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ABSTRACT

Statistical circuit simulation is exhibiting increasing impor-
tance for circuit design under process variations. Existing
approaches cannot efficiently analyze the failure probabil-
ity for circuits with a large number of variation, nor handle
problems with multiple disjoint failure regions. The pro-
posed rare event microscope (REscope) first reduces the
problem dimension by pruning the parameters with little
contribution to circuit failure. Furthermore, we applied a
nonlinear classifier which is capable of identifying multiple
disjoint failure regions. In REscope, only likely-to-fail sam-
ples are simulated then matched to a generalized pareto dis-
tribution. On a 108-dimension charge pump circuit in PLL
design, REscope outperforms the importance sampling and
achieves more than 2 orders of magnitude speedup compared
to Monte Carlo. Moreover, it accurately estimates failure
rate, while the importance sampling totally fails because
failure regions are not correctly captured.

Categories and Subject Descriptors: B.7.2[Integrated
Circuits]: Design Aids — Simulation
General Terms: Algorithms, Design

Keywords: Circuit simulation, Yield Estimation, Process
variation, Monte Carlo methods, Classification

1. INTRODUCTION

As electronic devices scale to much smaller sizes than ever
before, circuit reliability has become an area of growing con-
cern due to the uncertainty during IC manufacturing. For
critical circuits, such as PLLs, which stabilize the clock for
the entire chip, and RAM cell, which is duplicated for mil-
lions of times, an extremely small failure probability may
cause a catastrophe for the entire chip. Traditional cir-
cuit simulation performs deterministic worse case analysis
(WCA) to decide a safety margin during the design. It is,
however, not sufficient to analyze the rare failure event [1].

Modern circuit simulation takes process variations into
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account and statistically simulates the probability that a
circuit does not meet the performance metric. A “gold stan-
dard” approach to reliably estimate the probabilistic cir-
cuit performance is Monte Carlo (MC) [2], which repeat-
edly draws samples and evaluates circuit performance with
transistor-level SPICE simulation. A lot of efforts have been
spend to reduce the runtime of a single simulation [3, 4, 5].
However, MC is still extremely inefficient because millions
of samples need to be simulated to capture one single failure
when the failure is a rare event.

To mitigate the inefficiency issue of MC method, fast sta-
tistical approaches have been proposed in the past decade,
which can be categorized in the following groups:

(1) Moment matching [6, 7, 8]: The approaches in this
category only evaluate a small number of samples with SPICE
simulation, and approximate the PDF of the circuit per-
formance to an analytical expression by means of moment
matching. However, existing moment matching based ap-
proaches are known as numerically instable because the mo-
ment matrix solved during moment matching is usually ill-
conditioned [9, 10]. Moreover, they only match the overall
shape of the PDF without surgically looking into its tail,
which contains information special to rare events. There-
fore, these algorithms are usually applied to low dimensional
behavior modeling rather than high-dimensional rare event
analysis.

(2) Importance Sampling: To specifically look into the
samples that cause a rare event, importance sampling based
approaches [11, 12, 13, 14, 15] have been developed to con-
struct a new “proposed” sampling distribution under which
a “rare event” becomes less rare so that more failures can be
easily captured. The critical issue is how to build an optimal
“proposed” sampling distribution. For example, [11] mixes a
uniform distribution, the original sampling distribution and
a “shifted” distribution centering around the failure region.
The approaches in [12, 13, 15] shift the sampling distribution
towards the failure region with a minimum Ls-norm. The
work in [14] uses “particle filtering” to tilt more samples to-
wards the failure region. However, all these approaches are
related to mean shifting and they are based on the assump-
tion that all failed samples are located in a single failure
region. In reality, the “proposed” sampling distribution may
not effectively cover all the failed samples when they are
spread in multiple disjoint failure regions.

(3) Classification: the approach in statistical blockcade
(SB) [1, 16] makes use of a “classifier” to “block” those Monte
Carlo samples that are unlikely to cause failures and simu-



lates the remaining samples. However, the linear support
vector machine (SVM) used in SB can be easily fooled in
high dimensional [15], nor can it effectively deal with multi-
ple failure regions. In particular, if the existence of multiple
failure regions is known, it has to use multiple classifiers to
find out each failure region respectively [17]. However, the
existence of multiple failure regions is blind to the algorithm
under most cases.

