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ABSTRACT
Maximum entropy (MAXENT) is a powerful and flexible
method for estimating the arbitrary probabilistic distribu-
tion of a stochastic variable with moment constraints. How-
ever, modeling the stochastic behavior of analog/mixed-signal
(AMS) circuits using MAXENT is still unknown. In this
paper, we present a MAXENT based approach to efficiently
model the arbitrary behavioral distribution of AMS circuits
with high accuracy. The exact behavioral distribution can
be approximated by a product of exponential functions with
different Lagrangian multipliers. The closest approximation
can be obtained by maximizing Shannon’s information en-
tropy subject to moment constraints, leading to a nonlinear
system. Classic Newton’s method is used to solve the nonlin-
ear system for the Lagrangian multipliers, which can further
recover the arbitrary behavioral distribution of AMS circuit-
s. Extensive experiments on different circuits demonstrate
that the proposed MAXENT based approach offers better
stability and improves the accuracy up to 110% when com-
pared to previous AWE-based moment matching approach-
es, and offers up to 592x speedup when compared to Monte
Carlo method.

1. INTRODUCTION
As technology pushes the envelope for transistor sizes to

get much smaller, the impact of process variations has be-
come more prominent than ever before, causing serious is-
sues in AMS circuit design and manufacturing [1, 2, 3]. For
example, parameters such as effective channel length, width
and oxide thickness can significantly deviate from their de-
signed values due to the uncertainties from etching, lithog-
raphy, and other manufacturing processes. Therefore, per-
formance of the circuit can deviate from its nominal values
by a large amount, resulting in significant yield loss [4, 5].
Consequently, efficient modeling of circuit performance in
the presence of process variations is highly desired.

In the past few years, many statistical methods such as
Monte Carlo (MC) simulation [6], stochastic orthogonal poly-

nomials (SOP) [7], response surface modeling (RSM) ap-
proaches [3], and point estimation method (PEM) [1] have
been proposed for behavioral modeling of AMS circuits un-
der process variations. Among different methods, the Monte
Carlo (MC) method [6] is the “golden standard” approach
that reliably provides the accurate distribution of circuit
performance. In general, MC method repeatedly generates
random samples of all variables and evaluates their perfor-
mance merits. It is obvious that MC method needs to e-
valuate a huge number of samples so as to cover the entire
sampling space, which is extremely time-consuming. To re-
lieve the high complexity, an SOP based method [7] has
been proposed. This method can expand a probabilistic dis-
tribution with specific polynomial functions and calculate
the expansion coefficients efficiently. However, SOP based
methods need to know the distribution type of the circuit
performance since each specific distribution type has a cor-
responding specific orthogonal polynomial. Unfortunately,
the distribution type is usually unknown. To remedy this, [3]
proposed a response-surface-model (RSM) based method in
order to predict “arbitrary” behavioral distributions of AMS
circuits, where the circuit performance is modeled as a poly-
nomial function of all variable parameters. This approach
shows significant improvement over MC and SOP methods,
but becomes impractical for strongly nonlinear and high-
dimensional cases. To deliver a practical solution, the Point
Estimation Method (PEM) [1] has been proposed which es-
timates the high order moments using point estimation [8]
and predicts the “arbitrary” behavioral distribution by the
moment-matching method known as Asymptotic Waveform
Estimation (AWE) [9]. It is worthwhile to point out that all
previous AWE based works have two drawbacks: (1) the use
of AWE may lead to instabilities, and (2) the convergence to
the exact behavioral distribution is very slow as the number
of moments is increased.

In this paper, a maximum entropy (MAXENT) based ap-
proach is proposed to model the “arbitrary” behavioral dis-
tributions for AMS circuits. The exact behavioral distri-
bution can be approximated by a product of exponential
functions with different Lagrangian multipliers. The closes-
t approximation can be obtained by maximizing Shannon’s
information entropy subject to moment constraints, leading
to a nonlinear system. Classic Newton’s method is used to
solve the nonlinear system for the Lagrangian multipliers,
which can further recover the arbitrary behavioral distri-
bution of AMS circuits. Extensive experiments on many
circuits have validated that the proposed method is more
robust and offers up to 110% higher accuracy compared to
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[1], and up to 592x speedup compared to MC method [6].
The rest of the paper is organized as follows. In section 2,

we give some background on the issue of process variations
and previous stochastic modeling algorithms. In section 3,
we describe the proposed algorithm. In section 4, we present
experimental results detailing the robustness and accuracy
of MAXENT. In section 5 we conclude this paper.

