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Abstract—Modern petroleum reservoir simulation serves as a
primary tool for quantitatively managing reservoir production
and planning new fields. It involves repeatedly solving the Ja-
cobian of a set of strong nonlinear partial differential equations
governing the mass and energy conduction and conservation.
Most of the existing reservoir simulators adopt iterative solver
with multiple stages of preconditioners, in which the incomplete
LU (ILU) factorization is an outstanding universal smoother.
However, it turns out that when the degree of freedom of
each grid grows, ILU usually becomes the bottleneck of the
solver. Moreover, ILU is difficult to parallelize due to its
inherent data dependency. In this paper, we developed a sparse
iterative solver with parallelized ILU and triangular solve using
block-wise data structure. Compared with the state of art
iterative solver on 14 industrial reservoir simulation matrices,
the proposed ILU is 5.2x faster (on average) than the state of art
iterative solver because of the block-wise data structure, which
leads to 2.2x speedup on the total solver runtime. In addition,
parallel ILU and triangular solve are developed to further
accelerate the solver. To tackle the strong data dependency in
ILU and triangular solve, we first partition the algorithm into
separated tasks and construct a data flow graph to represent
the data dependency. Then, tasks are scheduled in parallel
according to the topological order of the data flow graph. On
an 8-thread multicore architecture, we achieved another 3.6x
speedup on ILU factorization, and 3.3x on triangular solve
with good scalability.

Keywords-Iterative solver; sparse matrix; incomplete LU
factorization; Multicore architecture

I. INTRODUCTION

In the past two decades, Reservoir simulation has evolved
into a mature technology due to the advancement in the
reservoir modeling theory and computer science. Nowadays,
reservoir simulation serves as a primary tool for researchers
and engineers to improve the understanding about reservoirs,
design development plans and optimize the recovery pro-
cesses. The reservoir simulation uses a set of partial differen-
tial equations to govern material and energy conduction and
conservations. Under certain boundary and initial conditions,
these governing equations are discretized in both time and
space and then solved numerically. Due to the complicated
physical/chemical phenomena and the increasing demand of
high resolution in today’s petroleum industry, the discrete

system is usually large, sparse, and highly non-linear. In
most simulators, the system is solved by Newton’s method
[1]. The non-zero elements of the Jacobian matrix can be
packed as blocks. Each block corresponds to a grid-block
and the block size is equal to the degree of freedom (DOF) of
the grid-block. Consequently, the Jacobian matrix is stored
sparsely and block-wise in reservoir simulators.

It is well known that the reservoir equations contain
hyperbolic and nearly elliptic sub-systems [2]. The solution
of the coupled system is mainly constrained by the solution
of their elliptic (typically pressure) components. A two-stage
constrained pressure residual (CPR) preconditioning method
is the most popular approach to tackle such coupled systems
[3], [4]. The first stage, which consists of extracting and
solving the pressure subsystem, is usually considered the
most expensive part [5]. Yet there are extensive researches
into parallelizing the pressure solver [6], [7], [8]. The
second stage consists of smoothing the remaining error of
the whole solution, and is typically carried out by some
general and computational efficient preconditioners such as
incomplete LU factorization (ILU). However, when the DOF
of grid blocks grows, like what happened in compositional
models where the DOF is larger or equal to the number of
components (usually 4 to 10), the time cost on the second
stage becomes dominant, because the whole system is much
larger than the pressure sub system.

In the CPR-type solution for reservoir models with mil-
lions of grid, the sparse ILU factorization, triangular solve
together with the sparse matrix vector production (SpMV)
take a considerable amount of time. K. Stuben etc. reported
that the above three parts take 30% to 70% of the solver time
in black oil models with grid of magnitude of millions [9].
Generally, in the sequential program, these three parts take
30% to 40% of the solver time and the solver takes more
than 70% of the overall simulation time in black oil models.
Y. Zhou etc. reported that in a commotional model with 4
components, the sparse ILU factorization, triangular solve
and the SpMV parts take 49% of the solver time, and 33%
of the total simulation time [10]. The runtime of these three
parts will account for an increasing proportion as the number



of components grows. Moreover, only SpMV is known to
be suitable for parallelization, while both sparse ILU and
triangular solve are difficult to be parallelized because of
the inherent, strong data dependency in the algorithm [11].

