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ABSTRACT
Importance sampling is a popular approach to estimate rare
event failures of SRAM cells. We propose to improve im-
portance sampling by probability collectives. First, we use
“Kullback-Leibler (KL) distance” to measure the distance
between the optimal sampling distribution and the original
sampling distribution of variable process parameters. Fur-
ther, the probability collectives (PC) technique using im-
mediate sampling is adapted to analytically minimize the
KL distance and to obtain a sampling distribution as close
to the optimal as possible. The proposed algorithm signifi-
cantly accelerates the convergence of importance sampling.
Experiments demonstrate that proposed algorithm is 5200X
faster than the Monte Carlo approach and achieves more
than 40X speedup over other existing state-of-the-art tech-
niques without compromising estimation accuracy.

Categories and Subject Descriptors: B.7.[Hardware]: -
Integrated Circuits-Design Aids
General Terms: Algorithms, Verification
Keywords: SRAM, Failure probability, Importance Sam-
pling, Kullback-Leibler distance

1. INTRODUCTION
It has become increasingly challenging to estimate the fail-

ure probability of SRAM cells under large-scale process vari-
ations, because SRAM bit-cell needs to be copied millions
or billions of times as an array for higher integration density
and the failure of a few cells could be catastrophic. There-
fore, SRAM cell designs need to have extremely small failure
probability [1, 2]. This failure is a rare event[3] that can on-
ly be captured with millions of samples through extremely
long Monte Carlo (MC) simulations.

To avoid the expensive MC runs, importance sampling has
been proposed based on the insight that only the“important
samples” capturing relevant rare event (i.e., cell failure) can
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improve the estimation accuracy and further speed up the
estimation convergence. This approach has been extensive-
ly used for rare event estimation problems [4, 5, 6, 7, 8,
9]. However, one critical issue that affects the efficiency of
importance sampling is how to build an “optimal sampling
distribution” so that more “important samples” of the rele-
vant rare event can be chosen.

Many statistical methodologies have been developed to
build the optimal sampling distribution for importance sam-
pling and have been applied to failure rate estimation of S-
RAM cells [4, 5, 6, 7, 8, 9]. For example, [4] approximates
the optimal sampling distribution by mixing a uniform dis-
tribution, the given sampling distribution and a “shifted”
distribution centering around the failure region. Works in
[5, 6] simply shift the mean values and keep the shape of o-
riginal sampling distributions, and minimize the norm value
of the shift vectors to find the optimal sampling distribu-
tion. The approach in [7] makes use of a “classifier” to block
the Monte Carlo samples that are likely to satisfy the given
performance constraints and runs simulations on remain-
ing samples. In addition, “particle filtering”-based approach
was proposed in [8] to tilt more samples towards the fail-
ure region. Moreover, it was recently proposed to adapt
“Gibbs Sampling” in order to draw more failure region sam-
ples directly for improved performance [9]. While recent
works made important advancements over the Monte Carlo
approach, an efficient and low-complexity approach is stil-
l urgently needed to accurately estimate the failure rate of
SRAM cells.

In this paper, we present a fast algorithm based on proba-
bility collectives (PC) method for the failure rate estimation
of SRAM cells. First, “Kullback-Leibler (KL) distance” from
probability theory [10] and information theory [11] is used
to quantitatively measure the distance between the optimal
sampling distribution and the given distribution of variable
parameters. Then, a set of parameterized sampling distribu-
tions is analytically derived by minimizing the KL distance
with a probability collective (PC) method using immedi-
ate sampling [12, 13], which is as close to the optimal sam-
pling distribution as possible. Therefore, the convergence of
the importance sampling approach can be significantly im-
proved. The experimental results show that the proposed
algorithm not only provides extremely high accuracy but al-
so achieves 5200X speed-up over Monte Carlo. Moreover,
the proposed method can be more than 40X faster than
other state-of-the-art techniques (i.e., mixture importance
sampling method [4] and spherical sampling method [6]).

