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ABSTRACT

Recent research has demonstrated promising results in solv-
ing constrained satisfaction problem (CSP) using D-Wave
quantum annealer. However, the embedding of the CSP suf-
fers drawbacks such as long embedding time in addition to
poor quality due to long chains that reduce the ground state
probability. To address those issues, we propose an effective
embedding technique that reduces the embedding time and
minimizes the chain length. We compared to the most recent
method published in DAC 2016. Experiments using exist-
ing D-Wave 2X quantum annealer show that the proposed
embedding technique increases the ground state probability
by 29% on average. Furthermore, to demonstrate the effi-
ciency, we embedded large problems onto a predicted C100
D-Wave Chimera architecture. Experimental results show
that our approach reduces the run-time by 3.4x on average
with reduced longest chain length.

1. INTRODUCTION

With the emergence of D-Wave quantum annealer, many
researches have proposed techniques to solve various op-
timization problems using the D-Wave, towards achieving
quantum supremacy. The D-Wave quantum annealer oper-
ates itself by finding the ground states that minimize the
system Hamiltonian, in which the optimization problem is
elaborately encoded. It comprises a superconducting sys-
tem whose Hamiltonian can be described by the Ising model

[1][2].

E(S) = Z hisi + Z JijSiSj (1)
1<i<N 1<i<j<N
| hi ‘S 2,| Jij ‘S 1,ands; € {+1, —1} (2)

As shown in Eq (1), s; is the state of a single qubit, h; is
the qubit bias and J;; is the interaction weight that acts on
two qubits. Slightly different from Ising model, quadratic
unconstrained binary optimization (QUBO) defines its vari-
able z; over {0,1}. However, the two problems are equiva-
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lent because s; and x; are linearly inter-changeable. Both h;
and J;; are programmable so that different QUBO can be
implemented. It is immediately apparent that the quantum
annealer is capable of solving any problems as long as the
problem can be represented in the form of QUBO. However,
in practice, not every QUBO problem can be directly solved
by D-Wave annealer due to the limited connectivity in the
physical architecture. Therefore, embedding the mapped
QUBO problem to the annealer’s architecture becomes a
necessary step in using D-Wave quantum annealer.

The scalability of embedding techniques is of great im-
portance, as the capacity of the D-Wave quantum annealer
exponentially increases. Many researches [3][4][5][6] have
studied a wide range of applications that can be mapped
to QUBO including machine learning, protein folding, satis-
fiability problem and trading strategy. However, only a few
researches discussed embedding techniques and those tech-
niques are not even scalable to the current generation of
D-Wave annealer when embedding certain types of QUBO
problems [7][8][9]. It is a desire to have an efficient embed-
ding technique that not only manages to handle the problem
with the size of the current architecture but is also scalable
to the future devices with much larger capacity.

Chain has been introduced to solve embedding problem
[4][5][7], which ensures the multiple qubits act as a single
one during quantum annealing. It helps to reduce the de-
gree of the vertex in the original QUBO, so that the QUBO
can be embedded into the architecture with low connectiv-
ity. Minimizing chain length is also an important objective
in developing embedding techniques, as the size of a chain
significantly impacts the performance of the quantum an-
nealer.

In this work, we focus on the embedding of constraint
satisfaction problem which is defined as finding the state
of variables that satisfy a set of constraints or limitations.
Both [5][10] proposed scalable techniques that models the
embedding as a place-and-route problem in electronic design
automation. We summarized the work flow for CSP as three
major stages: (1) local embedding, (2) constraint placement,
(3) chain routing.

Local embedding involves embedding each constraint into
a sub-graph of the architecture. [11] proposed an effective
and optimal approach to embed each individual constraint to
the quantum annealer by leveraging the satisfiability module
theory. Alternatively, [5] proposed an approach that decom-
poses a large constraint into basic logic operations so that
even a complex constraint can be locally embedded.

