
Acceleration of Multi-agent Simulation on FPGAs
Lintao Cui, Jing Chen, Yu Hu

Department of Electrical
and Computer Engineering

University of Alberta
Alberta, Canada

Email: {lintao, jc14, bryanhu}@ece.ualberta.ca

Jinjun Xiong
IBM T.J. Watson Research Center

New York, USA
Email: jinjun.ucla@gmail.com

Zhe Feng, Lei He
Electrical Engineering Department

University of California, Los Angeles
California, USA

Email: feng07@ucla.edu
lhe@ee.ucla.edu

Abstract—Multi-agent simulation (MAS) is a widely used
paradigm for modeling and simulating real world complex
system, ranging from ant colony foraging to online trading.
The performance of existing MAS software, however, suffers
when simulating massive-scale multi-agent systems on traditional
serial processing processors. In this paper, we propose an FPGA-
based framework for massive-scale grid-based MAS. Memory
interleaving, parallel tasks partition, and computing pipeline
are adopted to improve system throughput. A classical MAS
benchmark, Conway’s Game of Life, is used as a case study to
illustrate how to map grid-based models to our MAS framework.
We implemented it on a Xilinx Virtex-5 FPGA board and
achieved a speedup of 290x with two million agents, compared
to the C implementation.

I. INTRODUCTION

A multi-agent system is comprised of multiple interactive
and intelligent agents, and each agent makes its own decision
based on the current situation and a set of rules. Like ant
colony and bird flock in real world, complex or unanticipated
group behavior patterns could be generated even by simple
rules. The famous ant colony optimization was inspired by
inspecting ant colony foraging and is effective in discrete
optimization related to swarm, which demonstrates the sig-
nificance of exploring multi-agent systems.

The repetitive and complicated interaction among agents is
out of the range of traditional equation-based modeling, which
lacks the insight of micro-level interaction among agents.
Multi-agent simulation is a computational model to simulate
such systems. It utilizes a bottom-up approach to simulate
the interaction among multiple agents at the micro-level, to
predict the potential appearance of complex group behavior at
the macro-level. It has been adopted in a wide range of areas,
including animal group behavior analysis [1], social network
analysis [2], influenza prevention [3], etc.

A number of MAS software have been developed and are
available in public domain, which provide a programmable
platform for simulating multi-agent systems, such as StarLogo
[4] and SWARM [5], all running on a general-purpose CPU.
Those tools are highly serial and lack of parallel comput-
ing. This is particularly troublesome in cases like emerging
infectious disease prevention which usually involves a large
number of agents and need almost an instant result. For
example, New York City has a population of nearly twenty
million, but the capacity of current desktop MAS can handle

at most several thousands [6]. Therefore, a high performance
acceleration platform based on parallel execution is desired
to fully exploit MAS capabilities. FPGA (field programmable
gate array)-based approach has shown great potential in terms
of energy efficiency, and highly parallel architecture [7].

In this paper, we propose a novel FPGA-based acceleration
architecture to speedup grid-based MAS. Memory interleaving
is utilized to form a flexible memory architecture and ac-
celerates single agent’s communication significantly. Parallel
tasks partition and pipeline are adopted for parallel multiple
agents computing to improve the throughput. We analyze the
classical MAS benchmark, Conway’s Game of Life (CGL),
to demonstrate how to map the grid-based models to our
FPGA-based architecture. CGL is implemented on a Xilinx
Virtex-5 board running at 100MHz and we achieve 290x
speedups compared to the C implementation, running on an
AMD Athlon 2.9 GHz Quad-core CPU with 6 GB RAM.

The remainder of this paper is organized as follows. Section
II presents the basic concepts of MAS and a brief survey
of related work on acceleration of MAS. In section III, we
narrow down our research scope to grid-based MAS and
introduce our FPGA-based approach for accelerating grid-
based models. Section IV shows how to accelerate CGL using
our approach and discusses the experimental result. In Section
V, we conclude the paper with future research directions. To
the best of our knowledge, this work is the first in-depth study
of accelerating MAS on FPGA.

II. PRELIMINARIES

A. Concept

Typically in MAS, there are a number of interactive and
intelligent agents, which move around at an environment,
and a set of rules governing agents’ behaviors. Based on the
properties of the environment, MAS is classified as two types.