Although the probability collective approach was initially



developed in the statistics field [12, 13], it was previously
unknown how to interface it to the importance sampling
method for the failure analysis of SRAM cells. In fact, there
are three major issues that need to be resolved: first, one
particular type of parameterized distribution should be cho-
sen in order to approximate the optimal sampling distribu-
tion. Second, it is important but difficult to initialize the
parameterized sampling distribution. Third, the minimiza-
tion of the KL distance involves complicated optimization
problems and usually requires expensive computational ef-
forts. To resolve these issues, we select a set of Gaussian
distributions parameterized by mean and sigma, and adapt
the “norm minimization” from [5, 6] to initialize the distri-
bution by shifting the given sampling distribution towards
the failure region. Moreover, the immediate sampling-based
probability collectives method [12, 13] is used to analytically
solve for the optimal parameterized sampling distributions
for importance sampling. To the best of our knowledge, this
is the first work on successfully developing the probability
collectives based importance sampling method for the failure
probability estimation of SRAM cells.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide the necessary background on importance
sampling, KL distance and probability collectives methods.
Section 3 contains more details of the required techniques in
the proposed method for SRAM failure analysis. The exper-
iments and further discussion are provided in Section 4 to
validate the accuracy and efficiency of the proposed method.
The paper is concluded in Section 5.

2. BACKGROUND

2.1 Importance Sampling
Let ξi (i = 1, · · · ,m) be independent random variables

with probability density function (PDF) given by p(ξi), char-
acterizing circuit parameters under process variations, such
as the threshold voltage and effective channel length of tran-
sistors. The joint PDF of ξi is denoted as p(ξ) and can be
expressed as follows due to the independence property:

p(ξ) =
m
∏

i=1

p(ξi). (1)

The j-th Monte Carlo sample ξj = (ξj1, · · · , ξ
j
m) consists of

one sample from each random variable distribution.
Let f(ξ) be the performance merit of interest, such as

static noise margin of SRAM cell. This quantity typically
needs to be evaluated with expensive transistor-level circuit
simulation.

Let f0 be the performance constraint; the circuit failure
{f(ξ) < f0} event is designed to be “rare”. Thereby, the
indicator function I(ξ) is defined to identify pass/fail of f(ξ)
as:

I(ξ) =

{

0 if f(ξ) ≥ f0 (pass),
1 if f(ξ) < f0 (fail).

(2)

Therefore, the probability of failure (Pr) is estimated in
(3):

Pr =

∫

I(ξ) · p(ξ)dξ. (3)

In general, p(ξ) is known but I(ξ) is unknown since the
indicator function I(ξ) cannot be evaluated explicitly. When

I(ξ) characterizes a failure region, extremely long Monte
Carlo simulations on million samples of ξ are required.

To avoid massive Monte Carlo simulations, importance
sampling has been proposed to sample from one “distort-
ed” sampling distribution g(ξ) that tilts towards the failure
region where failures become more likely to happen. Then:

Pr =

∫

I(ξ) ·
p(ξ)

g(ξ)
· g(ξ)dξ =

∫

w(ξ) · I(ξ) · g(ξ)dξ. (4)

where w(ξ) re-weights each sample of ξ to convert the sam-
ple into the original sampling distribution. Theoretically,
the optimal sampling distribution gopt(ξ) [9], where only
one sample is needed to provide the accurate estimation of
failure probability, can be expressed as:

g
opt(ξ) =

I(ξ) · p(ξ)

Pr

(5)

However, gopt(ξ) cannot be evaluated with (5) directly
because I(ξ) is unknown and Pr is indeed the desired failure
rate. Instead, another sampling distribution h(ξ) should be
created to provide an approximation as close to gopt(ξ) as
possible. For example, the Kullback-Leibler distance can be
used to define the distance between h(ξ) and gopt(ξ).

2.2 Kullback-Leibler Distance
The Kullback-Leibler (KL) distance was proposed in prob-

ability theory [10] and information theory communities [11]
to measure the directional distance from one distribution to
another.

The KL distance from distribution gopt(ξ) in (5) to h(ξ)
is expressed as:

DKL(g
opt(ξ), h(ξ)) = Egopt

[

log

(

gopt(ξ)

h(ξ)

)]

. (6)

Note that both distributions gopt and h should be defined
over the same random variable ξ. In addition, E[·] denotes
the expectation operator and the subscript gopt indicates
that E[·] is taken with respect to distribution gopt.

Therefore, it is desired to minimize DKL(g
opt(ξ), h(ξ)) in

order to achieve ĥ(ξ) as the best approximation of gopt(ξ).
To this end, the probability collective method can be adapt-
ed to solve the minimization problem efficiently.

