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Why Stochastic Modeling and Analysis? 

 Ongoing scaling trends  

 Shrinking devices  larger process variations 

 More duplicated circuits: memory, IO,  multi-core  higher 
robustness over  variations 

 

 Stochastic modeling and analysis helps to debug circuits in 
the pre-silicon phase, and enhances yield rate 

Shrinking 

Feature Sizes 

90nm 45nm 14nm 



High Sigma Analysis 

 High sigma for analog and custom circuits (IO, memory 
control, PLL) 

 

 

 

 

 

 

*source: normal distribution on Wikipedia 



Existing Methods and Limitations 

 MC simulation: 

 time-consuming 

 

 Traditional Importance Sampling methods 

 inaccurate and unreliable at high dimension 

 

 Statistical Blockade1: 

 Existing classifier is not robust 

 

 Other approaches: probability collectives2, quick yield3 only 
work on low dimension problem. 

1 Singhee, A.; Rutenbar, R.A.; , “Statistical Blockade: A Novel Method for Very Fast Monte Carlo Simulation of 
Rare Circuit Events, and its Application", DATE, 2007. 
2 F. Gong, S. Basir-Kazeruni, L. Dolecek, L. He. “A fast estimation of SRAM failure rate using probability 
collectives”, ISPD, 2012. 
3 F. Gong, H. Yu, Y. Shi, D. Kim, J. Ren, L. He. “QuickYield: an efficient global-search based parametric yield 
estimation with performance constraints”, DAC, 2010. 



Basic Idea in Importance Sampling 

15 

 Importance Sampling 

 Shift sampling distribution 
towards the failure region. 

 

 Indicator Function 

 

 

 

 

 Probability of rare failure events 

 variable x and its PDF h(x) 

 

 

 Likelihood ratio or weights for each sample of x is h(x)/g(x), which is 
unbounded when g(x) becomes very small under high dimension 

 

 

Success Region 
 

Failure Region  
(rare failure events) 

 

 

I(x)=0 
I(x)=1 

g(x) h(x) 
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 Three stage algorithm: 

 Build a region R (eg. 0.99 
quantile), {Y|Y≥t}, which is not 
so rare, and evaluate the 
probability of this region, 
P(Y≥t) with MC 
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 Generate a new distributionYt 
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 Failure Probability: 

 P(Y ≥tc)= P(Y≥t)*P(Y ≥tc|Y≥t) 
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Stage2: Choosing Mean and Sigma for Yt 

 Stage 2: Generate a new distributionYt covers R and estimate the 
conditional failure probability: P(Y ≥tc|Y≥t). 

 mean-shift: move towards the region with more potential failure. 

 e.g. we move the mean to the centroid of R in this work 

 

 sigma-change: reshape to dominate the “rare-event” region. 

   σ = max(d, σ(Yt))  

 to make sure the entire failure region can be properly covered 

 

 

 

 
 



Stage3: Evaluation of Conditional Probability 

 Failure Probability:  P(Y ≥tc)= P(Y≥t)*P(Y ≥tc|Y≥t) 

 

 Conditional Probability is calculated as: 

 

 

 

 

 

 Boundedness analysis: 

 Upper bound of estimations from classic importance sampling 
approaches ∞! 

 The estimations of the proposed algorithm are always bounded. 
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High-Sigma Analysis on a SRAM circuit 

 Functional Diagram on an SRAM circuit 
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 Bit-cell(54 variables, effectively 36 
variables as Mp5 and Mp6 are OFF) 
 Consider timing failure as the “rare event” 

of interest.  
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SRAM bit-cell circuit 

 Experiment results with 90% confidence level on target accuracy: 

 

 

 

 

 

 

 

 

 

 

 

 

MC SS SB HDIS 

Failure rate 2.413E-05 

(0%) 

28415E-05 

(+17.7%) 

2.7248E-05 

(+12.9%) 

2.4949E-05 

(+3.39%) 

# of simulations 

(x1000) 

4600 

(1150X) 

20 

(5X) 

816 

(204X) 

4 

(1X) 

MC: Monte Carlo, SS: Spherical Sampling, SB: Statistical Blockade, HDIS: the proposed high-
dimensional importance sampling 

Runtime of 1000 simulations: ~ 5 mins. 
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Sense Amplifier circuit 

 A circuit with larger number of process variables 
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Sense Amplifier circuit 

 A circuit with larger number of process variables 

 

 

 Failure probability 

 

 

 

 

 

 The classifier in Statistical Blockade (SB) is not blocking any 
samples. So the efficiency of SB is degraded to the same as MC. 

 The Spherical sampling is converging to a totally wrong failure rate. 

 

 



Sense Amplifier circuit 

 Failure probability 

 

 

 

 

 

 Figure of Merit (demonstrate the fast converging rate of HDIS) 

 

 

 

 

 



Sense Amplifier circuit 

 Evaluation on different failure probabilities: 

 

 

 

 

 

 

 

 

 The accuracy of HDIS agrees with MC on different failure 
probabilities. 

 The efficiency is also consistent under these three cases. 

 

 

 

 

Target failure 

probability 

Monte Carlo 

(MC) 

Spherical Sampling 

(SS) 

Proposed Method 

(HDIS) 

8e-3 (2.6 sigma) 
prob:(failure) 8.136e-4  0.2603 7.861e-3 (3.4%) 

#sim. runs 4.800e+4 (24X) 16000 (8X) 2000 

8e-4 (3.3 sigma) 
prob:(failure) 8.044e-4 0.2541 8.787e-4 (9.2%) 

#sim. runs 4.750e+5 (36X) 8.330e+4 (6.4X) 1.300e+4 

8e-5 (3.96 sigma) 
prob:(failure) 8.089e-5 0.3103 8.186e-5 (1.2%) 

#sim. runs 5.156e+6 (346X) 1.430e+5 (10X) 1.500e+4 



Conclusions and Future Work 

 We have proposed a failure probability analysis algorithm, where 
the failure probability is proved to be always bounded. 

 

 Experiments demonstrated up to 1150X speedup over MC and 
less than 10% estimation error, while other approaches failed to 
capture the correct failure rate. 

 

 The proposed algorithm uses mean-shifting, which may be 
invalid for multiple failure regions. This will be fixed in the future. 

 

 

 

 



Q&A 

Thank you! 

Address comments to lhe@ee.ucla.edu 



Source of process variations 

 9 variables to model the variations in one CMOS transistor 

 

 

 

 

 

 
 
 

Variable Name Unit 
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