2. BACKGROUND

2.1 Problem Formulation
Process variations denote the uncertainties or variations

in process parameters (such as channel width, oxide thick-
ness, etc.), which differ from their designed values and cause
the deviation of circuit performance. These variations are
caused by the uncertainties during manufacturing processes
such as etching, lithography and etc.

Figure 1: Transistor under Process Variation due to
Lithography variations [10]

We show the deviation of geometric parameters in Figure
1 [10] that causes a significant shift in circuit performance.
The circuit performance is not a deterministic value anymore
but instead becomes a probabilistic value. Consequently,
some fabricated circuits may lay outside the performance
constraints from designers, leading to yield loss. Therefore,
it is important to predict the probabilistic distribution of
circuit performance.

In general, the problem can be formulated in Figure 2,
which consists of two domains: the parameter domain con-
tains probabilistic distributions of all variable parameters
(such as oxide thickness), while the performance domain has
the probabilistic distribution of circuit performance (such
as delay). Clearly, there is a missing link/mapping between
these two domains. The motivation behind this work is to
explore an efficient mapping approach so as to estimate the
behavioral distribution by the distributions of variable pro-
cess parameters.

2.2 Sampling Methods
Sampling is a key aspect in stochastic modeling. Giv-

en a large set of data, sampling allows us to compress this
large set into a smaller set while still accurately representing
the statistics of the original set. There are many different
types of sampling methods that we may use to achieve this
such as random sampling, systematic sampling, and quasi-
random sampling. Random sampling attempts to give each
data point an equal probability of being selected. Systematic
sampling [11] attempts to organize the target data according
to a known ordering scheme. In this paper, we utilize a type
of quasi-random sampling that utilizes the Sobol sequence
[12]. We apply the Sobol sequence along with an inverse
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Performance 
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Generate Parameter Samples 
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Calculate Performance Distribution

Calculate Probabilistic Moments

Figure 2: General Stochastic Modeling Method
utilizing SPICE Simulation

CDF function to make sure the sampling space of variable
parameters is uniformly covered.

2.3 Calculation of Moments
We first explain two different types of moments defined

in the statistics community [13] and signal processing field
[14]. These two types of moments need to be matched in the
AWE moment matching method.

2.3.1 Probabilistic Moments
In statistics, the 𝑘-th moment of variable 𝑓 is defined as:

𝑚𝑘
𝑓 = 𝐸(𝑓𝑘) =

∫ +∞

−∞
𝑓𝑘 ⋅ 𝑝𝑑𝑓(𝑓)𝑑𝑓 (1)

where 𝐸(⋅) is the expectation operator and 𝑝𝑑𝑓(𝑓) is the
distribution of variable 𝑓 . In particular, the first four prob-
abilistic moments are the mean, variance, skewness and kur-
tosis, respectively.

2.3.2 Time Moments
The definition of a “time moment” has been established in

the signal processing field [14] for a long time and has been
successfully applied to circuit analysis in the past few years
[9, 15, 16]. In fact, the time moment is the coefficient of a
Taylor series expansion of the homogeneous response in the
Laplace domain and the 𝑘-th time moment can be expressed
as:

𝑚𝑘
𝑡 =

(−1)𝑘

𝑘!

∫ +∞

−∞
𝑡𝑘 ⋅ ℎ(𝑡)𝑑𝑡 (2)

where 𝑡 is time and ℎ(𝑡) is the impulse response of a linear
time invariant (LTI) system. Moreover, the time moments
can be further expanded using the residues and poles of this
LTI system as [9, 14]:

𝑚𝑘
𝑡 = −

𝑀∑
𝑟=1

𝑎𝑟

𝑏𝑘+1
𝑟

(3)

where 𝑎𝑟 and 𝑏𝑟 are residues and poles of this LTI system,
respectively. Therefore, the transfer function 𝐻(𝑠) of this



LTI system can be represented as an 𝑀 -order rational func-
tion (pole-residue format) as:

𝐻(𝑠) =
𝑀∑
𝑟=1

𝑎𝑟
𝑠− 𝑏𝑟

(4)

while its impulse response ℎ(𝑡) can be expressed as:

ℎ(𝑡) =

⎧⎨
⎩

𝑀∑
𝑟=1

𝑎𝑟𝑒
𝑏𝑟⋅𝑡 (𝑡 ≥ 0)

0 (𝑡 < 0)
(5)

2.4 AWE Based Moment Matching
An interesting observation can be found by comparing the

probabilistic moments in (1) with the time moments in (2):
𝑚𝑘

𝑓 is different from 𝑚𝑘
𝑡 due to a scaling factor (−1)𝑘

/
𝑘!.