In this paper, we develop a block-wise sparse iterative
solver, and parallelize the sparse ILU and triangular solve
on multicore architecture without altering the results of
the original sequential algorithm. By taking advantage of
the block-wise data structure in reservoir simulation, we
achieved 5.2x speedup on average on ILU and 2.2x speedup
on the total runtime over ITSOL [12], the state of art iterative
solver implemented without block-wise date structure. To
tackle the data dependency that exists in ILU or triangular
solve, we first consider it as multiple tasks and represent
the data dependency between these tasks as a data flow
graph. Next tasks in the data flow graph are partitioned
into different groups according to their earliest start time
(also following the topology of the data flow graph) and
scheduled on multicore architecture in parallel. Experiments
are performed on 14 industrial reservoir simulation matrices
with an 8-thread multicore machine. The parallel algorithm
achieved 2.3x-4.6x (3.6x on geometrical average) on ILU,
and 2.4x-3.8x speedup (3.3x on geometrical average) on tri-
angular solve. Furthermore, it also exhibits good scalability
when the number of threads and the problem size increase.

The rest of this paper is organized as follows. The back-
ground, including the characteristics of reservoir matrix and
the iterative linear solver algorithm, are reviewed in Section
II. The parallelization of sparse ILU and triangular solve are
explained in detail in Section III. Experiment results on 14
industrial examples are discussed in Section IV. This paper
is concluded in Section V.

II. BACKGROUND

A. Characteristics of reservoir matrices

The reservoir simulation equations couple multiple sets of
variable fields (e.g., the pressure field, the saturation fields,
and the solubility fields). Consequently its Jacobian matrices
naturally have block structure. The block size equals the
DOF of the grid: in black oil models, the block size is 3;
while in compositional models the block size is larger than or
equal to Nc, which is the number of components. The flow
in reservoir simulation only happens between neighbored
grids, causing the Jacobian matrix to be quite sparse with
respect to the number of blocks. It usually has only 5 to
20 blocks per row of blocks, depending on the flux stencil
we choose. Complex well models [13] are often used to
simulate well facilities. The well bores are discrete and the
number of unknowns in each well node is not equal to the
number of unknowns in each reservoir grid. Therefore the
block sizes of the reservoir-to-reservoir part, reservoir-to-
well part, well-to-reservoir part, and well-to-well part of the
Jacobian matrix are all different.

(a) Matrix generated from a struc-
tured reservoir grid with 2 wells

(b) Matrix generated from an un-
structured reservoir gird with 3
wells
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(c) A sketch map of the block structure in
reservoir simulation matrices

Figure 1. Example of reservoir matrices

Two examples of the reservoir matrices are illustrated
in Figure 1(a) and Figure 1(b). Both these two matrices
consist of 4 submatrices, which are illustrated schematically
in Figure 1(c). The granularity of the reservoir matrices are
dense data blocks with known size, as shown in Figure 1(c),
allowing algorithms to take advantage of the block-wise data
structure. On the other hand, the reservoir matrices usually
have small condition numbers, unlike the circuit matrices
which can be severely ill-conditioned because the matrix
entries scale in a very large range [14]. It is more reliable to
solve the circuit system using direct method [14], [15], [16],
[17], [18]. However, due to the good numerical stability of
the reservoir matrices, they are usually solved by iterative
methods for better efficiency.

B. Overview of the sparse iterative solver

A typical iterative solver consists of two steps, the pre-
conditioner and the iterative update. For accelerators, the
number of iterations generally increases with the increase
of condition number [11]. The goal of the preconditioning
is to reduce the condition number using a preconditioner
P. Taking the Richardson iteration [11] for solving Ax −
b = 0 as an example, without preconditioning each standard
iteration calculates

xi+1 = xi − ω(Axi − b) (1)

where ω is a scale parameter. To achieve a faster conver-
gence, a mathematical equivalent system P−1(Ax− b) = 0
is solved instead. Then each iteration is solving



xi+1 = xi − ωP−1(Axi − b) (2)

In the iterative method for a reservoir matrix, the in-
complete LU factorization (ILU) is used to calculate the
preconditioning matrix P. The ILU preconditioner factors an
original coefficient matrix A into a sparse lower triangular
matrix L, a sparse upper triangular matrix U and a residue
matrix R that satisfies certain constrains.