1) Grid-based MAS: The environment is modeled by a
multi-dimensional grid consisting of lots of cells, where mo-
bile agents move around. Most of MAS fall in this area, like
cellular automata, and molecular dynamics.

2) Graph-based MAS: The environment is represented by a
graph of relationship network with nodes, connected to other
nodes through relational edges. Social network is graph-based
MAS.

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.92

470

Due to the fact that grid-based MAS covers the majority
of MAS applications, our work currently focuses on how to
build a framework for grid-based models on FPGA.

A typical MAS consists of the following three core compo-
nents.

1) Environment: Environment forms the background for
MAS. Typically, there are a number of property values s-
tored, representing certain attributes, such as temperature.
The movement of agents within a grid can be modeled by
copying the state attributes of an agent from the source
cell into the destination cell.

2) Intelligent Agents: Agent is the basic unit in MAS and
performs actions based on a set of rules and current
environment. Typically, there is no controlling agent
within a MAS, and each agent carries out the following
tasks in each step:
• Fetch the agent state
• Communicate with local environment and neighbors
• Rule compute and make decision
• Update the agent state

3) Communication: MAS typically exhibits intensive com-
munication and interaction between agents and environ-
ment or agents and their neighbors.

B. High Performance Computing for MAS

Recent researches have attempted to accelerate MAS on
parallel and distributed platform, such as GPU (graphic pro-
cessing unit), and computing cluster and grid.

1) MAS acceleration on GPU: GPU is very effective at
manipulating computer graphics. Its highly parallel structure
has attracted some efforts in high performance MAS. FLAME
is a GPU-based framework, designed for parallel MAS. It has
achieved a speedup up to 250 times in contrast with a single
CPU implementation [8]. Though the speedup is significant,
the disadvantage of GPU-based architecture is its large power
consumption, which significantly increases the operation cost.

2) MAS acceleration on Cluster: Some other MAS re-
searches favor the computing cluster. IBM Tokyo Research
Lab has developed a large-scale MAS framework on Blue-
Gene, a multi-node supercomputer [9]. However, the power
of cluster-based computing resides in high speed computing
with non-interactive workloads. Therefore, the bottleneck of
communication bandwidth between computers is encountered
when simulating communication-intensive large-scale applica-
tions, which is common in MAS.

3) MAS acceleration on FPGA: Few work has been done
to accelerate MAS on FPGA. The only one known to us is
the parallel implementation of SOARS in which FPGA is
used as an alternative for multi-processor architecture without
significant results published yet [10]. Actually, FPGA is a
very promising platform for high performance computing with
highly parallel and flexible architecture [7].

In this paper, we propose an FPGA-based framework to
accelerate grid-based MAS. We implemented CGL as a demo
and achieved a significant 290x performance improvement.

III. ACCELERATION FOR GRID-BASED MAS
Here we focus on grid-based models, which cover the

majority of MAS applications. More specifically, we study the
models featuring the following characteristics:

• Environment is grid-based, consisting of lots of cells
• Rule computation demands a cluster of local agents
• Communication happens within a neighborhood.
In this section, we first present how to accelerate a single

agent using memory interleaving and then the multiple agents
acceleration through parallel task partition and pipeline.

A. Single Agent Acceleration

Based on the second premise, updating an agent’s state,
which is stored in a cell, depends on a cluster of neighboring
cells. Traditionally we need to access those cells one by one.
The system performance will benefit a lot if we can access
those neighboring cells simultaneously. Here, we use memory
interleaving [11] to achieve concurrent access to all of the cells
in one memory accessing cycle.

Today’s high-volume FPGA chips usually hold hundreds
of configurable Block RAMs (BRAM). The configurable fea-
tures, like accessing ports, data width and memory address,
enable the possibility of designing a flexible high performance
memory architecture at no cost.

Memory interleaving takes the advantage of those BRAMs.
The basic idea is to scatter a cluster of multiple data into
different BRAMs based on the LSBs (least significant bits) of
their coordinates so that we can access all of them at one time.

For example, in a two-dimensional grid, to update the cell
A, a total number of N ×M cells are required, defined as
a cluster as shown in Fig. 1. In this case, the n-LSBs in
coordinate X and m-LSBs in coordinate y are used, leading
to the value N = 2n and M = 2m. Thus, we can map those
cells into different BRAMs, numbered from one to N ×M

Fig. 1. A N ×M Cluster. N is the number of cells along X-axis, M is the
number of cells along Y-axis.