During placement, constraints are spread out while the



ones that share the same variables are placed close to each
other. The quality of the placement substantially affects
the subsequent routing quality and efficiency. [5] proposed
a simulated annealing based placement algorithm, whereas
[10] proposed a combined place-and-route algorithm. Both
algorithms managed to minimize the total chain length, al-
though both of them are not aimed to reduce the number
and the length of long chains.

Next, qubits that shares the same variables are connected
by chains. [5] also proposed a scalable routing algorithm by
using negotiation strategy to route all the constraints.

In this paper, we focus on improving the areas that have
been overlooked by past researches. Specifically, we develop
data structures and algorithms to optimize the chain length.
The distinguished features in our study are summarized as
follows.

e An incremental placement technique that employs win-
ner tree and look up table data structure to speed up
the cost calculation.

e An A* routing engine to accelerate the routing speed,
based on the repeated pattern in the D-Wave topology.

e A new placement cost function that shortens the longest
chain.

e A novel dynamic criticality technique to optimize the
chain length and improve the routing convergence.

e A rip-up and reroute stage to further optimize the
chain length.

To validate the effectiveness, we conducted two experi-
ments. First, we embedded CSPs onto an hypothetical C100
D-Wave architecture which is over a hundred times larger
than the latest available D-Wave annealer, experimental re-
sult shows that our approach achieves 3.4X speed-up with
reduced longest chain size. In the second experiment, we
embedded CSPs onto real D-Wave 2X quantum annealer,
result suggests that our approach increases the ground state
probability by 29% on average.

The rest of the paper is organized as follows: Section 2,
background. Section 3, technical details of the proposed
approach. Section 4, experimental results and section 5,
conclusion.

2. PRELIMINARIES
2.1 Mapping CSP to QUBO

In this section we discuss the mapping of Constraint Sat-
isfaction Problem (CSP) to QUBO problem. Practically, we
confine our discussion within the scope of CSP with finite
binary variables observing that the binary variable can be
extended to other types with proper encoding. Here, the
CSP is stated as, a set of binary variables s; € {—1,+1}
and a set of constraints, each of which contains a non-empty
set C; of variable assignment. The objective is to find an
assignment s € () C;.

[11] proposed following method to map CSP to QUBO.
First, a penalty function is constructed for each constraint:

k ifseC;

3
>k+g ifs¢Ciandg>0 ®)

Penaltyc; (s, a) = {

where s is an assignment, a represents the auxiliary vari-
ables which essentially are the don’t-care variables in the
corresponding constraint. Secondly, as a variable may be
shared by many different constraints, a chain is used to add
penalty in the QUBO if the qubits that represent the same
variable act differently in different constraints. Therefore,
the QUBO is minimized if and only if an assignment satis-
fies all constraints.

Intuitively, a QUBO problem can be represented by a
graph where each vertex represents a variable, and weights,
as the h; and J;; in the Eq (1), are assigned to each ver-
tex and edge respectively. Figure 1 shows a toy example
of a CSP mapping with two constraints, s; & s2 = s3 and
S1 P sS4 = S5.

2 sty (sa

S3 S5

Figure 1: Toy example with two constraints. Ver-
texes are the variables. Different colors indicate the
weight that is assigned to the vertexes or the edges

2.2 Challenges in Embedding

D-Wave annealer has a low connectivity. Its architecture
is realized by arranging qubits according to the Chimera
graph topology. D-Wave 2x comprises 12 by 12 cells. Each
of which consists a K4 4 bipartite graph, as shown in Figure
2. It is also noticeable that several vertexes and edges are
inactive due to manufacture defects. As a result, each indi-
vidual qubit is only able to interact with limited number of
qubits in the same and adjacent cells.

