of xn in (23) can be
computed. For instance, the equation corresponding to Φ1 is

A
C

(0)
n · β1(tn)− 4

3
C

(0)
n−1 · β1(tn−1) + 1

3
C

(0)
n−2 · β1(tn−2)

h

+

(
2

3
G

(0)
n · β1(tn)

)
+

1

2

∑

k

Tk · gk(tn) · γk
1 (tn)

+
2

3

m∑

r=1

gr · α1(tn)

h
= 0. (29)

The above equation can be solved for β1(tn) at n-th time instant
and is repeatedly solved for all time instants. As a result, the
βi can be calculated as a function of time. Therefore, the noise
variance at tn is efficiently obtained by V ar(xn) = {β1(tn)}2.



A ·

(
q(x

(0)
n ) + C

(0)
n ·

n∑
i=0

γi(tn)Φi
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5. EXPERIMENTAL RESULTS
We have implemented the proposed non-Monte-Carlo transient
noise analysis in a Matlab-based circuit simulator, and all exper-
iments are carried out on a Linux server with a 2.4GHz Xeon
processor and 4GB memory. We use SoP method for two pur-
poses: SoP expansion of flicker noise validated in Section 5.1, and
the SoP expansion for transient noise analysis verified in Section
5.2. Two analogue circuits including a CMOS comparator and a
3-stage ring oscillator are used compare SoP method with Monte
Carlo and Perturbation based SDAE analysis [5]. For all circuits
in Section 5.2, we include both thermal noise and flicker noise
sources in our simulation.

5.1 SoP Expansion to Model Flicker Noise
SoP expansion of flicker (1/f) noise is validated by standard

deviation of 1/f noise (σnoise) in the time domain. Using the 1/f
noise synthesized circuit in Fig.(1), we perform both 1000 Monte
Carlo simulations and SoP method to generate 1/f noise σnoise

as a function of time. The speedup of SoP method over Monte
Carlo simulations is 1030.85(s)/1.01(s) ≈ 1020X.

Fig.(2) shows the σnoise from both methods. Initially, there
are large differences, but error reduces as the time increases. Note
that the difference at initial stage is not important since simula-
tion time of flicker noise is very long. In fact, the average error of
SoP method with respect to Monte Carlo is 0.32%. Therefore, the
accuracy of SoP method is satisfied. In the following experiments,
we use the SoP expansion of flicker noise.
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Figure 2: σnoise comparison for the flicker (1/f) noise

5.2 SoP Method for Transient Noise Analysis
5.2.1 Accuracy for CMOS comparator

The first example is one CMOS comparator as shown in Fig.(3)
and detailed information about post layout of this circuit is illus-
trated in Table.(2). We consider both thermal noise and flicker
noise to all eight MOSFETs, while only thermal noise is consid-
ered for all resistors.

First, we run Monte Carlo simulations to capture the standard
deviation (σoutput) of impacted output voltage with 0.5% error in
the time domain. It is denoted as one red dash line with plus signs
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Input+Input- 

Output
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Rb

Cp

Figure 3: A CMOS comparator implementation
with PMOS input drivers

in Fig.(4). Then, perturbation based SDAE analysis is conducted
for σoutput which leads to a black dash line with cross signs. In
addition, the σoutput from SoP method is marked by a blue dash
line with triangle sign.
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Figure 4: Comparison of σoutput for comparator

From the comparison in Fig. (4), SoP method fits with Monte
Carlo simulations very well in the time domain, while perturba-
tion based SDAE analysis[5] fails to keep high accuracy in the
pulse area. This shows that SoP method can provide higher ac-
curacy. Also, the total CPU runtime are shown in Table.(3).

5.2.2 Accuracy for 3-stage CMOS ring-oscillator
We further consider a 3-stage ring-oscillator as shown in Fig.(5)

and post layout details is list in Table.(2). Similarly, we study the
standard deviation of output voltage σoutput in this example.