2.3 Probability Collectives
In general, probability collectives (PC) method is an effi-

cient optimization framework [12, 13], which can search for
the optimal probability distributions of variable parameters
in order to optimize the objective function.

As an illustration, we consider random variables ξ=(ξ1,
· · · , ξm) and aim to minimize the KL distance as:

argminEgopt

[

log

(

gopt(ξ)

h(ξ)

)]

. (7)

By change of measure, the above minimization problem is
equivalent to the statement in (8):

argmaxEh [I(ξ) · log(h(ξ))] . (8)

It is highly prohibitive to perform exhaustive search for
h(ξ) since the search space is extremely large and contain-
s arbitrary distributions. The PC method simplifies the
search problem by utilizing a set of parameterized sam-
pling distributions h(ξ, θ) with additional parameters θ =



(θ1, · · · , θm). As such, the maximization problem in (8) be-
comes:

θ̂ = argmax
θ

Eh [I(ξ) · log(h(ξ, θ))] . (9)

where θ̂ is the optimal parameter of the distribution h(ξ, θ)
that leads the minimum KL distance in (7).

Note that the expectation value Eh[·] in (9) cannot be e-
valuated with analytical formula and thereby sampling tech-
niques must be used. In fact, several sampling based PC
methods such as delay sampling based PC, and immediate
sampling based PC were proposed in [12, 13].

In this paper, we adapt the immediate sampling based PC
method as summarized in Algorithm (1). Interested readers
are referred to [12, 13] for other PC methods.

Algorithm 1 Immediate Sampling based PC Algorithm

1: Choose the initial parameter θ(1) to build parameterized
sampling distributions h(ξ, θ(1)).

2: Draw random samples from h(ξ, θ(1)) and set iteration
index number t = 2.

3: repeat
4: Evaluate values of indicator function I(ξ) with chosen

samples.
5: Solve for θ(t) by:

θ
(t) = argmax

θ

Eh

[

I(ξ) · log(h(ξ, θ(t−1)))
]

.

6: Draw random samples from the parameterized distri-
bution h(ξ, θ(t)) and set t = t+ 1.

7: until Converged (e.g., θ(t) does not change for several
subsequent iterations)

8: Obtain the optimum parameter θ̂ for the optimal sam-
pling distribution.

9: Sample the final h(ξ, θ̂) to get solution(s) in order to
optimize the objective function.

Since the updated distribution h(ξ, θ(t)) at the t-th iter-
ation is sampled immediately, the procedure is called “im-
mediate sampling” based PC method. However, there exist
several issues that need to be resolved when immediate sam-
pling PC method is used for failure analysis of SRAM cells:

• First, there exist many types of parameterized distri-
butions (e.g., Gaussian distributions, Boltzmann dis-
tributions, etc.), and it remains unclear how to choose
h(ξ, θ) for the SRAM failure analysis.

• It is important and nontrivial to find θ(1) which pro-
vides a “starting point” or a “heuristic initial solution”
for the solution of (9). This quantity significantly af-
fects the speed of convergence in Algorithm (1).

• The optimization problem in (9) is very difficult to
solve and a closed-form solution is highly desired.

Therefore, it is of interest to develop an approach to use
immediate sampling based PC method in a way that is suit-
able for SRAM failure analysis.

3. PROPOSED METHOD
In this section, we introduce several existing techniques

and highlight our novel contributions that are needed to
utilize the immediate sampling PC method for SRAM failure
analysis.

3.1 Parameterized Distribution Selection
Before we move forward, let us first introduce the model-

ing of process variations in SRAM cells. In general, the vari-
ation sources of CMOS transistors can be threshold voltage
Vth, effective channel length Leff and other device param-
eters, but Vth variation is dominant so that the variability
effects of other parameters are significantly dampened [2].

Moreover, Vth variations are typically modeled as indepen-
dent random variables of Gaussian distributions [4, 5, 6, 7,
9]. As such, it is a natural choice to deploy a family of Gaus-
sian distributions parameterized by mean (µ) and standard
deviation (σ). In fact, parameterized Gaussian distributions
can lead to a closed-form solution to the optimization prob-
lem in (9) as shown in following sections.