It is easy to represent probabilistic moments as “time mo-
ments” by multiplying by a scaling factor:

𝑚̂𝑘
𝑓 =

(−1)𝑘

𝑘!
⋅𝑚𝑘

𝑓 =
(−1)𝑘

𝑘!
⋅
∫ +∞

−∞
𝑓𝑘 ⋅ 𝑝𝑑𝑓(𝑓)𝑑𝑥 (6)

AWE based methods such as [1, 3] treat the variable 𝑓 in
(1) as the time 𝑡 in (2). Then, the 𝑝𝑑𝑓(𝑓) can be optimally
approximated by impulse response ℎ(𝑡), which can be de-
fined in pole/residue representation (5). The time moments
can also be expressed by poles 𝑏 and residues 𝑎 and they can
be solved by matching the first 2𝑀 moments:⎧⎨

⎩

𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ 𝑎𝑀 = −𝑚̂−1
𝑥

𝑎1
𝑏1

+ 𝑎2
𝑏2

+ ⋅ ⋅ ⋅ 𝑎𝑀
𝑏𝑀

= −𝑚̂0
𝑥

𝑎1

𝑏21
+ 𝑎2

𝑏22
+ ⋅ ⋅ ⋅ 𝑎𝑀

𝑏2
𝑀

= −𝑚̂1
𝑥

...
𝑎1

𝑏2𝑀−1
1

+ 𝑎2

𝑏2𝑀−1
2

+ ⋅ ⋅ ⋅ 𝑎𝑀

𝑏2𝑀−1
𝑀

= −𝑚̂2𝑀−2
𝑥

(7)

where the poles, 𝑏𝑖 (𝑖 = 1, 2, ...,𝑀), and residues, 𝑎𝑖 (𝑖 =
1, 2, ...,𝑀), are the 2𝑀 unknowns in the above nonlinear
system.

This nonlinear system can be solved with many techniques
which have been thoroughly discussed in [9]. Here, we briefly
review the analytic solution of (7).

First, all of the poles 𝑏𝑖 (𝑖 = 1, 2, ...,𝑀) can be solved as
the eigenvalues of the matrix

𝑀 =

⎡
⎢⎢⎢⎣

0 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
−𝑐0 −𝑐1 −𝑐2 ⋅ ⋅ ⋅ −𝑐𝑀−1

⎤
⎥⎥⎥⎦ (8)

where 𝑐𝑖 (𝑖 = 0, 1, ...,𝑀 − 1) are solved from the linear
equations as:
⎡
⎢⎢⎢⎢⎢⎣

𝑚̂−1
𝑓 𝑚̂0

𝑓 ⋅ ⋅ ⋅ 𝑚̂𝑀−2
𝑓

𝑚̂0
𝑓 𝑚̂1

𝑓 ⋅ ⋅ ⋅ 𝑚̂𝑀−1
𝑓

.

.

.
.
.
.

. . .
.
.
.

𝑚̂𝑀−2
𝑓 𝑚̂𝑀−1

𝑓 ⋅ ⋅ ⋅ 𝑚̂2𝑀−3
𝑓

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−𝑐0
−𝑐1
.
.
.

−𝑐𝑀−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

𝑚̂𝑀−1
𝑓

𝑚̂𝑀
𝑓

.

.

.

𝑚̂2𝑀−2
𝑓

⎤
⎥⎥⎥⎥⎥⎦

(9)

When the poles 𝑏𝑖 are available, the residues 𝑎𝑖 can be
solved from (7) with simple arithmetic operations. There-
fore, the impulse response ℎ(𝑡) can be calculated, with the
obtained 𝑎𝑖 and 𝑏𝑖 in equation (5), which can be used as an
approximation of the distribution 𝑝𝑑𝑓(𝑓).