A = LU−R (3)

where P = A+R = LU. After that, each iteration of the
iterative update involves two major computations, the SpMV
and the triangular solve. The triangular solve is applied
because P−1 is not usually explicitly calculated due to its
high complexity. In each iteration, the triangular solve is
utilized to solve γ = P−1(Axi − b) in (2).

In detail, the sparse ILU factorization algorithm is derived
from sparse Gaussian elimination, which factors matrix A
into two triangular matrix L and U satisfying A = LU.
While the complete LU factorization keeps all the fills during
Gaussian elimination, the ILU factorization only keeps part
of them and drops certain predetermined off-diagonal fills.
Due to the dropped fills, the complexity of calculating L
and U is much smaller than a full LU factorization. On the
other hand, it sacrifices the accuracy, which is reflected in
residual matrix R in (3). There are different implementations
of ILU based on how the symbolic structure of L and U is
determined.

During the iterative update, the SpMV and the triangular
solve are preformed iteratively and to approach the accurate
solution. The triangular solve calculates x from LUx = b
by solving two triangular systems Ly = b and Ux = y. The
parallelization of SpMV can be performed straightforwardly
by mapping the computation of vector-vector production
to multiple processors, then reducing them together as the
result of SpMV. This has been extensively studied in existing
literature [19], [20], [21]. On the other hand, the speedup
of the triangular solve is not as obvious as SpMV because
of the inherent data dependency. Most of the existing ap-
proaches implement the parallel triangular solve using level
scheduling [22], [23]. However, the implementation of level
scheduling is non-trivial because the computation in trian-
gular solve is lighter weighted comparing with the thread
communication for scheduling. An inefficient implementa-
tion of triangular solve will not speedup the computation,
but slow it down by overwhelming scheduling overhead.

To figure out the hot spots of the iterative linear solver,
we profiled the runtime of solving 14 reservoir matrices and
illustrated them in Figure 2. The total runtime of solving
these 14 matrices are normalized to 1. In Figure 2, ILU
factorization takes a large portion of the total runtime, even
though it is executed only once. This is due to the high
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Figure 2. Runtime profiling on 9 reservoir matrices

complexity of the ILU algorithm itself. Apart from ILU, the
triangular solve contributes the majority of the remaining
runtime. Consequently, parallelizing the ILU factorization
and triangular solve is of utmost importance.

III. PARALLEL ILU(P) AND TRIANGULAR SOLVE

A. Symbolic analysis for preconditioner: ILU(p)

ILU is derived from sparse Gaussian elimination, and
it processes matrix A in a very similar way to the LU
factorization. The row-wise ILU factorization is presented
in Algorithm 1, while its column-wise counterpart is very
similar. In this paper, the following discussions are all based
on the row-wise representation.

Algorithm 1 Sparse incomplete LU factorization
1: for i = 0 : N − 1 do
2: for k = 0, ..., i− 1 and for (i, k) ∈ NZ(L) do
3: aik = aik/ukk;
4: for j = k + 1, ..., n and for (k, j) ∈ NZ(LU) do
5: Compute aij = aij − aik ∗ ukj ;
6: end for
7: end for
8: Assign uij = aij for (i, j) ∈ NZ(U);
9: Assign lij = aij for (i, j) ∈ NZ(L);

10: end for

Algorithm 1 involves a symbolic analysis step and a
numeric factorization step. Different implementations of ILU
depend on how the symbolic structure of L and U is
determined. The following discussions are based on the
ILU(p), which is adopted in our parallel iterative solver.

ILU(p) determines the symbolic structure of L and U
based on the level of fill (LOF), p, of each element. LOF is
attributed to all the nonzero elements that is processed by
Gaussian elimination. All nonzero elements aij originally
existing in NZ(A) are considered as LOF = 0, while aijs
that do not exist in NZ(A) are assigned LOF = ∞ initially.
As shown in line 5 of algorithm 1, the matrix entry aij is
updated according to aij = aij−aik ∗ukj . In the meantime,
the LOF of aij is also updated accordingly as follows:



LOFij = min{LOFij ,LOFik + LOFkj + 1} (4)

ILU(p) will only keep the fills whose LOF is less than
or equal to “p”. In particular, the symbolic structure of L
and U in ILU(0) will be identical to A. During the ILU
factorization, the matrix A is processed and the entry values
in L and U are calculated row by row, which correspond
to line 2-9 in Algorithm 1. This row-wise update is the
most expensive step and includes a symbolic and numeric
factorization step. Let b = A(k, :) and GU be the directed
acyclic graph of U with n nodes. An edge i → j exists in
GU when there is a nonzero entry uij in NZ(U). Apparently,
all edges are pointing from a smaller node i to a larger node
j because U is an upper triangular matrix.