We first introduce thermal noises and 1/f noises to all MOS-
FETs and run Monte Carlo simulations to obtain σoutput with
0.5% error, which is plotted as a red dash line with plus signs in
Fig.(6). Note that σoutput is not constant as a function of time,
because 1/f noise is one non-stationary random processes and its
PSD is not a constant in frequency domain.

Then, perturbation based SDAE analysis is performed to gen-



Table 2: Circuit Information for Different Examples.

circuit example #nodes #devices
#thermal

noise
#flicker
noisenoise noise

CMOS Invertor 13 21 10 1
OPAM 46 61 43 8
Comparator 41 54 37 8
Oscillator 37 57 37 6

erate σoutput as one black dash line with cross signs. Addition-
ally, proposed SoP method computes σoutput denoted by one blue
dash line with triangle signs that visually identical to those from
Monte Carlo simulation.

Figure 5: A 3-stage CMOS ring-oscillator

As shown in Fig.(6), perturbation based SDAE analysis can
provide satisfied accuracy during low-to-high and high-to-low tran-
sitions, but fails in the peak regions. In contrast, SoP method is
able to remain very high accuracy within the entire time domain.

Table 3: Accuracy and Total Runtime Comparison
for Different Circuit Examples. (Time Unit: second)

Invertor OPAM Comparator Oscillator

MC

method

error 0.5% 0.5% 0.5% 0.5%

time 91.95 4266.64 2226.71 146851.2

speedup 1X 1X 1X 1X

Pert.1

analysis

error 5.24% 18.6% 36.4% 33.7%

time 1.84 54.71 12.56 304.3

speedup 50X 78X 177X 483X

SoP

method

error 0.43% 0.93% 1.78% 1.62%

time 1.87 52.35 12.72 300.91

speedup 49X 81.5X 175X 488X

1 Perturbation based SDAE analysis

In fact, the accuracy of all methods are compared in Table.(3),
Monte Carlo simulation can provide high accuracy (0.5% error) ,
and perturbation based SDAE analysis involves large error (up to
36% accuracy loss). SoP method can achieve the similar accuracy
around 1% as Monte Carlo.

5.2.3 Runtime Comparison
From Table.(3), Monte Carlo method is inefficient and requires

a huge amount of computation time. In addition, perturbation
based SDAE analysis and SoP method have similar efficiency
which are up to 488X faster than Monte Carlo method, but SoP
method can provide much higher accuracy.

Note that the total runtime for both NMC methods in Table.(3)
contains both nominal transient simulation and standard devia-
tion σoutput computation, where the nominal transient analysis
dominates the total runtime. We further compare the runtime
of σoutput computation for both NMC methods in Table(4). As
shown in the table, SoP method is around 6.8X faster than per-
turbation based SDAE analysis[5], and this speed advantage is
expected to be bigger when scale of circuits increases.

6. CONCLUSION
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Figure 6: Comparison of σoutput for Oscillator

In this paper, Itô integral based stochastic differential algebra

equation (SDAE) is deployed to consider both white and flicker

noise for high precision analog/RF circuits. One non-Monte-Carlo

solution is developed based on the stochastic orthogonal polyno-

mial (SoP) collocation to solve the piecewise-linearized SDAE.

The noise variance can be obtained by just one-time calculation

at each time-point. Extensive experiments demonstrated that

proposed method is up to 488X faster than Monte Carlo method

with a similar accuracy, and achieves on average 6.8X speedup

over existing non-Monte-Carlo method.

Table 4: Runtime for σoutput computation.

circuit example
Perturbation Analysis SoP Method
time (s) speedup time (s) speedup

CMOS Invertor 0.06 1X 0.013 4.6X
OPAM 3.07 1X 0.41 7.5X
Comparator 1.36 1X 0.168 8.1X
Oscillator 5.46 1X 0.8 6.8X
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