3. PROPOSED ALGORITHM

3.1 The Maximum Entropy Distribution
Entropy is a measure of uncertainty. When choosing a dis-

tribution, one should choose a distribution that maximizes
the entropy [17]. By doing this, we can ensure that the dis-
tribution is uniquely determined to be maximally unbiased
with regard to missing information, while still agreeing with
what is known [17].

𝑊 =

∫
−𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥 (10)

In (10), 𝑊 is the entropy and 𝑝(𝑥) is the distribution of
random variable 𝑥. To find the optimal distribution, we
maximize this entropy subject to moment constraints. In
this paper, we consider the probabilistic moments with mo-
ment order 𝑘

∫
𝑥𝑖𝑝(𝑥)𝑑𝑥 = 𝜇𝑖, 𝑖 = 0, 1, ..., 𝑘. (11)

The analytical solution to this convex optimization prob-
lem involves the use of Lagrangian Multipliers as stated in
[18] and is very complex. Although a more rigorous deriva-
tion of the solution can be found in [17, 18, 19], a brief
overview is given below. We start by applying Lagrangian
Multipliers to maximize (10), resulting in the Lagrangian
function

𝐿 = −
∫

(𝑝(𝑥) log 𝑝(𝑥))𝑑𝑥+
𝑘∑

𝑖=0

𝜆𝑖(

∫
𝑥𝑖𝑝(𝑥)𝑑𝑥− 𝜇𝑖) (12)

Now that the problem has been reformulated, we seek to
maximize this function in order to obtain a solution. To find
the maximum, we must look at the partial derivative of (12)
with respect to 𝑝(𝑥) and 𝜆𝑖

𝛿𝐿

𝛿𝜆𝑖
= 0 (13)

𝛿𝐿

𝛿𝑝(𝑥)
= 0 (14)

Solving equation (13) results in our original moment con-
straints given in (11). However, solving equation (14) results
in the following

𝛿𝐿

𝛿𝑝(𝑥)
= −

∫
[ln 𝑝(𝑥) + 1]𝑑𝑥+

𝑘∑
𝑖=0

𝜆𝑖

∫
𝑥𝑖𝑑𝑥 (15)

(15) can be solved by noticing that the integrand over an
arbitrary domain must equal zero. With this in mind, we
can reduce (15) to

− ln 𝑝(𝑥) − 1 +

𝑘∑
𝑖=0

𝜆𝑖𝑥
𝑖 = 0 (16)

If we rearrange the terms to solve for 𝑝(𝑥)

𝑝(𝑥) = exp

(
−

𝑘∑
𝑖=0

𝜆𝑖𝑥
𝑖

)
(17)

However, the solution to the above problem does not exist
for values of 𝑘 ≥ 2 [20]. To remedy this issue, [21] suggests



transforming this constrained problem into an unconstrained
problem by utilizing duality. By using duality, we can re-
cast our original problem of maximizing (12) into another
problem that minimizes a new ”dual” function. This dual
function can be obtained by plugging the results of (17) into
the Lagrangian function. Using this method results in the
dual objective function below

Γ = ln𝑍 +
𝑘∑

𝑖=1

𝜆𝑖𝜇𝑖 (18)

𝑍 = exp(𝜆0) =

∫
exp

(
−

𝑘∑
𝑖=1

𝜆𝑖𝑥
𝑖

)
𝑑𝑥 (19)

This problem can now be solved for any value of 𝑘. Most
MAXENT approaches solve this problem using an iterative
method such as Newton’s method [20, 22]. Here, Newton’s
method is used to solve for the Lagrangian multipliers 𝜆 =
[𝜆1, 𝜆2, ..., 𝜆𝑘]

′ for moments 𝑖, 𝑗 = 1, 2, ..., 𝑘 at iteration 𝑚

𝜆(𝑚) = 𝜆(𝑚) −𝐻−1 𝛿Γ

𝛿𝜆
(20)

Where the gradient (21) and Hessian (22) are defined as

𝛿Γ

𝛿𝜆𝑖
= 𝜇𝑖 −

∫
𝑥𝑖 exp

(
−

𝑘∑
𝑖=1

𝜆𝑖𝜇𝑖

)
𝑑𝑥

∫
exp

(
−

𝑘∑
𝑖=1

𝜆𝑖𝜇𝑖

)
𝑑𝑥

= 𝜇𝑖 − 𝜇𝑖(𝜆) (21)