Define B = {i|bi ̸= 0} and X = {i|uik ̸= 0 or uuk ̸= 0}
which represent the nonzero indices in b and the kth row
in NZ(U), respectively. Then the nonzero pattern X can be
determined by:

X = ReachGU (B, p) (5)

where ReachGU
(r, p) denotes the column index of all nodes

in graph GU with LOFk,j ≤ p reachable via paths starting
at node r. Reach(B, p) applied to a set of B is the union of
Reach(r, p) for all nodes r ∈ B.
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Figure 3. Computing X for ILU(1) starting at B using depth first search.
e.g. B = {5, 6} for column 9. Then starting a depth-first search at node 5
get ReachGU

(5, 1) = {5, 7, 9, 12} where node 8, 10, and 11 are skipped
because their LOFs are higher than 1, next ReachGU

(6, 1) = {6, 12}, so
X = {6, 5, 7, 9, 12}, which is in topological order, but not in nature order.

The reachable problem in (7) is solved by depth first
search considering the constraint of LOF. During the depth
first search, the nodes j with LOFk,j > p are skipped. Since
the depth first graph traversal produces the X according to

the topology of GU inherently, X is computed in topological
order. Once X is sorted in topological order, all the data
dependencies will be satisfied, e.g. xi must be computed
prior to xj if there is an edge from i to j in GU . The
natural order 1, 2, ..., n satisfy the requirement of topological
order, however, it takes extra time to sort the nodes in X
into natural order. Similar to Gilbert/Peierls algorithm [24]
for LU factorization, the symbolic and numeric factorization
in ILU take time proportional to the number of floating-
point operations without sorting. An example of column-
wise update is illustrated in Figure 3.

B. Parallel numeric factorization

1) Data dependency analysis: Once the symbolic struc-
ture of X in each column is determined, the numeric factor-
ization that calculates the value of entries in L and U can be
performed according to Algorithm 1. During the reservoir
simulation, the simulator solves linear problems with the
same symbolic structure for multiple times. Therefore, the
symbolic factorization in ILU(p) only needs to be performed
once, while the numeric factorization is executed repeatedly
in each Newton iteration.

During the numeric factorization, lines 2-9 of Algorithm
1 are executed repeatedly to factorize each row of matrix
A based on the predetermined NZ(LU). If there is a
nonzero element aik in NZ(L), row i will be updated by
U(k, :), which corresponds to lines 3-6. Since U(k, :) is the
factorization result of row k, the factorization of row i has
to be scheduled after row k because of the data dependency.

We may consider the factorization of each row as a task.
Then task i is dependent on task k if there is a nonzero
element lik in the ith row of matrix L, L(i, :). In particular,
if there is no nonzero element in L(i, :), task i can start
instantly. As shown in Figure 4(b), the data dependency can
be considered as a data flow graph [25], [26]. An edge
pointing from node k to node i in the data flow graph
indicates the data dependency from task i to task k, which
is corresponding to a nonzero element lik in L.

Considering the computation time of each task as the same
unit, we can define the earliest start time (EST) of task i as

EST(i) = max{−1, est(j)}+ 1 (6)

∀j that satisfies (i, j) ∈ NZ(L) and j < i.
Apparently, if there is no off-diagonal nonzero element

in L(i, :), EST(i) will be 0. As an example, we calculate
the EST for the predetermined L and U in Figure 3(b)
considering LOF(i) ≤ 1. The symbolic structure of ILU(1)
and EST are presented in Figure 4.

Moreover, the following lemma exists under the definition
of EST(i).
Lemma 1: Let S = {k1, k2, ..., km} be a set of tasks whose
EST are the same, then any two tasks in S are independent
to each other.
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Figure 4. Calculating EST from the the symbolic structure of L

Lemma 1 can be easily proved according to the definition
of EST. Assuming kj depends on the data calculated from
ki, then

EST(kj) ≥ EST(ki) + 1 (7)

satisfies. Therefore, EST(kj) and EST(ki) cannot be the
same. On the other hand, if task k1, k2, ..., km have the same
EST, they are independent to each other.