As an illustration, let ξi be the independent Gaussian ran-
dom variable for i-th Vth variation source, which has the

mean µ
(0)
i and the standard deviation σ

(0)
i . To build the pa-

rameterized Gaussian distribution for ξi, we shift the mean
to µ̂i and reducing the standard deviation to σ̂i. This ap-
proach is motivated by the following insights:

• Mean-shift can tilt the sampling distribution towards
the failure region where the rare failures are more likely
to happen. This approach is similar to the finding in
[5] and has been extensively used in previous works [5,
6, 8, 14, 15, 16].

• σ-reduction can concentrate the samples around a
much smaller region where rare failures can happen
with higher probability.

Therefore, the samples drawn from the parameterized Gaus-
sian distribution h(ξi, µ̂i, σ̂i) are more likely to fail, and can
thereby expedite the convergence of the failure probabili-
ty estimation in the importance sampling. However, it is
still unknown how to find the optimal parameters µ̂i and
σ̂i efficiently; this question will be investigated in following
sections.

3.2 Parameterized Distribution Initialization
As discussed in Section 2.3, the first step is to initialize

the parameters (µi, σi), which, in fact, provides a “starting
point”or “heuristic initial solution” to search for the optimal

parameters (µ̂i, σ̂i). As such, the initial parameters µ
(1)
i

and σ
(1)
i can significantly affect the efficiency of the iterative

search in PC method or even lead to completely misleading
results.

To this end, we propose an efficient initial parameter selec-
tion method inspired by the insights of “norm minimization”
in [5], which can rapidly shift the given sampling distribu-
tion towards the failure region and make rare failures most
likely to happen.

Assume random variables ξi follow Gaussian distributions

N(µ
(0)
i , σ

(0)
i ). The proposed initial parameter selection can

be summarized as following: first, a few hundred uniformly-

distributed samples of ξi are generated using Quasi Monte
Carlo method [17] in order to evenly cover the entire param-

eter range, such as the eight-sigma range from (µ
(0)
i −4σ

(0)
i )

to (µ
(0)
i + 4σ

(0)
i ). Then, transistor level simulations are run

on these samples and the failed samples are identified with
given performance constraints. We can further choose one
failed sample with the minimum L2-norm and use its val-



ue as the initial parameter for µ
(1)
i . In addition, the initial

sigma parameter σ
(1)
i can be the same as σ

(0)
i .

It is worthwhile to point out that the above “norm mini-
mization” based method is a heuristic for obtaining an ini-

tial parameterized Gaussian distribution but cannot provide
the optimal sampling distribution h(ξ, µ̂, σ̂) in (9) by any
means. The optimization problem in (9) should be solved for
h(ξ, µ̂, σ̂) and an efficient closed-form approach is needed.

3.3 Closed-Form Optimization Solution
Before we present the closed-form solution, it should be

noted that the optimization in (9) must be revised as (10)
because samples are generated from the parameterized dis-
tributions h(ξ,µ,σ) rather than from distributions h(ξ):

µ̂ = argmax
µ

Eh[I(ξ) · w(ξ,µ,σ) · log(h(ξ,µ,σ))],

σ̂ = argmax
σ

Eh[I(ξ) · w(ξ, µ̂,σ) · log(h(ξ, µ̂,σ))].(10)

where w(ξ,µ,σ) denotes the weights to unbias the samples
from the parameterized distribution h(ξ,µ,σ) and can be
expressed as:

w(ξ,µ,σ) =
h(ξ)

h(ξ,µ,σ)
. (11)

For the illustration purpose, let us consider following ex-
ample:

• ξ = (ξ1, · · · , ξm): independent random Gaussian vari-
ables.

• h(ξ) = (h(ξ1), · · · , h(ξm)): the given Gaussian sam-
pling distributions of ξ.

• h(ξ,µ,σ) =(h(ξ1, µ1, σ1), · · · , h(ξm, µm, σm)): the cho-
sen parameterized Gaussian distributions for ξ.

• ξ1i , · · · , ξ
j
i , · · · , ξ

N
i : the samples of ξi drawn from the

parameterized Gaussian distribution h(ξi, µi, σi).

As such, the weights of j-th sample ξj=(ξj1, · · · , ξ
j
m) can

be expressed as:

w(ξj
,µ,σ) =

h(ξj1)× · · · × h(ξjm)

h(ξj1, µ1, σ1)× · · · × h(ξjm, µm, σm)
. (12)

Moreover, the expectation value Eh[·] in (10) cannot be
evaluated directly in general, because there is no analyti-
cal formula for the integral operation, and sampling meth-
ods must be used. For instance, with the samples ξ

j
i , (j =

1, · · · , N), the optimization problem for µi becomes the sam-
pled form as (13). Similar expression can be derived for σi.