Clearly, most of the existing approaches can be success-
fully applied to low-dimensional problems with small num-
ber of variables, but, in general, perform poorly in high
dimension. Moreover, none of these approaches considers
efficiently handling the samples in multiple disjiont failure
regions.

The proposed rare event microscope (REscope) zooms
into the failure regions and models the circuit performance
distribution of likely-to-fail samples into a generalized pareto
distribution (GPD), which is known as a good model of the
tail of the PDF [16, 18]. It prunes the less useful process vari-
ation parameters in a high-dimensional problem by consid-
ering the contribution of each parameter to the performance
metrics. Furthermore, we applied a nonlinear SVM classifier
which is capable of identifying multiple disjoint failure re-
gions. On a 108-dimension charge pump circuit in the PLL
design, the proposed method outperforms the importance
sampling approach and is 389x faster than the Monte Carlo
approach. Moreover, it estimates the failure rate accurately,
while importance sampling totally fails because the failure
regions are not correctly captured.

The rest of this paper is organized as follows. In Section
2, the rare event modeling based on GPD are reviewed as
the background of the proposed algorithm. In Section 3, we
expatiate the proposed algorithm, including the algorithms
performing parameter pruning, the nonlinear SVM classi-
fier, and the algorithm that approximates the tail to GPD.
Experiment results are presented in Section 4 to validate the
accuracy and efficiency of proposed method. This paper is
concluded in Section 5.

2. BACKGROUND
2.1 Rare Event Modeling

In statistical circuit simulation, a failure occurs event when
a circuit performance metric does not meet the requirement.
Mathematically, given a circuit with several process vari-
ation parameters S = {X1, Xo,..., Xn}, statistical circuit
simulation analyzes the probability of circuit failure, i.e., a
performance metric Y exceeds certain failure threshold y;.
The failure probability Py can be represented as

Py =P >y;)=1-F(ys) (1)

where F'(y) is the cumulative distribution function (CDF)
of performance metric Y.

A typical way to efficiently model Y is simulating a small
size of Monte Carlo samples and applying moment match-
ing to fit the simulation result into certain analytical form
Frum(y) [6, 7, 8]. These approaches may correctly capture
the overall shape of the distribution, it is, however, difficult
to exactly fit the tail. The failure probability estimated by
moment matching, 1 — Fm(yys), could be very inaccurate.
Hence, we need to particularly model the tail of the distri-
bution.

To simplify the discussion, let’s assume that the perfor-
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Figure 1: Model the tail of lognormal using GPD

mance metric, Y, belongs to a “lognormal” distribution, which
is usually used to model circuit performance, i.e., memory
read/write time. The PDF of a lognormal distribution is
defined as

e @

where p and o are the mean and standard deviation, respec-
tively. A lognormal distribution with 4 = In2 and ¢ = 1
is presented in Figure 1(a). Suppose y; is a threshold that
separates a tail from the body of the PDF function f(y), the
conditional CDF of the tail can be expressed as
F(y) = F(y:)
F; =P Y =
t(y) = PY > ylY > ) = —~ Fo) ®3)
If F(y:) is known, the failure probability of the given
threshold y¢ can be calculated as:

Py = (1= F(y))(1 = Fi(yy)) (4)

Fortunately, F'(y:) can be accurately estimated by a few
thousand samples because the event of Y > y; is not that
rare. Therefore, the remaining problem is to correctly model
the conditional CDF Fi(y).

For several decades, the generalized pareto distribution
(GPD) has been known as a good model for the distribution
of the exceedence to a certain threshold in another distri-
bution, i.e., the tail of F(y) [18]. The CDF function of the
GPD is defined as

o= e 0
F@,M,o)(y)—{ o N S B

where £ is the shape parameter, o is the scale parameter, and
1 is the starting point of the tail, i.e. y; in this example. In
particular, the tail of the lognormal random variable Y, can
be accurately modeled by a GPD distribution with & = 0.27
and o = 3.5, which is shown in Figure 1(b).