𝐻𝑖𝑗 =
𝛿2Γ

𝛿𝜆𝑖𝛿𝜆𝑗
= 𝜇𝑖+𝑗(𝜆) − 𝜇𝑖(𝜆)𝜇𝑗(𝜆) (22)

𝜇𝑖+𝑗(𝜆) =

∫
𝑥𝑖+𝑗 exp

(
−

𝑘∑
𝑖=1

𝜆𝑖𝜇𝑖

)
𝑑𝑥

∫
exp

(
−

𝑘∑
𝑖=1

𝜆𝑖𝜇𝑖

)
𝑑𝑥

(23)

Since the Hessian is positive definite, there exists a unique
solution to the above problem [19]. Moreover, [19] also s-
tates that for a non-negative distribution 𝑃 (𝑥) integrable in
[0,1] with moments 𝜇0, 𝜇1, ..., 𝜇𝑘, if 𝑃𝑁 (𝑥) is the MAXENT
density, we have the following result:

lim
𝑁→∞

1∫
0

𝐹 (𝑥)𝑃𝑁 (𝑥)𝑑𝑥 =

1∫
0

𝐹 (𝑥)𝑃 (𝑥)𝑑𝑥 (24)

This is known as the Maximum Entropy Principle (MEP)
[19]. As [22] explains, MEP indicates that the MAXENT
density can be used to approximate the distribution arbi-
trarily well if the sample size is large enough to allow calcu-
lation of enough moments.

3.2 Stability of MAXENT based Method
To show that the distribution in (17) is stable for all cases

we are concerned with, it is sufficient to show that it is non-
negative and absolutely continuous in the interval [0,1] of
the random variable 𝑥. Although our random variable 𝑥
may fall outside of this range, it is easy to normalize it such
that it falls in this interval. Moreover, we are only concerned

with the interval [0,1], and not any subintervals inside of
it or outside of it. Showing that (17) is non-negative and
absolutely continuous is rigorously explained in [19] and an
overview of the fundamentals is as follows.

The dual problem shown in (18) is everywhere convex and
has an absolute minimum [19]. First, the function is every-
where convex because the Hessian, the second derivative of
(18), is positive definite. Second, the dual problem has an
absolute minimum if the moments in (11) are monotonic,
which holds true in the case of probabilistic moments. The
proofs for both of these conditions can be found in [19].

It suffices to say that if the dual problem in (18) is every-
where convex and has an absolute minimum, then the dis-
tribution that minimizes it, in this case (17), is non-negative
and absolutely continuous in the interval [19]. Since the dis-
tribution 𝑝(𝑥) is non-negative and absolutely continuous, it
will not have a negative probability and it will not vanish
over the interval. Therefore, 𝑝(𝑥) can be considered stable.

4. EXPERIMENT RESULTS
We have implemented the proposed algorithm in MAT-

LAB. The first circuit is a 6-T SRAM bit-cell with 54 vari-
ables, while the second circuit is a Operational Amplifier
with 70 variables. HSPICE is used to simulate these 2 cir-
cuits for circuit performance. Also, MC [6] and PEM [1] are
used for comparison.

4.1 Experimental Setup
Below, we will first give a brief overview of the algorithms

used in the experiments to demonstrate their distinguishing
characteristics, then we will give an overview of the process
variations of transistors and the circuits used. The algo-
rithms we evaluated in the experiments are listed as follows:

∙ MC (Monte Carlo)[6]: Use quasi-random sampling
to gather a huge data set of ”MC samples”. Calculate
the performance distribution from these MC samples.
Use a Figure of Merit to decide when we have enough
MC samples for our ground truth. Figure of Merit: If
the standard deviation of error between distribution 𝑛
and distribution 𝑛− 1 is less than 0.01, we determine
the 𝑛𝑡ℎ distribution to be the ground truth.

∙ PEM (Point Estimation Method)[1]: Use quasi-
random sampling to gather a small data set in order
to calculate the probabilistic moments of the random
variables. Convert these probabilistic moments to time
moments of the corresponding LTI system. Use AWE
to perform moment-matching in order to calculate the
performance distribution.