µ̂i = argmax
µ

1

N

N
∑

j=1

(

I(ξj)w(ξj
,µ,σ) log(h(ξji , µi, σi))

)

. (13)

As proposed in [12], the above optimization problem is a
convex optimization problem that can be solved with closed-
form formula, because the parameterized distribution h(ξ,µ,
σ), following Gaussian distribution, is a log-concave distri-
bution.

Specifically, the optimal parameters µ̂i and σ̂i can be an-
alytically solved with closed-form formulae as [12, 13]:

µ̂i =

∑N

i=1 I(ξ
j)× w(ξj ,µ,σ)× ξ

j
i

∑N

i=1 I(ξ
j)× w(ξj ,µ,σ)

. (14)

where µ̂i can be asymptotically approached by iteratively
updating the parameter µ and evaluating the above formu-
la. In practice, the iterative process can converge very fast
within only a few iterations. Note that [11, 14, 15, 16] use
the identical analytical formula to find the optimal parame-
ter for mean shift.

Similarly, the closed-form formula can be derived to ana-
lytically compute σ̂i as:

σ̂i =

√

∑N

i=1 I(ξ
j)× w(ξj , µ̂,σ)× (ξji − µ̂i)2

∑N

i=1 I(ξ
j)× w(ξj , µ̂,σ)

. (15)

It is obvious that the calculation of σ̂i depends on the
optimization result µ̂ from (14). In other words, the poten-
tial error from the optimization of µ̂ can propagate into the
computation of σ̂i and lead to completely misleading result-
s, which is especially undesired because the performance of
importance sampling is highly sensitive to the sampling dis-
tribution. This observation can further validate the neces-
sity of the initial parameter selection presented in previous
section.

Therefore, the optimal sampling distribution is obtained
as h(ξ, µ̂, σ̂), which can be finally sampled to estimate the
probability of SRAM rare event failures in the importance
sampling to provide significant improvement on both accu-
racy and efficiency.

3.4 Overall Algorithm Flow
The proposed algorithm for the SRAM failure analysis is

based on the above techniques. The overall algorithm flow
is described in Algorithm (2), which consists of three stages:

(1) Parameterized distribution initialization: The
first stage initializes the parameterized sampling dis-
tribution h(ξ,µ,σ) as a “heuristic initial solution” to
search for the optimal parameterized sampling distri-
bution h(ξ, µ̂, σ̂). Initialization adopts the insight of
“norm minimization” from [5] and shifts the given sam-
pling distribution towards the failure region where S-
RAM failures are more likely to happen.

(2) Optimal parameter evaluation: This stage starts
with the initial parameterized sampling distribution
and analytically solves the optimization problems in
(14) and (15) to achieve the optimal parameterized
sampling distribution h(ξ, µ̂, σ̂).

(3) Failure probability estimation: The conventional
importance sampling method is performed with the
obtained optimal sampling distribution h(ξ, µ̂, σ̂) to
estimate the failure rate of SRAM cells.

As shown in Section 4, the proposed approach in Algorith-
m (2) can provide more than 40X speedup over the existing
state-of-the-art techniques and be up to 5200X faster than
Monte Carlo method without compromising any accuracy.

4. EXPERIMENTAL RESULTS
We have implemented our proposed algorithm using MAT-

LAB and Hspice with BSIM4 model. Also, Monte Carlo
(MC), spherical sampling (SS) [6] and mixture importance
sampling (MixIS) [4] are all implemented. As an illustra-
tion, the threshold voltages of all MOSFETs are considered
as variation sources and static noise margin (SNM) failure



Algorithm 2 Overall Algorithm for SRAMFailure Analysis

Input: random variables ξ = (ξ1, · · · , ξM ) with given

Gaussian distributions h(ξ,µ(0),σ(0)), and sample counts
(N1, N2, N3).
Output: the estimation of failure probability Pr.

1: /* Stage 1: Initial Parameter Selection */
2: Draw uniformly-distributed samples ξj(j = 1, · · · , N1)

from the given distributions h(ξ) and run simulations
on these samples.

3: Identify samples that fail with given performance con-
straints and calculate their L2-norm values.