Given that the GPD can be used to model rare event, the
remaining problems turn out to be 1) how to effectively draw
samples in the tail to model the GPD in high dimensions,
2) how to deal with the problem of multiple failure regions,
and 3) how to accurately fit the tail distribution into a GPD
distribution.

fuo(y) =
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Figure 2: The REscope framework consists of four components: presampling, parameter pruning, classifica-

tion, tail distribution estimation.

3. RARE EVENT MICROSCOPE
3.1 Algorithm overview

In this section, we present the proposed method, REscope,
to identify multiple separate failure regions in high dimen-
sional circuit simulation. REscope falls in the category of
classification based methods. The REscope framework con-
sists of four components, (1) presampling, (2) parameter
pruning, (3)classification, and (4) tail distribution estima-
tion, as shown in Fig. 2. REscope takes in the distribution
of the process variation parameters, S = {X1, Xo,..., Xn },
of a test circuit, and outputs the estimated failure probabil-
ity based on a given requirement on performance metric, i.e.
Py = P(Y > yy), where yy is the threshold that determines
circuit failure. In the remaining part of this section, we will
elaborate on the design of each component in detail.

3.2 Presampling

The purpose of presampling is to approximately sketch
the circuit behavior. Without loss of generality, we use
M (typically a few thousand) Monte Carlo samples, S =
{s1, 82, ..., Sm }, subject to the distribution of S. Next, tran-
sistor level SPICE simulation is performed to evaluate the
performance metric Y of the test circuit using these sam-
ples S. A relaxed threshold y: is chosen to determine the
tail boundary from the main PDF, and probability that a
sample falls in the tail F(y:) = P(Y > y:) is calculated.

3.3 Parameter pruning

With up-scaling the design complexity and the advanced
process technology, there are a sea of parameters in the cir-
cuit simulation. Parameter pruning, which maps the high-
dimensional circuit description to a low-dimension space,
can effectively improve the accuracy and efficiency of circuit
simulation and analysis. Existing approaches, such as PCA,
reduce the dimension by examining the correlation among
input parameters and project them to a smaller, orthogo-
nal base. However, PCA cannot help if each dimension of
the process variation parameter, X; and X;, are modeled as
mutually independent.

We leverage the ReliefF algorithm [19] to prune parame-
ters in REscope. More specifically, each parameter is ana-
lyzed in terms of how sensitive it is to cause a circuit fail-
ure. The sensitivity is quantified as a weight parameter. In
particular, for a data set S = {s1, s2, ..., sp} with M sam-
ples, where each sample s; = {z1,z2,...,xn} consists of N
variation parameters, ReliefF starts with a N-long weight
vector ,W, of zeros, and iteratively updates W. In each it-
eration, it takes a random sample s;, and finds the closest
samples (in terms of Euclidean distance) in two decision re-
gions respectively. The closest sample in the same region

is called “near-hit”, and the other one is called “near-miss”.
The weight vector is then updated as

Wi = W; + (z; — nearMissi)2 — (z; — nearHiti)2 (6)

The weight makes sense here because it increases if a feature
differs from the nearby sample in the opposite region more
than the sample in the same region, and decreases in the
reverse case. It only requires O(NMlogM) time, and is
noise-tolerant and robust to feature interactions.

Different from the general sensitivity analysis that only
looks at the overall sensitively of the performance metric to
a parameter, the ReliefF specifically looks at the sensitiv-
ity around the decision boundary of circuit pass and failure,
which yields more important information than general sen-
sitivity analysis.