∙ MAXENT (Maximum Entropy): Use quasi-random
sampling to gather a small data set in order to calcu-
late the probabilistic moments of the random variables.
Use the Maximum Entropy [17] formulation to perfor-
m moment-matching in order to calculate the perfor-
mance distribution.

Additionally, for PEM and MAXENT, we utilize a scal-
ing technique mentioned in [23, 24]. This scaling technique
is performed on the moment matrix, such as (22) and the
right hand side of (7). This scaling technique is utilized to
minimize numerical errors that arise due to the limitations



of software. For all experiments using PEM and MAXEN-
T, moment matrix scaling was performed. Since the MC
method does not utilize a moment matrix, but instead does
direct calculation of performance values, we do not use scal-
ing for that algorithm.
Process Variations and Circuits The statistical data for the
process variations are shown in Table 1. There are a total of
9 process variations in each transistor, meaning that there
are 54 variables for the 6 transistor SRAM circuit, and 70
variables for the 10 transistor OpAmp. Similar to other
methods [1, 3], we model the process variations as Gaussian
distributions with various mean and sigma values.

Table 1: Parameters of MOSFETs
Variable Name 𝜎/𝜇 unit

Flat-band Voltage (𝑉𝑓𝑏) 0.1 V
Gate Oxide Thickness (𝑡𝑜𝑥) 0.05 m

Mobility (𝜇0) 0.1 𝑚2/𝑉 𝑠

Doping concentration at depletion (𝑁𝑑𝑒𝑝) 0.1 𝑐𝑚−3

Channel-length offset (Δ𝐿) 0.05 m
Channel-width offset (Δ𝑊 ) 0.05 m

Source/drain sheet resistance (𝑅𝑠ℎ) 0.1 𝑂ℎ𝑚/𝑚𝑚2

Source-gate overlap unit capacitance (𝐶𝑔𝑠𝑜) 0.1 F/m
Drain-gate overlap unit capacitance (𝐶𝑔𝑑𝑜) 0.1 F/m

6T SRAM bit-cell: Figure 3 depicts the 6T SRAM bit
cell circuit overview. The reading operation of this cell is
viewed as the circuit performance. The reading operation of
the cell is determined by the voltage Δ𝑉 between 𝐵𝐿 and
𝐵𝐿. If this voltage is large enough to be sensed, it is deemed
to be a successful read. The discharge behavior at 𝐵𝐿 plays
a crucial role in the value of Δ𝑉 . Due to process variations
in all transistors, the discharge behavior of 𝐵𝐿 may not be
as predicted and therefore the voltage Δ𝑉 may not be large
enough.

Q
Q

WL

BL BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Figure 3: 6T SRAM Circuit Layout

Operational Amplifier: Figure 4 depicts the Opera-
tional Amplifier circuit overview. The bandwidth of this
circuit is viewed as the circuit performance.

4.2 Stability
Figure 5 shows the performance distributions generated

by MAXENT, PEM, and MC for the first 16 moments and
first 18 moments using the 6T SRAM circuit using 200 sam-
ples. As we can see, MAXENT is stable under both con-
ditions. The curves representing MAXENT for the first 16
moments and first 18 moments show very good overlap with
the ground truth (MC) distribution. On the other hand,
only the PEM curve corresponding to 16 moments is stable
and overlaps with the ground truth distribution. The PEM

Figure 4: Operational Amplifier Circuit Layout
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Figure 5: PEM lack of stability on SRAM circuit
(200 samples)

curve corresponding to 18 moments is unstable, with a val-
ue of 0 through most of the distribution until it blows up to
infinity. The only value that changed between these curves
are the order of moments that were used. The sample num-
ber, circuit topology, process variations, and all other inputs
were held constant. These results imply that PEM is very
sensitive to the moments that are used.
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Figure 6: PEM stability on SRAM circuit (250 sam-
ples)

Figure 6 shows the performance distributions generated by
MAXENT, PEM, and MC for the first 16 moments and first
18 moments using the 6T SRAM circuit using 250 samples.
As we can see, MAXENT is stable under both 16 moments
and 18 moments and overlap well with the ground truth
distribution. Moreover, we see that PEM is now stable under
both 16 moments and 18 moments and also overlap well
with the ground truth distribution. Previously, PEM was



unstable for the SRAM circuit using 200 samples and 18
moments, whereas now it is stable for the SRAM circuit
using 250 samples and 18 moments.
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Figure 7: PEM lack of stability on SRAM circuit
(300 samples)

Figure 7 shows the performance distributions generated by
MAXENT, PEM, and MC for the first 16 moments and first
18 moments using the 6T SRAM circuit using 300 samples.
In this case, we have returned to the instability of PEM. We
see that MAXENT is still stable as always, but PEM is now
unstable with 18 moments.