2) Hybrid parallel mode: Based on the EST, we can
consider the tasks as r + 1 clusters, S0, S1, ... , Sr, where
r is the largest EST for all tasks, and Si, i ∈ 0, 1, ..., r is
the set of tasks whose EST is i. In this subsection, we will
introduce two modes to process the tasks in parallel:

• Cluster mode: tasks are processed strictly according to
their EST. Tasks in Si+1 can only be started after all
the tasks in Si are finished.

• Pipeline mode: Tasks in with different EST can
be started simultaneously in multiple threads. These
threads communicate with each other to make sure the
required data is ready.

Since the cluster mode only process the tasks with the
same EST at one time, it is not necessary to deal with
the data dependency between tasks, which results in very
little inter-thread communication overhead. However, some
threads might be idle when there are insufficient tasks in
one cluster to keep all the thread busy. The pipeline mode
fix this problem by allowing tasks in different clusters to
be processed simultaneously. However, the communication
overhead might degrade the performance.

In the ILU application, we apply a hybrid mode, which
combines both cluster and pipeline modes. In particular,
when there are a large number of tasks in one cluster, we
apply the cluster mode. Otherwise, once the number of tasks

drops below a threshold at Sj, the pipeline mode will take
over the remaining clusters, Sj, Sj+1, ... ,Sr.

C. Parallel Triangular Solve

In terms of runtime, the triangular solve is less expensive
than full LU factorization. On the other hand, the computa-
tion granularity in triangular solver is much finer than LU
and ILU factorization.

Algorithm 2 Sparse triangular solve Ly = b

1: y = b
2: for i = 0, ..., n− 1 do
3: for j = 0, ..., i− 1 and (i, j) ∈ NZ(L) do
4: Compute yi− = lij ∗ yj ;
5: end for
6: end for

The pseudo-code of triangular solve is presented in Algo-
rithm 2. Similar to ILU algorithm, data dependency occurs
when yi is trying to access yj in line 4. Considering
the calculation of yi in lines 3-5 as task i, task i will
depend on the result of task j if (i, j) ∈ NZ(L). Just
as in ILU, the data dependency in triangular solve can
be determined from NZ(L), and the same task scheduling
techniques can be applied. However, the task in triangular
solve consists of only a few arithmetic operations, which
lead to a smaller ratio between computation and thread
communication/synchronization. Hence, the parallelization
of triangular solve was considered not efficient [16].

However, the aforementioned problems do not apply to
the iterative linear solver for reservoir simulation. First, the
triangular solve is performed repeatedly in each iteration
of the iterative update. Therefore, it accounts for a consid-
erable portion of the solver runtime, as shown in Figure 2.
Second, the granularity in the reservoir matrix is small dense
blocks with known size. Thus the computations in line 4 of
Algorithm 2 are no longer arithmetic operations, but matrix-
matrix multiplications and subtractions. Thus ratio between
computation and thread communication/synchronization is
raised in reservoir simulation applications.

Furthermore, when we schedule tasks on multiple threads,
we only use the cluster mode in the parallel triangular
solve. Therefore the communication overhead is reduced to
minimal.

IV. EXPERIMENT RESULTS

In this section, we present the benchmark results of the
parallel ILU and triangular solve on a multicore machine.

A. Experiment settings

The multicore machine we used is equipped with Intel R⃝

Core
TM

i7-3820 operating at 3.60GHz. It issue at most 8
threads simultaneously with hyper-threading.

We implemented the proposed parallel iterative solving
using block-wise data structure. The LOF of ILU is set to



Table I
COMPARISON ON THE SINGLE-THREAD RUNTIME ON MATRICES GENERATED FROM INDUSTRIAL RESERVOIR SIMULATOR

Test # of blcoks Block size # of # of ILU(1) runtime (ms) and speedup Total runtime (ms) and speedup PARDISO
Cases RRP WWP RRP WWP rows iterations ITSOL block ILU1 Speedup ITSOL block ILU1 Speedup

SPE 2k 2592 0 10 1 25920 12 440.0 87.5 5.0 660.0 158.8 4.2 1648.3
M 12 12344 59 3 4 37268 15 60.0 6.9 8.7 100.0 47.9 2.1 649.1

SPE 9k 9408 0 7 1 65856 4 610.0 128.0 4.8 1030.0 179.9 5.7 11472.0
SPE 10k 10368 0 10 1 103680 119 1820.0 327.9 5.5 2730.0 2945.3 0.9 24664.4