3.4 Nonlinear SVM classifier

In the third step, a nonlinear classifier is adopted to iden-
tify whether a sample s; falls in the unlikely-to-fail region
or likely-to-fail region. Therefore, we can skip the unlikely-
to-fail samples and focus on the samples in the tail.
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Figure 3: Importance sampling methods on a prob-
lem with two disconnected failure regions

A typical category of approaches for failure probability
estimation is importance sampling. However, most of them
are based on mean shifting and assume that only one failure
region exists in the sample space. For example, [12] draws
samples around the boundary of the failure region. While
others, such as the HDIS [15], shifts the sample mean to
the centroid of the failure regions. The “important samples”
may easily cover all failure samples if there is only one failure
region. In reality, there might be multiple disjoint failure
regions. And the centroid of all failed samples might fall
in somewhere outside the real failure regions, as shown in
Figure 3.

A classification based approach considering the existence
of multiple failure regions is proposed in [17]. The authors



assume that the samples in different failure regions yield
different type of failures. Therefore, they applied the linear
classifier multiple times to identify different failure types in
a binary decision fashion. However, the assumption in [17]
loses generality because it assumes that samples in different
failure regions always yield different type of failures.

In REscope, we also consider a classification method to
co-recognize the multiple failure regions. Different from
[17], our method is not constrained to one failure type in
one region, and is also applicable to the case with vari-
ous failure types. Considering the intrinsic nonlinearity of
circuit behavior, we employ a nonlinear classifier to tackle
the multiple-region multiple-type failure sample classifica-
tion challenges. More specifically, we use a Gaussian radial
basis function kernel (GRBF) base support vector machine
(SVM) to train and classify samples. The reason to choose
GRBF kernel rather than linear or other polynomial kernel
is that in high-dimensional circuits, the decision boundary
between pass and failed samples is usually nonlinear. GRBF
with radial arc boundary is more capable to adapt and dis-
cover the decision boundary.

3.5 Fitting the tail distribution to GPD

By performing classification, we can efficiently collect the
likely-to-fail samples. Assuming Y, = {yp1, Yp2, ---, Ypn } are
the simulation outputs form the samples in the previous step
that satisfy ypi > y, this step approximates the distribution
of Y, to a GPD. As given in equation (5), there are only three
parameters, &, p, and o, to determine the CDF of GPD.
While in this example, only € and ¢ need to be approximate
since the parameter p is known as the start point of the tail,
y+. There are three approaches to approximate ¢ and o in the
CDF, moment matching [18], probability-weighted moment
(PWM) matching [20], and maximum likelihood estimation
(MLE) [21].

The moment matching and PWM matching only use the
first two order of moments to estimate these two parameters,
which may lead to a mismatch in high order statistics. On
the other hand, the MLE iteratively approaches the £ and &
using Newton’s method towards a maximum log likelihood
function [21]:

log L(Yy3 €, 0) = —nlog(e) = (1 =€) 3 _ = (7)

where z; = —€ M log(1 — Eypi /).

The drawback of MLE is that it may take many iterations
before the results finally converge to & and &, which max-
imize the log likelihood function [21]. In REscope, we use
PWM matching results, {o and oo, as the initial solution of
the Newton’s method. Next, MLE is applied to iteratively
approach the £ and 6. The number of iterations is reduced
because of the accurate and non-arbitrary starting point.

4. EXPERIMENT RESULTS

4.1 Charge pump circuit and experiment set-
ting

The performance of REscope is evaluated using a charge
pump (CP) circuit, which is a critical sub-circuit of the
phase-locked loop (PLL). The block diagram of a PLL is
presented in Figure 4.

As a sub-circuit of the PLL, CP adjusts the frequency
of the output clock signal, C LK., via a charge/discharge
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Figure 5: Simplified schematic of the charge pump
circuit

capacitor and voltage controlled oscillator (VCO). A simpli-
fied schematic of the charge pump consisting of two switched
current sources is illustrated in Figure 5. If the output clock
C LKt lags behind the input reference clock, CLK,.¢, the
up signal will be high and down signal will be low. The
up signal turns on the upper switch and charges the out-
put node. On the other hand, when C LK,y leads CLK .y,
the up/down signal controls the switches to generate a dis-
charge current at the output node. Finally, when CLK, .
and C LK, are synchronized in frequency and phase, both
up signal and down signal are set as low, leading to a zero
net current I+ and a constant Veirs.