The above results are due to two reasons: the inaccuracies
of the Pade approximation and the generation of moments
from samples. PEM uses the Pade approximation to approx-
imate the performance distribution as an impulse response
function of an LTI system. In short, this impulse response
function is a ratio of polynomial functions as shown in (5).
The poles of this impulse response are estimated using the
eigenvalues of a system matrix that is solved by AWE. When
solving for the eigenvalues, AWE leverages the Pade approx-
imation. However, the Pade approximation does not give all
of the true eigenvalues of the system. Instead, it will gen-
erate poles (eigenvalues) that correspond to the dominant
poles of the original system, and a few poles that do not
correspond to the poles in the original system but accoun-
t for the effects of the remaining poles [24]. Consequently,
the Pade approximation may generate some positive eigen-
values. In the experiments above, the Pade approximation
always generated 1 positive pole for the unstable cases, and 0
positive poles for the stable cases. Since the eigenvalues cor-
respond to the poles of the impulse response function, they
will take the form of a sum of weighted exponential func-
tions. It is clear that since the Pade approximation may
generate positive poles, they will correspond to unbounded
exponential terms that continue to grow and lead to insta-
bility.

The number of samples also plays a key role in the stability
of PEM. Since PEM uses AWE and the Pade approximation
to solve the set of nonlinear functions in (7), changing the
values on the RHS of (7) will change the values of 𝑏𝑟 which
are the poles of the transfer function. Using 200 samples
will generate a set of moments 𝑀1 while using 250 samples
will generate a set of moments 𝑀2. These moments will
have completely different values and will lead to a new set
of solutions to (7). This new set of solutions (the poles of
the transfer function) may be stable or unstable.

We note that PEM, regardless of stability or instability,
can run into the issue of negative probability as seen in both
Figure 5 and Figure 6 where the probability dips below 0.
The transfer function form of PEM allows for both positive

and negative values, implying that the distribution may take
on positive or negative values and this is nonsensical. On
the other hand, MAXENT will never take a negative value
as it is a product of exponentials, which can never take a
negative value.

The key drawback of PEM is that it is unpredictable. The
experimental results reinforce the idea that the instabilities
in PEM are unpredictable and can occur with any number of
samples that we use depending on the calculation performed
by the Pade approximation. On the other hand, MAXENT
is predictable. MAXENT does not use an LTI system model
and does not use the Pade approximation, so it will not be
subjected to this type of instability. More specifically, as
was mentioned in the previous section, the distribution gen-
erated by MAXENT will always be non-negative and will
always be absolutely continuous on the interval [0,1]. Clear-
ly, the MAXENT distribution is more robust than the PEM
distribution.

4.3 Accuracy
We also evaluated the accuracy of the MAXENT algorith-

m compared to PEM. Throughout our experiments, MAX-
ENT consistently offers lower error relative to the ground
truth than PEM does for any order of moments. We deter-
mine the error using the following equation:

𝑒𝑟𝑟𝑜𝑟 =

∫
(𝑓1(𝑥) − 𝑓2(𝑥)) 𝑑𝑥 (25)

where 𝑓1(𝑥) is our distribution from MAXENT or PEM and
𝑓2(𝑥) is the ground truth distribution from MC. Figures (5,
6, 7) already illustrate the accuracy of MAXENT on the
SRAM circuit for various samples and moment orders. Fig-
ure (8) illustrates the accuracy of MAXENT on the Opera-
tional Amplifier circuit. We see that at a moment order of
10, MAXENT already does a good job of mimicing the over-
all shape of the distribution, but it lacks some key details.
Increasing the moment order to 12 gives an almost exact
replica of the ground truth distribution. On the other hand,
for a moment order of 10, PEM fails to give an accurate
representation of the shape of the distribution. Moreover,
increasing the moment order to 12 still yields a disappoint-
ing result. The overall shape and accuracy of the distribu-
tion from PEM is still very different from the ground truth
distribution.
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Figure 8: Operational Amplifier Accuracy (800 sam-
ples)

To quantify the results, Table 2 displays the relative error



for both MAXENT and PEM in the SRAM and Operational
Amplifier circuits. We note that although the values of the
variance and kurtosis (moment orders 2 and 4) themselves
are accurate, the distributions generated using such few or-
ders of moments is very inaccurate. This seems to be an
issue of all moment matching algorithms. Consequently, re-
sults using such low order of moments is excluded.