Figure 2: The D-Wave 2X Connectivity Graph

Moreover, the performance of quantum annealer is af-
fected by the embedding result. D-Wave 2X annealer per-
forms computation by quantum annealing [2], which is a
non-deterministic procedure. Since it is impossible to guar-
antee that the annealer would find the ground state in each
run, a straight forward strategy is to fire multiple runs and
select the best from a set of candidate solution. Therefore, to
assess the performance of quantum annealer, one of the most
important standard is the probability to observe the ground
state. The ground state probability depends on many fac-
tors, among which the longest chain size in the embedding



result is a major one. It is very hard to formulate the kinks
in long chains, as their dynamics may slow down and impede
the development of alignment during the transition between
the initial state and the final state[12].

In short summary, the embedding technique should be
able to efficiently handle the low connectivity architecture,
at the same time, minimizing the longest chain length.

3. EMBEDDING FLOW

In the previous studies, [10] proposed an iterative com-
bined place-and-route flow whereas [5] proposed a waterfall
flow that separates the placement and routing. In this pa-
per, we decide to use the waterfall flow for the following
reasons.

e The waterfall flow clearly segregates the duties of place-
ment and routing, hence the quality of placement and
routing can be accurately measured. Furthermore, the
result of each step also helps to fine tune the algorithm.

e The combined flow is likely to introduce instability
that leads to unpredictable result. This is because the
placement affects the routing, and in turns, the rout-
ing also affects the quality of placement, leading to a
chicken-and-the-egg problem.

e The waterfall flow supports the integration of the path
finder [13], which is a very efficient algorithm in solv-
ing the field programmable gate array (FPGA) routing
problem. It is reasonable to believe that it is also very
efficient in routing the chains, given that the routing
graph in D-Wave is much smaller than that of FPGA.

In the remaining of this section, we discuss details of the
proposed innovations in the placement and routing.

3.1 Constraint Placement

The quality of the placement greatly affects the subse-
quent routing quality. Based on our analysis in the previous
sections, there are three objectives in the placement. (1)
minimizing the total wire length, (2) minimizing those long
chains that affects the ground state probability, (3) leaving
enough space for routing.

Simulated annealing based placement has been proven to
be very effective in achieving multiple optimization objec-
tive, so we adopt simulated annealing in our embedding flow.
Algorithm 1 shows a general simulated annealing placement
algorithm. In comparison with previous researches, our in-
novations in placement include a comprehensive placement
cost function to achieve three optimization objectives, along
with it, a delicate date structure to improve the computa-
tional efficiency.

3.1.1 Placement Cost Function

The quality of placement result depends heavily on the
cost function. We propose the following cost function to
factor in the chain length minimization, as shown in Eq (4).

- ‘ bb. (1) bby (%)
Cost= 2. 4-lig aym + Gl

i€Chains

- COrit(i)  (4)

where Crit(i) = \/Chain;/Chainiongest, indicating the crit-
icality of each chain. The longer the chain, the higher its
criticality. We take the square root of the length ratio

Algorithm 1 Simulated Annealing Placement
1: M = move limit
2: T = initial temperature
3: for ¢ <0 to M do
: Generate move

Evaluate Acost
if Acost > 0 then

Accept move
else

Accept with probability P = e
10: end if
11: update T
12: end for

—kAcost
T

to emphasize the importance of those chains that close to
the longest chain, as the ratio is always smaller than one.
Sy(ny(4) is the routing supply in vertical(horizontal) direc-
tion, and ¢(i) is the coefficient for multi-fanout chains.

In D-Wave embedding flow, the routability is the key to
the success of the subsequent routing stages. Unlike place-
ment in circuit design, the routing resources per constraint
are very limited, and the situation could be even worse if
multiple constraints are placed in the same area as the con-
straint itself will consume some of routing resource. In the
proposed cost function, we model the routing resource as
the number of vertexes and edges that are available within
the chain bounding box. m is a positive number to adjust
the influence of the routing supply in the cost function and
it can be fine tuned by experiment.

3.1.2 Incremental Cost Update

Apparently, an efficient way to compute the cost of the
placement should considerably reduce the run-time in the
placement. Based on the incremental bounding box update
proposed by[14], we extend the incremental computation to
routing supply and chain criticality.