The CP circuit acts as a critical module in the entire con-
trol loop. However, when there is a mismatch between tran-
sistor MP2 and MNS5 in Figure 5, the net current at the out-
put node is not zero. It could cause large fluctuation at the
control voltage, also known as “jitter”, which may critically
effect the system stability. In this work, we define a failure

as the mismatch of charge current and discharge current,

IC’harge IC’harge
Ipischarge’ IDischarge
a threshold of this performance matric.

In the experiment, we designed the CP circuit using TSMC
45nm technology and simulated it with HSPICE with BSIM4
transistor model. In each transistor, we consider 4 parame-
ters, channel-length offset (§L), channel-width offset (6W),
gate oxide thickness (to»), and threshold voltage (Vin), as
the source of process variations as suggested by the foundry.

REscope is used to evaluate the mismatch current of the
CP circuit in Figure 5. In addition, Monte Carlo (MC), sta-
tistical blockade (SB) [1] have been implemented, and the
source code of HDIS [15] was obtained from its authors for
accuracy and efficiency comparison. We evaluate the effi-
ciency by counting the total number of simulations required
to yield a stable failure rate. In REscope, we generate a
large number of MC samples and filter them by the clas-
sifier to make sure we can get enough samples in the tail.
In our implementation, REscope stops when there are 1000
samples fall on the tail. MC converges when the relative

mathematically, max( ) > 7, where 7 is



std(py)
b

standard deviation of the failure probability, o, = By

is smaller than 0.1.

4.2 Handling multiple separate failure regions

The CP is a typical circuit with multiple failure regions.
To illustrate the capability of REscope in handling multiple
failure regions, we use a simplified process variation model,
which only considers the threshold voltage (Vi) of MP2 and
MNS5 in Figure 5 as the source of process variations. When
the V4, of MND5 is lower than the nominal value and V4, of
MP2 is higher than the nominal, there will be a mismatch
as Ipischarge can be larger than Icharge, and vice verse.

In this experiment, the threshold y: is configured to ensure
a 5% failure rate. Under these configurations, the failure
regions can be clearly visualized on a 2-D space, as shown
in Figure 6(a).

| * Failure Sample Accept Sample l

0.45¢

Vth2

0.4F . . . . . ]
-0.48 -0.47 -0.46 —-0.45 -0.44 -0.43 -0.42
(a) Two separate failure regions

0.45¢

Vth2

0.4F . . . . . ]
-0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42
(b) Importance sampling region in HDIS

0.451

Vth2
*

* ‘ AT
-0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42
(c) Classification result in SB

0.45¢

Vth2

0.4}

-0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42
(d) Classification result in REscope

Figure 6: How multiple failure regions are handled
in HDIS [15], SB [16], and REscope

The importance sampling region of HDIS, along with the
classification results of SB and REscope are illustrated in
Figure 6(b), (c), and (d), respectively.

It is easy to notice that HDIS fails to effectively capture
the “important” samples, because it attempts to draw sam-
ples around the centroid of the failure region. When there
are 2 failure regions, as illustrated in Figure 6(b), however,
the centroid falls almost in the center of a success region,
which make it difficult to cover truly “important” samples.

SB adopts a linear classifier, which essentially finds a lin-
ear hyperplane separating the successful region and fail re-
gion. However, in this example, it is impossible to separate
all failed samples from the successful ones using just a linear
hyperplane. In Figure 6(c), SB draws a boundary cutting
through the successful region, which introduces a lot of over-
classified samples on the top-left sample space. Moreover, it
only covers the failed samples on the top-left corner and mis-
classifies all the failed samples on the bottom-right corner
of the sample space.

By taking advantage of the nonlinear classifier, REscope
successfully classifies all failed samples in the sample space,
which is illustrated in Figure 6(d).

4.3 Parameter pruning

In the following discussion, we model the § L, §W, t,z, and
Vin in all 27 transistors of the charge pump circuit as process
variation source, and evaluate the current mismatch.