TABLE I
MAPPING DATA TO BRAMS

X n-LSBs Y m-LSBs BRAM NO.
0 0 1
0 1 2
...

...
...

0 M-1 M
1 0 M+1
...

...
...

N-1 M-1 N ×M

471

Fig. 2. Memory accessing with N BRAMs

and forming a BRAM array, as listed in Table I. Therefore,
those cells can be concurrently accessed. For a cluster with N
cells, we can improve the memory reading bandwidth by N-1.
The improvement is bigger with larger cluster size.

The general memory accessing structure using memory
interleaving is shown in Fig. 2. The BRAMs store the data
based on the mapping rule detailed above. When accessing the
memory to update a cell (x,y), the address generation module
will generate N addresses required for the corresponding
BRAMs based on the input coordinates. The output data will
be aligned by the data alignment module to form the cluster
pattern as defined and prepared for further processing.

B. Multiple Agents Acceleration

In this subsection, we present the acceleration of multiple
agents. First, given a grid representing agent states, how to
partition it into parallel sub-grids. Second, for a sub-grid,
how to improve the computing throughput by pipelining its
processing flow.

1) Parallel Tasks Partition: As shown in Fig. 3, given a
grid, we can evenly partition it into non-overlapping sub-
grids along the Y-axis and each of them will be stored in
the corresponding BRAM array using memory interleaving.
BRAM arrays are allocated to the corresponding processing
elements (PE) for parallel processing. PEs are independent
computing modules responsible for the rules computation.

Clearly, communication across BRAM arrays is necessary,
because the updating of a bordering cell depends on its
neighboring cells stored at other BRAM arrays. Since we
partition the whole grid along its Y-axis, communication across
borders could be achieved by checking the MSBs (most
significant bits) of its Y coordinates. For example, if we evenly
partition the grid into four sub-grids along Y-axis, a cell can be
accessed by first checking the two MSBs of its Y coordinates
to determine which BRAM array this cell is stored in and
further to decide at which BRAM it is located based on the
LSBs of its coordinate. The BRAMs can be configured as dual-
port memories, which thus support the concurrent memory
accessing from two PEs. Therefore, we can complete the
bordering communication without redundant data storage.

By dividing a grid into N sub-grids, we can improve the

Fig. 3. Grid partition with N sub-grids

system throughput by N-1. The number of partition is only
limited to the FPGA resources.

2) Computing Pipeline: Pipeline can improve the system
computation throughput when processing a stream of data.
For a sub-grid and its corresponding BRAM array and PE,
the processing flow roughly takes several different stages:
fetch data, rule computing, and update grid. Therefore, we
can implement a three-stage pipeline to accelerate the per-
formance. Given a specific application, fetch data and rule
computing stages can be divided into multiple stages based
on the maximal combinational delay to increase the system
operation frequency.

IV. CASE STUDY ON GRID-BASED MODELS

In this section, we illustrate how to map CGL, which meets
the three premises, to our grid-based MAS framework.

A. Conway’s Game of Life

CGL is a cellular automation devised by John. H. Conway.
It is a zero-player game, requiring no further input, whose
evolution is determined by its initial state. Its environment is
a toroidal two-dimensional gird of cells, each of which is in
one of two possible states, live or dead. Every cell interacts
with its eight neighbors as shown in Fig. 4. In each step , the
following rules apply.

• Live cell with fewer than two live neighbors dies.
• Live cell with two or three live neighbors lives.
• Live cell with more than three live neighbors dies.
• Dead cell with exactly three live neighbors becomes alive.

B. Mapping Game of Life for Acceleration

In CGL, the environment and cell agents are the grids
themselves. As shown in Fig. 4, to update the states of cell
E, a cluster of nine cell states is required. Thus, each BRAM
array should be consisted of nine BRAMs, numbered from 1
to 9. Cells are mapped into BRAMs as shown in Table II.