M LN 43679 59 3 4 131273 12 250.0 27.5 9.1 380.0 146.0 2.6 5584.1
M 50 50000 20 5 3 250060 16 1250.0 327.0 3.8 2460.0 801.9 3.1 44496.8
M 40 100000 80 4 3 400240 12 680.0 416.6 1.6 1000.0 747.0 1.3 304841.8

SPE 41k 41472 0 10 1 414720 160 7780.0 1377.5 5.6 11580.0 15838.2 0.7 495332.9
M 100 100000 20 5 3 500060 22 2730.0 669.3 4.1 5230.0 1989.5 2.6 505445.2
M LN2 260985 184 2 3 522522 31 N/A 97.0 N/A N/A 991.8 N/A 35698.2
SPE 75k 75264 0 7 1 526848 2 5240.0 1031.7 5.1 7530.0 1285.4 5.9 1235692.9
M HD2 368326 10 3 4 1105018 4 2170.0 246.1 8.8 2850.0 624.7 4.6 237800.7
M 2M 1094421 425 2 3 2190117 65 2560.0 493.8 5.2 5700.0 8141.0 0.7 N/A
M 3M 1094421 425 3 4 3284963 33 7790.0 1240.1 6.3 14780.0 9242.9 1.6 N/A
1block ILU refers to the single thread version of the proposed iterative solver with ILU

1 and the tolerance for stopping iteration is set to 1e-6. To
achieve an apple to apple comparison, we setup the latest
version of open-source iterative solver, ITSOL [12], with
the same configuration. Here the ITSOL is a variable-wise
solver without block-wise date structure. We also include the
runtime of PARDISO [27] in the experiment as a reference
of the direct solver, to confirm the superiority of iterative
methods in reservoir simulation. All the programs are com-
piled with gcc-4.6.3 and the multi-threading parallelism is
implemented based on OpenMP.

In the experiment, 14 reservoir matrices dumped from an
industrial reservoir simulator were used to evaluate the per-
formance of the proposed parallel iterative solver, especially
the ILU and triangular solver. The matrix dimension and
block size of these matrices are provided in Table I. These
matrices consist of 4 sub-matrices with different dense block
sizes as illustrated in Figure 1(c). The matrix dimensions in
Table I are defined as the number of blocks. Take the largest
matrix M 3M as an example: the top-left submatrix (RRP)
has a dimension of 1094421 in terms of 3×3 blocks, which
is 3,283,263 rows. Including the fact that there are another
1,700 rows in the bottom-right submatrix, the number of
rows in the entire M 3M matrix is as large as 3,284,963
rows.

In the following discussing, we will present the experi-
ments results in three aspects: 1) the runtime comparison of
the sequential algorithms; 2) the scalability of the parallel
algorithm; 3) the scalability of different parallel mode.

B. Results and discussions

1) Speedup due to block-wise processing: In the proposed
iterative solver, all the matrices are stored as four separated
submatrices as illustrated in Figure 1(c), while each subma-
trix is stored in block-wised compressed sparse row (BSR)
format with different block sizes.

In Table I, we first compare the ILU runtime in ITSOL
and the sequential version of the proposed solver. We can

observe a 5.2x speedup on geometric average. We can also
notice that runtime of ILU is not only related to the matrix
dimension, but also the size of the sense data block. A larger
block size means more FLOPs to process it. In particular, the
matrix M 40 and SPE 41K has similar matrix dimensions,
but it requires distinct runtime to get these to matrices
solved.

In terms of total runtime, we can observe promising
speedup over ITSOL. However, the speedup on the total
runtime is relatively smaller because we have different
implementations in the rest of the solver code. In addition,
we include the runtime of PARDISO as a reference of the
direct solver.Even though PARDISO takes advantage of the
dense data structure by forming “Supernode”, the runtime is
still prohibitively long compared with the iterative solvers.

2) Parallel runtime and scalability: Apart from the
speedup due to block-wise data structure, we obtain extra
speedup by parallelizing ILU and triangular solve. All the
runtime presented in this subsection are tested on programs
using block-wise data structure.
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Figure 5. Speedup of ILU over the sequential program

The speedup of the parallel ILU over its sequential
counterpart is presented in Figure 5. On these 14 benchmark



matrices, the 8-thread program runs 2.3x-4.6x (3.6x on
geometrical average) faster than the sequential counterpart.
In Figure 5, it is apparent that higher speedups are achieved
on larger test cases. On small matrices, such as SPE 2K,
M 12, and M LN, the speedup is less than 3x because of the
high communication/synchronization to computation ratio.
In contrast, 4.6x speedup is achieved on the largest two test
cases, M 2M and M 3M.