0,0 (0,0)

Figure 3: Routing Supply Update

We use a two-dimensional array to store the available
routing resource with given placement. It is straight for-
ward to use cells in the chimera graph to formulate the bins
in the grid graph. We store the number of available rout-
ing resources in the top left area of {(0,0), (¢,5)} in S(i,7),
so that we can calculate the available routing resources in
any bounding box that expands its area from (Za,ya) to
(xv, y») using the Eq (5). To incrementally update the avail-
able routing resource, we only need to update the S(i,7) in
the shading area, after the placement move is generated, as
shown in Figure 3.

S = S(xo, ) — S(Ta, yp) — S(@b,Ya) + S(@asyp)  (5)

For the chain criticality, winner tree is used to support
incremental update as shown in Figure 4. The bottom layer



stores the length of each chain, while each upper layer stores
the winners from the lower layer. By doing this, we can
update the winner caused by a single-chain-length change
with complexity of logN, where N is the number of chains.

Figure 4: Winner Tree Chain Size Update

3.2 Chain Routing

[5] proposed a chain routing algorithm based on pathfinder.

As an extension of their work, we proposed innovative meth-

ods that improve the run-time and minimize the chain length.

In the remaining of this section, we first discuss the run-
time speed-up techniques, and then present a rip-up and
reroute algorithm that aggressively minimizes the longest
chain length.

3.2.1 Routing Speed-up

We use A* to accelerate the shortest path algorithm, which
employs a heuristic cost to guide the order of vertex wave
expansion in Dijkstra shortest path algorithm. Here we use
the shortest path length as the A* heuristic cost, as it can
be conveniently calculated based on the periodic pattern in
the D-Wave Chimera graph. Eq (6) shows the shortest path
length calculation of any given vertex pair. Figure 5 shows
an example of the shortest path with given source and des-
tination vertex pair.

ShortestPath(vi,v2) = |v1z — V2| + [v1y — v2y| + &k (6)

where z,y indicate the cell coordinates and k is used to
add adjustment length if the vi,v2 are not sitting in the

counterpart location of two different cells.

3.2.2  Dynamic Criticality

We propose the dynamic criticality D.,-based negotiation
routing. Eq (7)-(9) show the cost functions for each vertex.
The terminology is similar to the pathfinder: C% is the base
cost, Cs is the congestion cost or share cost, and C}, is the
history cost and P; is the penalty factor that increases with
the routing iterations. Unlike static criticality in pathfinder,
we propose dynamic criticality to reduce the chain length
and to accelerate routing convergence.

Cy=Dcr+Cp+ (1 — Der) * (Co + Cs x P, +Cp)  (7)

LpTed = (Lc + Ld) (8)
L red

Der =1 — 2% 9

Llongest ( )

where L. is the chain length from the source vertex to the
current wave front vertex, Lq is the shortest length from the
current wave front vertex to the destination vertex, as shown
in Figure 6. The Liongest can be seen as the length budget

. XA
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Figure 5: The Shortest Path

to route the current chain, since the routing result will not
get worse if the L. is shorter than the previous longest.

Compared to [14], we also modify the main routing cost
function as the summation of the costs in order to balance
their magnitude, as shown in Eq 7. The negotiation happens
between two independent chains trying to use the same ver-
tex, and the criticality eventually decides which chain takes
the vertex and which chain should be detoured.

Future chain size using

Source to be sh b
wave front the shortest pat Target

Fr

Chain size prediction at
current wave front

Figure 6: Chain Size Prediction

A bad routing result is often caused by the under estima-
tion of the chain criticality. For example, a chain has low
criticality in the last iteration will detour significantly in the
new iteration. However, in the new iteration it may become
the longest chain because of that.

Dynamic criticality uses prediction length to project its
future criticality hence limits the chance of finding a worse
result. At the beginning of the wave front propagation, the
prediction length is short because the shortest path length
contributes to the most of the path. As the wave keep propa-
gating, the prediction length may increase due to the detour,
and consequently the D, will also increase. the increased
D, will encourage the router to use the short path rather
than detour to reduce the congestion.