4: Choose the failed sample with the minimum L2 norm
and use the value of this sample as the initial µ(1).

5: Set the initial sigma σ(1) to be the same as given σ(0).
6:
7: /* Stage 2: Optimal Parameter Finding */
8: Draw N2 samples ξj from the initial parameterized

distribution h(ξ,µ(1),σ(1)) and set the iteration index
number t = 2.

9: repeat
10: Evaluate the indicator function I(ξj) in (14) and (15)

with these samples.
11: for i = 1 → M do
12: Solve for µ

(t)
i and σ

(t)
i with

µ
(t)
i =

∑N
i=1 I(ξ

j)×w(ξj ,µ(t−1),σ(t−1))× ξ
j
i

∑N
i=1 I(ξ

j)× w(ξj ,µ(t−1),σ(t−1))
.

σ
(t)
i =

√

√

√

√

∑N
i=1 I(ξ

j)× w(ξj ,µ(t−1),σ(t−1))× (ξji − µ
(t)
i )2

∑N
i=1 I(ξ

j)×w(ξj ,µ(t−1),σ(t−1))
.

13: end for
14: Draw N2 samples from the updated parameterized

distribution h(ξ,µ(t),σ(t)) and set t = t+ 1.

15: until Converged; when µ(t) and σ(t) do not change for
several subsequent iterations.

16: Obtain the optimal parameter µ̂ and σ̂ for parameter-
ized sampling distribution.

17:
18: /* Stage 3: Failure Probability Estimation */
19: Draw N3 samples from the obtained optimal sampling

distribution h(ξ, µ̂, σ̂).
20: Run simulations on these samples ξj and evaluate the

indicator function I(ξj), (j = 1, · · · , N3).
21: Solve for the failure probability, Pr, with sampled form:

Pr =
1

N3

N3
∑

i=1

I(ξj)× w(ξj , µ̂, σ̂).

where w(ξj , µ̂, σ̂) is the weight for sample ξj and is de-
fined as

w(ξj , µ̂, σ̂) =

M
∏

i=1

h(ξji )

M
∏

i=1

h(ξji , µ̂, σ̂)

.

is studied. Note that the same algorithm can be applied to

other variation sources (i.e. Leff , Tox, etc.) and other rare
failures (i.e. reading/writing failures) as well.

4.1 SRAM Cell and Static Noise Margin
The typical design of a 6-transistor SRAM cell is shown

in Fig.1. We introduce process variations to threshold volt-
age Vth of all MOSFETs as independent random variables
of Gaussian distributions. Specifically, the nominal mean
values of the threshold voltages for NMOS and PMOS are
0.466V and −0.4118V , respectively. The standard devia-
tions (σ) of threshold voltage variations are 10% of nominal
threshold voltage values.

Q

Q

WL

BL
BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Figure 1: The schematic of the 6T SRAM cell.

The SRAM cell consists of six transistors: Mn2 and Mn4
control the access of the cell during reading, writing and
standby operations; the remaining four transistors form two
inverters and use two stable states (either ‘0’ or ‘1’) to store
the data in this memory cell.

Static Noise Margin (SNM) is used to evaluate the sta-
bility of SRAM cell by describing the noise voltage that is
needed to flip the stored data. More specifically, SNM can
be measured by the length of maximum embedded square
in the butterfly curves, which consist of the voltage transfer
curve (VTC) of the two inverters in SRAM cell [18]. As such,
when SNM is less than zero, the butterfly curve is collapsed
and the data retention failure happens.

4.2 Accuracy Comparison

4.2.1 Comparison of Failure Rate Estimation
To validate the estimation accuracy of the proposed algo-

rithm, we perform different methods, including Monte Carlo
(MC), mixture importance sampling (MixIS) [4], spherical
sampling (SS) [6], and the proposed algorithm on the same
6-T SRAM cell example in 45nm process to predict the prob-
ability of data retention failure due to SNM variation. Here,
we choose V dd = 300mV as an example for comparison.

Evolutions of the probability estimation from different
methods are plotted in Fig.2(a), the following observations
can be made:

• First, the failure rate estimations from different meth-
ods closely match each other, which validates the esti-
mation accuracy of our proposed method.

• Second, the proposed method in contrast to other meth-
ods starts with an estimation that is very close to
the final accurate result, because it can find the opti-

mal sampling distribution using probability collectives
method for importance sampling.
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Figure 2: Evolution comparison of the failure probability estimation and figure of merit for different methods.