Fig. 4. A cluster of 9 cells in CGL

472

TABLE II
MAPPING DATA INTO BRAMS

x LSB y LSB BRAM NO.
0 0 1
0 1 2
0 2 3
1 0 4
1 1 5
1 2 6
2 0 7
2 1 8
2 2 9

Fig. 5. A five-stage pipeline for CGL

Given a certain size of grid, we can partition it into multiple
sub-grids, stored by the corresponding BRAM arrays and
processed by the corresponding PEs. On a Xilinx Virtex-5
FPGA, which contains 148 BRAMs, we can implement eight
PEs and eight BRAM arrays, consuming 128 BRAMs. And
thus the grid is divided into eight sub-grids and eight PEs are
implemented.

The fetch data stage can be further divided into three stages:
address generation, memory reading, and data alignment. The
rule computation stage in CGL is simple and takes only one
stage. Therefore, we can implement a five-stage pipeline to
manipulate a sub-grid: address generation, read memory, data
alignment, rule computing, and update memory as shown in
Fig. 5.

We implemented CGL on a Xilinx Virtex-5 board. The
synthesis result by ISE shows the LUT (look up table) utiliza-
tion is only 12% with maximal frequency at 136 MHz while
the BRAM utilization is up to 86%. Therefore, it is possible
to further improve system performance by constructing more
BRAM arrays through distributed BRAMs which are generat-
ed by LUTs.

We set the system frequency at 100 MHz, and compared
the experimental result with a C implementation running on
an AMD Athlon 2.9 GHz Quad-core CPU with 6GB RAM.
We ran the experiments with four different grid sizes: 10000,
100000, 1 million and two million. The speedup result is
shown in Fig. 6.

The result shows that we are able to achieve a maximal
speedup of 290 when the grid size is two million. What’s more,
the speedup does not decrease when the size of grid increases,
in fact it is directly related to the number of available BRAM
arrays and PEs. We can get a better result by combining
embedded BRAMs and distributed BRAMs to get a maximal

Fig. 6. Experimental result with four different sizes of grid

parallelization, which is actually resources tradeoff.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a general FPGA-based
framework for grid-based MAS, which could be generalized
to MAS applications meeting our premises. The experimental
result shows that our architecture can accelerate the classical
Game of Life by 290x when using a Xilinx Virtex-5 board
running at 100 MHz, compared to C implementation.

In the near future, we will extend our FPGA-based frame-
work to a more general grid-based MAS by studying more
applications and models, and develop automatic mapping and
code-generation tools to produce high-quality parallel code
and appropriate architecture across vastly different grid-based
models. We also plan to develop a general FPGA-based frame-
work for graph-based MAS, and thus we can test if FPGA
could accelerate other kinds of MAS at a high performance.

REFERENCES

[1] E. Merelli et al., “Agents in bioinformatics, computational and systems
biology,” Briefings in Bioinformatics, 2007.

[2] E. Bonabeau, “Agent-based modeling: Methods and techniques for
simulating human systems,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 99, no. Suppl 3, p. 7280,
2002.

[3] H. Nathaniel et al., “The virtue of virtuality: the promise of agent-based
epidemic modeling,” Laboratory and clinical medicine, 2008.

[4] StarLogo. http://education.mit.edu/starlogo.
[5] Swarm. http://www.swarm.org/index.php/Main Page.
[6] M. Lysenko and R. DSouza, “A framework for megascale agent based

model simulations on graphics processing units,” Journal of Artificial
Societies and Social Simulation, vol. 11, no. 4, p. 10, 2008.

[7] M. Gokhale, J. Cohen, A. Yoo, et al., “Hardware technologies for high-
performance data-intensive computing,” Computer, vol. 41, no. 4, pp.
60–68, 2008.

[8] P. Richmond, S. Coakley, and D. Romano, “A high performance agent
based modelling framework on graphics card hardware with CUDA,” in
Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, 2009, pp. 1125–1126.

[9] T. Takahashi and H. Mizuta, “Efficient agent-based simulation frame-
work for multi-node supercomputers,” in Proceedings of Winter Simu-
lation Conference, 2006, pp. 919–925.

[10] H. Tanuma, H. Deguchi, and T. Shimizu, “Hardware Implementation
of Parallel SOARS using FPGA based Multiprocessor Architecture,”
Agent-Based Approaches in Economic and Social Complex Systems IV,
pp. 199–206, 2007.

[11] T. VanCourt and M. Herbordt, “Application-Specific Memory Interleav-
ing for FPGA-Based Grid Computations: A General Design Technique,”
in Field Programmable Logic and Applications, International Confer-
ence on, 2006, pp. 1–7.

473