3.3 Rip-up and Reroute

The negotiation based routing dose not necessarily guar-
antee the optimal routing result. At the first several iter-
ations, the vertexes in the routing graph is allowed to be
shared by different chains. Then, the overflow is gradually
solved by the increasing Cs * P;. Ideally, the critical chains
will take the shortest path, while others will be detoured.



However, if P; is not properly designed, the routing may
either too slow (P; is too small) or the negotiation is not
sufficient (P; is too large). Both scenarios will leave the
routing result sub-optimal.

To further improve the routing quality, we propose a rip-
up and reroute stage, as described in Figure 7. Because the
best routing solution is often hard to find, instead of trying
to find the best solution, our strategy is to set a goal and
then to find a solution that meets the goal.

Loop over all chains ]4—‘
Yes
h Re-route?
the Ion%est chain

Perform pathfinder A* shortest path

i [
[ .

All chains meet
the goal

Yes

{ Valid routing solution ]

Set a more stringent goal for ]

Exit sub routine ]

Figure 7: Rip-up and Reroute Flow

The rip-up and reroute starts from a valid routing result,
which means that there is no vertex or edge shared by differ-
ent chains. Then we set a limit on the longest chain length in
the next iteration based on the longest chain length in the
current iteration. Then we perform a similar negotiation-
based routing to reroute some of the chains. A chain will be
rerouted if meets the following criteria: (1) the chain uses a
overflow vertexes or edges shared by other chains. (2) the
chain violates the limit of the longest length.

At the beginning of the rip-up and reroute stage, there is
no overflow vertexes or edges, so only those chains that vio-
late the limit will be rerouted, and then some of the vertexes
and edges will become overflow because of the rerouting. In
the following iterations, the overflow will be gradually re-
solved as the penalty factor increases. Once a new result
that has no overflow and do not violate the chain length
limit is found, the negotiation routing will stop. Then, a
more stringent limit will be set based on the newly found
longest chain length and the procedures will be repeated.
The stop condition for the rip-up and reroute is either the
routing hits the iteration bounds or there is no room to im-
prove as all the long chains are already taking the shortest
path.

4. EXPERIMENTAL RESULTS

We chose CSP test cases from MCNC benchmark suite,
as each combination circuit can be seen as a CSP problem
where each constraint is a logic gate. Nevertheless, this work
can be also applied to other non-circuit based CSP where
each gate is replaced by a locally embedded constraint.

We implemented the proposed techniques in C++4, and
ran it over a Xeon-E5 2680 linux server with 64GB mem-
ory. As even the latest D-Wave device is too small, to bet-
ter present the benefit of the proposed technique, we first
conduct experiments by embedding the CSPs onto a hypo-
thetical C100 Chimera architecture and compare it against
the result from the previous research [5], which is denoted
as QSAT. Secondly, we embed the test cases to the real D-
Wave 2x quantum annealer, using the proposed techniques

in the placement and routing.

4.1 C100 Chimera

In the first experiment, we embedded the CSPs onto a
C100 Chimera architecture, which comprises 100 X 100 cells.
The characteristics of the test cases are listed in the Table
2, following logic optimization performed by ABC synthesis
tool. To accurately analyze and identify the effectiveness
of our approach, we present the experimental result from
placement and routing, respectively.

We compare the placement result in Table 2. The in-
put of CSP is an netlist that represent a set of locally em-
bedded constraints and their connections. By using our
method, the placement run-time is improved by 1.8X on
average along with reduction in the largest half perimeter
wire length (HPWL). The result suggests our approach is
much more efficient, despite an additional term in the cost
function. This is achieved because our approach works in an
incremental manner so that unnecessary and repetitive cost
re-computation can be avoided.