• The comparisons among MixIS, SS and proposed method
also reveal that the importance sampling is highly sen-
sitive to the sampling distribution, which can affec-
t both the accuracy and efficiency. This is the very
motivation behind this paper to exploit the optimal
sampling distribution.

4.2.2 Comparison of Figure-Of-Merit (FOM)
As stated in [5, 6], Figure-Of-Merit (FOM), ρ, has been

extensively used to quantify the accuracy of probability es-
timation, which is defined as:

ρ =

√

σ2
Pr

Pr

. (16)

where Pr is the estimation of failure probability and σPr

is the standard deviation of Pr. In fact, the FOM can be
treated as a relative error so that a smaller figure of merit
means higher accuracy.

Similarly, we further calculate the evolution of FOM for
different methods which are plotted in Fig.2(b). To clear-
ly compare the accuracy of different methods, we plot a
dashed line to indicate the 90% accuracy level with 90%
confidence interval (ρ = 0.1). Two important observations
can be made:

• MixIS, SS and proposed method quickly reach higher
accuracy level (> 90%) while Monte Carlo can only
closely approach the 90% accuracy. This is because
importance sampling based methods can choose more
failed samples from the failure region to efficiently im-
prove the accuracy, while Monte Carlo method wastes
a large number of samples that are far from the failure
region.

Table 1: Results of all methods with 10, 000 samples.

MC MixIS [4] SS [6] Proposed

prob. of failure 5.455E-4 3.681E-4 4.342E-4 4.699E-4
ρ 0.8129 0.1111 0.9831 0.021

accuracy 18.71% 88.53% 90.42% 98.2%
#runs 1.0e+4 1.0e+4 1.0e+4 1.0e+4

Table 2: Accuracy and efficiency comparison for d-
ifferent methods.

MC MixIS [4] SS [6] Proposed

prob.(failure) 4.675E-4 4.332E-4 4.208E-4 4.7E-4
accuracy 88% 90% 90% 90%
#runs 1.2E+6 2.85E+4 9.771E+3 231
speedup 1X 42X 123X 5200X

• For the same number of samples, the proposed method
outperforms existing approaches in terms of the esti-
mator accuracy. For instance, we compare accuracy
level of all different methods in Table(1) with only
10, 000 samples. In this table, the proposed method
can provide 98.2% accuracy while other methods can
only reach up to 90.42%, which is attributed to the
choice of the optimal sampling distribution.

4.3 Efficiency Comparison

4.3.1 Comparison of Convergence Speed
Fig.2(b) illustrates the efficiency of proposed algorithm,

which is shown to have the fastest speed of convergence a-
mong all the different methods. In this figure, the proposed



method chooses more failed samples and increasingly im-
proves the accuracy to an extremely high level due to the
optimal sampling distribution.

Similar observations can be made from Fig.2(a): the pro-
posed method starts with the estimation that is very close to
the final accurate results and quickly converges to the 95%
confidence interval of the final Monte Carlo result (denoted
by two dashed lines). Meanwhile, the estimations of other
methods keep fluctuating before asymptotically approaching
the final accurate results.

In fact, the proposed method can achieve 90% accuracy
and 90% confidence interval with only 231 samples. In the
contrast, MixIS and SS need 2.85e+4 and 9.77e+3 samples
to reach the same accuracy level, respectively. Monte Carlo
method cannot even reach 90% accuracy with up to 1.2e+6
samples. In other words, the proposed method can achieve
5200X speedup over Monte Carlo, 123X speedup over MixIS
[4] and 42X speedup over SS [6].

4.3.2 Other Efficiency Comparison
It should be noted that all importance sampling based

methods require some “extra” samples to find the new sam-
pling distribution, called“extra”because Monte Carlo method
does not need these extra samples in simulations. For ex-
ample, the stage 1 and stage 2 in Algorithm (2) need some
“extra” samples to construct the optimal sampling distribu-
tion before the failure probability can be estimated in stage
3.

Specifically, in our experiments, the MixIS needs 3000
samples to find the sampling distribution, because it mix-
es the uniform distribution, given sampling distribution and
mean-shifted distribution together and requires more sam-
ples. The SS method needs 2000 samples to locate the failed
samples with a minimum L2-norm in a spherical manner.
The proposed method also needs 2000 samples to find the
optimal sampling distribution. However, these “extra” sam-
ples turn out to be negligible when compared to the Monte
Carlo method.