Table 2: Accuracy Comparision
Circuit # Samples Moment Order PEM MAXENT

Error(%) Error(%)
6 46.349 11.85
8 30.656 3.988

SRAM 200 10 15.577 3.281
12 9.4457 3.394
14 6.6038 3.181
18 198.97 5.470
10 125.54 30.943
12 116.39 30.881

Op. Amp. 200 14 108.43 5.374
16 102.05 5.506
18 93.793 5.567
20 111.49 5.584

The most noticeable trend is that MAXENT offers a lower
relative error than PEM across all orders of moments and
circuits. Both MAXENT and PEM utilized the same sam-
pled values, and thus used the same moment values. The on-
ly difference is the way they performed their moment match-
ing. In fact, we can see that MAXENT seems to perform
its moment matching very effectively and efficiently. In the
SRAM case, MAXENT seems to converge to a steady-state
value of error by the time it hits 8 moments, whereas PEM
continues to decrease in error (still always having a high-
er error than MAXENT) until it becomes unstable. In the
OpAmp case, MAXENT seems to reach a steady-state value
of error by the time it hits 14 moments, whereas PEM nev-
er seems to reach a steady-state error. Moreover, we see in
Table 3 that changing the number of samples does not affect
the result of MAXENT having a smaller relative error. The
only significant difference is in the case of the OpAmp where
MAXENT now achieves a steady-state value for error at on-
ly 12 moments. As we can see from both Table 2 and Table
3, once we reach a steady-state value, MAXENT offers up
to 110% lower error for the OpAmp, and up to 27% lower
error for the SRAM circuit.

Table 3: Accuracy Comparison
Circuit # Samples Moment Order PEM MAXENT

Error(%) Error(%)
6 46.117 11.043
8 30.251 5.331

SRAM 300 10 15.097 6.046
12 11.341 5.818
14 10.74 6.516
18 200 6.222
10 126.51 28.271
12 117.26 3.851

Op. Amp. 800 14 108.40 4.232
16 101.110 3.679
18 94.682 3.465
20 89.264 3.568

4.4 Speedup
To observe the efficiency of MAXENT, we compare the

speedup with respect to Monte Carlo while regarding the
loss of accuracy. Table 4 shows the speedup in comparison

to Monte Carlo with the corresponding loss in accuracy. As
explained above, we use a Figure of Merit to decide when
we have enough MC samples for our ground truth. Figure of
Merit: If the standard deviation of error between distribu-
tion 𝑛 and distribution 𝑛−1 is less than 0.01, we determine
the 𝑛𝑡ℎ distribution to be the ground truth. For the 6T-
SRAM circuit, we have a speedup of 195x while still main-
taining a very small error of about 3%. For the OpAmp, we
have a speedup of 592x while still maintaining an error of
about 3.5%.

Table 4: Speedup
Circuit Method Samples Speedup Error %

SRAM Monte Carlo (39 x 103) 1x 0%
MAXENT 200 195x 3.09%

OpAmp Monte Carlo (474 x 103) 1x 0%
MAXENT 800 592x 3.46%

5. CONCLUSIONS
In this paper, we present a Maximum Entropy (MAX-

ENT) based method to estimate the “arbitrary” behavioral
distributions of AMS circuits. This approach approximates
the exact behavioral distribution with a product of expo-
nential distributions and finds the closest approximation by
choosing the Lagrange Multipliers for these exponential dis-
tributions. To do so, the Shannon’s information entropy
between them has been maximized so as to reduce the dis-
tance between these two distributions. With the extensive
experiments, the proposed approach has shown significant
improvement in stability and accuracy (up to 110% lower
error) when compared to AWE based methods and up to
592x speedup when compared with MC method.
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