0 20 40 60 80 100 120
Process variation parameters

Figure 7: Weight of all 108 process variations in
charge pump circuit

On this 108-dim problem, ReliefF is performed to reduce
the dimension before constructing the classifier. For each
process variation parameter, the weight is evaluated and
their weights are ranked and illustrated in Figure 7. It is
easy to notice that the maximal weight can be more than
10x greater than the minimal one.

A high number of input variables will require correspond-
ingly larger number of samples to train the classifier, which
is not efficient in practice. On the other hand, a high in-
put variable dimension with small number of samples may
fool the classifier. In practice, we normalize the weights
and setup a threshold to prune the parameters with smaller
weights than the threshold. In this example, we only kept
the first 27 parameters and used them to build the classifier.

4.4 Accuracy and Efficiency

On this 108-dim problem, REscope is compared with MC
and HDIS on efficiency and accuracy. The results are pre-
sented in Table 1. SB is excluded from the comparison be-
cause the linear classifier generated by SB accepts all the
MC samples, which makes no difference between it and MC
simulation. HDIS outputs a nearly random failure probabil-
ity with 20 thousand simulations since it fails to shift the
mean to a desired place. REscope accurately calculates the
failure probability as 2.256e-5, with only 1.05% relative error
compared with MC.

On the efficiency side, MC needs 1.4 million samples to
reach a confident estimation of the failure probability 2.279-
5, which is around 4.07 sigma. Beyond, 4.07 sigma, the
MC result may be unreliable. On the other hand, REscope
only requires 2000 samples to construct the nonlinear clas-
sifier. Next, 100,000 MC samples are generated for evalu-
ation, but only 1621 are actually simulated, including 630
over-classified samples to avoid misclassification. Therefore,
REscope achieves 389x speedup compared to MC almost
without sacrificing accuracy.

To examine how the approximation accuracy scales when
the failure probability becomes more rare, we plot the CDF
tail of mismatch current estimated by REscope in Figure
8(a), which perfectly matches to the MC result. In Figure
8(b), the fitting results are illustrated more clearly after we
represent the CDF in terms of sigma (in log scale). The



Table 1: Comparison

of the accuracy and efficiency on charge pump circuit

Monte Carlo Importance sampling | Proposed approach
(MC) (HDIS)[15] (REscope)

failure probability | 2.279e-5 (0%) 1.136e-3 2.256e-5 (+1.05%)
#sim. runs 1.4e+6 (389x) 2e+4 (5.6x) 3.6e+3 (1x)
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Figure 8: Modeling the tail of the mismatch current
distribution

REscope estimates the probability of rare event accurately
for upto 4.2 sigma, which is about 1.22e-5 in terms of proba-
bility. Beyond 4.2 sigma, MC cannot guarantee the accuracy
as only 1.4 million MC samples are available.

S. CONCLUSION

In this paper, REscope is proposed for statistical circuit
simulation with rare failure event. Given a circuit with a
large number of process variation parameters, REscope first
leverages the ReliefF algorithm to evaluate each parameter,
and prune those that have little contribution to the circuit
failure. Furthermore, we applied a nonlinear classifier which
is capable of identifying disjoint multiple failure regions. Be-
cause of the classification, the computation complexity is re-
duced by only simulating samples that are classified as likely-
to-fail samples. When sufficient samples are simulated, the
simulation results are approximated to a GPD, which is usu-
ally used model the rare event. On a 108-dimension charge
pump circuit, the proposed method outperforms the impor-
tance sampling approach and is more than 2 orders faster
than the Monte Carlo approach. Moreover, it estimates the
failure rate accurately, while importance sampling totally
fails because the failure regions are not correctly captured.