5. CONCLUSION
In this paper, we presented an improved importance sam-

pling algorithm based on probability collectives method to
efficiently estimate the rare event failures of SRAM cells.
This method adopts the“Kullback-Leibler (KL) distance” to
represent the distance between the optimal sampling distri-
bution and a given sampling distribution. The KL distance
is further analytically minimized using immediate sampling
based probability collectives method and a set of parameter-
ized Gaussian distributions are obtained as the optimal sam-
pling distribution. The experiments demonstrate that pro-
posed algorithm can provide extremely high accuracy and
dramatically improve the convergence of importance sam-
pling. For instance, the proposed method can be 5200X
faster than Monte Carlo method and offer more than 40X
speedup over other existing state-of-the-art techniques (e.g.,
mixture importance sampling [4] and spherical sampling [6])
with the same accuracy.

6. REFERENCES
[1] R. Heald and P. Wang, “Variability in sub-100nm SRAM

designs,” in Computer Aided Design, 2004. ICCAD-2004.
IEEE/ACM International Conference on, pp. 347–352,
2004.

[2] P. Girard, A. Bosio, L. Dilillo, P. S., and A. Virazel,
“Advanced test methods for SRAMs: Effective solutions for
dynamic fault detection in nanoscaled technologies,” 2009.

[3] K. Agarwal and S. Nassif, “Statistical analysis of SRAM
cell stability,” in Proceedings of the 43rd annual Design
Automation Conference, DAC ’06, pp. 57–62, 2006.

[4] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance
sampling and its application to the analysis of SRAM
designs in the presence of rare failure events,” in
Proceedings of the 43rd annual Design Automation
Conference, DAC’06, pp. 69–72, 2006.

[5] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan,
“Breaking the simulation barrier: SRAM evaluation
through norm minimization,” in Proceedings of the 2008
IEEE/ACM International Conference on Computer-Aided
Design, ICCAD ’08, pp. 322–329, 2008.

[6] M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and
A. Chandrakasan, “Loop flattening and spherical sampling:
Highly efficient model reduction techniques for SRAM yield
analysis,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pp. 801 –806, 2010.

[7] A. Singhee and R. Rutenbar, “Statistical Blockade: A novel
method for very fast monte carlo simulation of rare circuit
events, and its application,” in Design, Automation Test in
Europe Conference Exhibition, 2007. DATE ’07, pp. 1–6,
2007.

[8] K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, and
T. Sato, “Sequential importance sampling for
low-probability and high-dimensional SRAM yield
analysis,” in IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’10, 2010.

[9] C. Dong and X. Li, “Efficient SRAM failure rateprediction
via Gibbs sampling,” in Proceedings of the 43rd annual
Design Automation Conference, DAC’11, 2011.

[10] V. K. Rohatgi and A. K. M. Ehsanes Saleh, “An
introduction to probability and statistics,”
Wiley-Interscience, 2000.

[11] T. M. Cover and J. A. Thomas, “Elements of information
theory,” John Wiley and Sons, 1991.

[12] D. Rajnarayan, D. H. Wolpert, and I. Kroo, “Optimization
under uncertainty using probability collectives,” 10th
AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2006.

[13] D. Rajnarayan, I. Kroo, and D. H. Wolpert, “Probability
collectives for optimization of computer simulations,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 2007.

[14] A. Ridder and R. Y. Rubinstein, “Minimum cross-entropy
methods for rare-event simulation,” Simulation:
Transactions of the Society for Modeling and Simulation
International, vol. 83, pp. 769–784, 2007.

[15] T. H. de Mello, “A study on the cross-entropy method for
rare event probability estimation,” INFORMS Journal on
Computing, vol. 19, no. 3, pp. 381–394, 2007.

[16] P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y.
Rubinstein, “A tutorial on the cross entropy method,”
Annals of Operations Research, vol. 134, pp. 19–67, 2005.

[17] H. Niederreiter, “Random number generation and
quasi-monte carlo methods,” Society for Industrial and
Applied Mathematics, 1992.

[18] D. Mukherjee, H. K. Mondal, and B. Reddy, “Static noise
margin analysis of SRAM cell for high speed application,”
International Journal of Computer Science Issues, 2010.