The speedup is also affected by the block size. Matrices
M 100 and M 40 are very close in number of blocks, but
differ in block sizes. That leads to slightly better speedup
on M 100 compared with M 40. Similarly, we notice that
M 3M achieves slightly higher speedup compared with
M 2M. This is important because there is a push to use
more complex models instead of the black oil model to
simulate realistic reservoir behaviors. More complex models
involve more variables per grid, and the block size (Nb) of
the Jacobian matrix entries grows accordingly. If the grid
size does not change, the FLOPs expended on ILU factor-
ization is proportional to Nb3, and the FLOPs expended on
triangular solve and SpMV is proportional to Nb2, while
the pressure solution stage does not change. Because our
parallel algorithms tend to get higher speedup on matrices
with larger block size, it will have better scalability on more
realistic problems.
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Figure 6. Speedup of triangular solve over the sequential program

A similar trend can be observed in the acceleration of
triangular solve, which is illustrated in Figure 6. 2.4x-3.8x
speedup (3.3x on geometrical average) is achieved on these
14 benchmark matrices. This is reasonable because the
triangular solve shares the same data dependency graph with
the ILU. The speedup on triangular solve is slightly smaller
than ILU since it is less computational intensive, which leads
to a higher communication/synchronization to computation
ratio even when we use a pure cluster mode.

3) Impacts of different parallel modes: There are multiple
modes to schedule the tasks in parallel, such as cluster
mode, pipeline mode, and hybrid mode that consists of
both cluster and pipeline mode. To understand the impact
of different parallel modes on ILU and triangular solve,

the tested the speedup of an 4-threaded program over the
sequential counterpart using all these aforementioned three
modes. The test results of ILU and triangular solve are
illustrated in Figure 7(a) and 7(b) respectively.
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Figure 7. Performance using pure cluster mode, pipeline mode, and the
hybrid mode with multi-thread

In Figure 7(b), it is obvious that the pure cluster mode
outperforms the hybrid mode on all these 14 cases. This is
reasonable because the computation load in triangular solve
is comparatively low. Hence communication/synchronization
overhead in the hybrid mode becomes dominating. There-
fore, the pure cluster mode is adopted to parallelize the
triangular solve instead of the hybrid mode.

However, on the ILU case, it is not apparent which parallel
mode is the winner. However, a closely observation reveals
that the hybrid mode is the mode option in overall. It is
slower than the cluster mode on small case, such as M 12.
Also, when the computational load of each task is heavy,
the tradeoff of leaving the thread idle becomes dominant.
That explains why the pipeline mode is the fastest one on
SPE 9k, which is consists of 10-by-10 dense blocks.

V. CONCLUSION

With the advancement of reservoir simulation techniques,
the widely used ILU and triangular solve could become
the bottleneck of the iterative solver. Moreover, the ILU
factorization and the triangular solve are difficult to par-
allelize due to inherent data dependency. In this paper,



block-wise parallel algorithms are developed for ILU and
triangular solve to accelerate the iterative linear solver. By
taking advantage of the block-wise data structure in reservoir
simulation, we achieved 5.2x speedup on ILU and 2.2x
speedup on the total runtime over ITSOL, the state of art
iterative solver implemented in variable-wise date structure.
Moreover, to unleash the computing power of the parallel
hardware, we have to tackle the strong data dependency in
ILU and triangular solve. In particular, we first partition the
algorithm into separated tasks and calculate the earliest start
time (EST) of each task according to the data dependency.
Then, three parallel modes, including the cluster mode,
the pipeline mode, and the hybrid mode, are discussed to
schedule those tasks. The hybrid mode and the pure cluster
mode are applied to ILU and triangular solve, respectively.
On 14 industrial benchmarks, we achieved 2.3x-4.6x (3.6x
on geometrical average) speedup on ILU, and 2.4x-3.8x
speedup (3.3x on geometrical average) on triangular solve
using an 8-thread multicore machine. Furthermore, good
scalability of the parallel algorithm can be observed when
the number of threads increases.
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