6. REFERENCES

[1] A. Singhee and R. A. Rutenbar, “Statistical blockade: very fast
statistical simulation and modeling of rare circuit events and its
application to memory design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, no. 8, pp. 1176-1189, 2009.
C. Jacoboni and P. Lugli, The Monte Carlo method for
semiconductor device simulation. Springer, 1989, vol. 3.
W. Wu, Y. Shan, X. Chen, Y. Wang, and H. Yang, “Fpga
accelerated parallel sparse matrix factorization for circuit
simulations,” in Reconfigurable Computing: Architectures,
Tools and Applications. Springer, 2011, pp. 302-315.
W. Wu, F. Gong, R. Krishnan, L. He, and H. Yu, “Exploiting
parallelism by data dependency elimination: A case study of

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

circuit simulation algorithms,”
no. 1, pp. 26-35, Feb 2013.
X. Chen, W. Wu, Y. Wang, H. Yu, and H. Yang, “An
escheduler-based data dependence analysis and task scheduling
for parallel circuit simulation,” IEEE Trans. Circuits Syst. II,
Ezp. Briefs, vol. 58, no. 10, pp. 702 —706, oct. 2011.

X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, “Asymptotic
probability extraction for nonnormal performance
distributions,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 26, no. 1, pp. 16-37,
2007.

F. Gong, H. Yu, and L. He, “Stochastic analog circuit behavior
modeling by point estimation method,” in Proceedings of the
2011 international symposium on Physical design. ACM,
2011, pp. 175-182.

R. Krishnan, W. Wu, F. Gong, and L. He, “Stochastic
behavioral modeling of analog/mixed-signal circuits by
maximizing entropy.” in ISQED, 2013, pp. 572-579.

P. Feldmann and R. W. Freund, “Efficient linear circuit
analysis by padé approximation via the lanczos process,” IEEE
Transactions on Computer-Aided Design of Integrated
Clircuits and Systems, vol. 14, no. 5, pp. 639-649, 1995.

E. Chiprout and M. Nakhla, Asymptotic waveform evaluation
and moment matching for interconnect analysis. Kluwer
Academic Publishers, 1994.

R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling
and its application to the analysis of SRAM designs in the
presence of rare failure events,” in in Proceedings of the 43rd
annual Design Automation Conference, 2006, pp. 69-72.

L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking
the simulation barrier: SRAM evaluation through norm
minimization,” in Proceedings of the 2008 IEEE/ACM
International Conference on Computer-Aided Design, ser.
ICCAD 08, 2008, pp. 322-329.

M. Qazi, M. Tikekar, L. Dolecek, D. Shah, and

A. Chandrakasan, “Loop flattening and spherical sampling:
Highly efficient model reduction techniques for SRAM yield
analysis,” in Design, Automation Test in Europe Conference
Ezhibition (DATE), 2010, 2010, pp. 801 —806.

K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, and T. Sato,
“Sequential importance sampling for low-probability and
high-dimensional SRAM yield analysis,” in IEEE/ACM
International Conference on Computer-Aided Design, 2010.
W. Wu, F. Gong, G. Chen, and L. He, “A fast and provably
bounded failure analysis of memory circuits in high
dimensions,” in 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2014, pp. 424-429.

A. Singhee and R. A. Rutenbar, “Statistical blockade: a novel
method for very fast monte carlo simulation of rare circuit
events, and its application,” in Design, Automation, and Test
in Europe, 2008, pp. 235-251.

A. Singhee, J. Wang, B. H. Calhoun, and R. A. Rutenbar,
“Recursive statistical blockade: an enhanced technique for rare

Design Test, IEEE, vol. 30,

event simulation with application to sram circuit design,” in
21st International Conference on VLSI Design. IEEE, 2008,
pp. 131-136.

J. R. Hosking and J. R. Wallis, “Parameter and quantile
estimation for the generalized pareto distribution,”
Technometrics, vol. 29, no. 3, pp. 339-349, 1987.

1. Kononenko, E. Simec, and M. Robnik—Sikonja, “Overcoming

the myopia of inductive learning algorithms with RELIEFF,”
Applied Intelligence, vol. 7, no. 1, pp. 39-55, 1997.

J. Hosking, J. R. Wallis, and E. F. Wood, “Estimation of the
generalized extreme-value distribution by the method of
probability-weighted moments,” Technometrics, vol. 27, no. 3,
pp. 251-261, 1985.

J. Hosking, “Algorithm as 215: Maximum-likelihood estimation
of the parameters of the generalized extreme-value
distribution,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 34, no. 3, pp. 301-310, 1985.