We also compare the routing results in Table 3. For fair
comparison, we started with the same placement result gen-
erated by the proposed placement algorithm, and compared
routing using both our proposed techniques and the tech-
nique used in QSAT. Experimental results show that our
approach greatly reduced the run-time by 1.8x to 3.3x and
meanwhile is very effective in minimizing the longest chain
length by 19% on average. We also notice that the result
varies possibly because of the connection is very different in
the original problem.

4.2 Ground State Probability Improvement

We report the performance improvement by embedding
the CSPs onto the D-Wave 2x quantum annealer in Table 1.
For each test case, we repeat the quantum annealing 10,000
times and gauge the state of the qubit. As the ground state
energy can be calculated beforehand, using the summation
of the lowest energy of each constraint and chain, we can find
the probability of the ground state by counting the number
of gauge that achieves the lowest energy. According to the
experimental result, our approach improves the ground state
probability by 29% on average.

Table 1: Embedding Experiment on D-Wave 2X

Design The Longest Chain Size Improvement
QSAT | FastEmbedding | TheLongestChain Pgs

sct 52 36 30.77% 33.41%
b9 26 19 26.92% 39.39%
cordic 37 27 27.03% 27.72%
pcler8 58 41 29.31% 39.11%
parity 29 20 31.03% 22.96%
pcle 46 34 26.09% 21.97%
cc 62 44 29.03% 27.67%
cu 32 24 25.00% 31.24%
cm85a 30 23 23.33% 26.62%
x2 23 17 26.09% 28.33%
Average 27.46% 29.84%

S. CONCLUSIONS

EDA has witnessed a great success in assisting circuit de-

sign. In this work, we demonstrate an excellent example of
using EDA techniques and philosophies to improve the per-
formance of the D-Wave quantum annealer. As an emerging
technology and a new computing paradigm, the quantum
annealing is faced with many practical limitations. We see



Table 2: Placement Experiments on Architecture with 100 x 100 Cells

Placement
Design | GateNum | ChainNum QSAT FastEmbedding Improvement
PlaceTime(S) | Max HWPL | PlaceTime(S) | Max HWPL | PlaceTime | Max HWPL

C6288 2370 2432 300.5 396 190.6 280 1.6X 29%
C5315 1775 2141 178.9 326 131.3 310 1.4X 5%
pair 1574 1918 164.1 294 99.1 213 1.7X 27%
dalu 1361 1509 118.3 149 77.1 125 1.5X 16%
frg2 1131 1421 83.8 98 54.5 81 1.5X 17%

C3540 1031 1129 73.3 162 50.3 160 1.5X 1%

i7 865 1261 63.4 60 39.8 57 1.6X 5%
x3 857 1125 49.2 91 37.7 81 1.3X 11%
apex6 786 1054 48.4 142 35.5 120 1.4X 15%

i9 736 910 41.9 120 27.0 112 1.6X 7%
Average 1.5X 13.4%

Table 3: Routing Experiments on Architecture with 100 x 100 Cells

Routing
Design QSAT FastEmbedding Improvement
LongestChain | RouteTime(S) | LongestChain | RouteTime(S) | LongestChain | RouteTime

C6288 809 140.0 625 79.8 23% 1.8X
C5315 201 56.5 171 17.1 15% 3.3X
pair 495 51.2 364 27.4 26% 1.9X
dalu 447 75.0 436 26.3 3% 2.9X
frg2 326 42.4 261 21.0 20% 2.0X
C3540 273 65.8 221 24.0 19% 2.7X
i7 169 11.1 129 5.4 24% 2.1X
x3 137 17.2 130 8.4 5% 2.1X
apex6 220 13.0 157 5.6 29% 2.3X
i9 30 15.9 22 7.1 27% 2.2X
Average 19% 2.3X

that there is a strong demand to bring EDA techniques into
the quantum computing area to address those challenges, as
many EDA techniques are known to be effective in perform-
ing optimization under the presence of practical constraints.

In the future, we will continue our effort in exploring the
new techniques to improve the performance of quantum an-
nealer in solving CSP. Some of the future directions include:
(1) performance driven constraint synthesis. (2) quantum
annealer architecture exploration.
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