Introduction to Chip-Package Co-design

Lei He, UCLA, lhe@ee.ucla.edu
Shauki Elassaad, Rio Design Automation
Outline

• Background and motivation

• Chip Package Co-design Flow

• Signal Integrity
 - Simultaneous Switching Noise

• Power Integrity
 - Plane impedance and resonance

• Conclusion
Heterogeneous Systems Integration

CMOS VLSI
- Full Custom
- RF Telemetry
- ASIC
- Embedded Core

Novel System Integration
- Human-computer interfaces
- Enhanced capabilities (e.g., smart sensors and actuators)
- High complexity (e.g., bio-complexity)

Advanced Packaging
- Seamless integration
- Embedded Passives

MEMS
- Bulk
- Surface
- Emboss
- Other

(From P. Franzon)
Connection from die to board

- Die (IO cells --> RTL routing)
- --> package (bumps --> escape routing --> balls)
- --> board
Top View of Layout

- Escape routes
- Two P/G bumps sharing a via
- Bump
- Via
- Ball/Via in one view
VLSI-Centric Design (Problematic)

- IC and package tools very separated:

 IC Physical Design

 IC Modeling/Simulation

 Package Physical Design

 Package Modeling/Simulation

 I/O Locations
 IBIS Models

From P. Franzon
On-Chip Design Concerns

Physical Concerns
- Die Netlist Connectivity (logic cells to IO cells)
- System Connectivity (IO cells to package)
- Power Network Design

Electrical Concerns
- Core Timing Constraints
- System Timing Constraints
- Power Budget
- Signal Integrity and Reliability Constraints
 - Supply voltage scaling imposes very tight noise margins on chip and package designs
 - Significant noise contribution from core switching
 - But greater on-chip exposure to package-side SSN

Supply voltage scaling imposes very tight noise margins on chip and package designs.
Significant noise contribution from core switching.
But greater on-chip exposure to package-side SSN.
Package Design Concerns

- Physical Concerns
 - Reduce Package Cost
 - Reduce Stack-up Layers
 - Optimize Decoupling Capacitance

- Electrical Concerns
 - Reduce AC Noise Effects
 - Low Impedance Power Distribution System
 - Meeting Timing Constraints
Typical Package Design Cycle

1. Package/Substrate Architecture Exploration (start ~4/5 months before Tapeout)
2. Defining Interfaces, Signals, PLL, Power, Clock, # pins, # IOs
3. Manufacturing and NRE Costs; Die, Substrate, Package
4. Floorplanning of IO/Pad/Pins; Define Netlist hierarchy/manipulations
5. Pad/package Iteration: P&R of IO/Pad cells, Pins; Pwr/gnd and inter-cell connections; PCB pin locations (x,y);
6. Package/Pad/IO Rule checking (PRC): SI, timing, clocks, IO voltages, assembly rules, special regions
7. Verify user specified requirements and rules; PCB pins, Power grid, # VSS/VDD, decoupling caps, EMI, ESD, Vias
8. Finalize IOs/Pads/Pins; Package Tapeout
Needs for Co-Design

- High-frequency Designs
 - 400 MHz buses becoming common
 - On-chip exposure to package noise
 - Simultaneous switching noise
 - Package resonance
- Tighter Turnaround Time
 - Package design convergence
 - System design convergence
- High Density Packaging
High Density Packaging Trends

• Short Term
 - Increased penetration of Direct Chip Attach (DCA) (solder balls) and Chip-On-Board (COB)
 • On-chip design and functionality suffer due to the increased scope of package-induced SSN
 • Layout difficulties due to high pin count systems
 • Routing resources becoming very tight, flip-chip escape routing is difficult

• Long Term
 - Package technology adding value to the system
 • High density, low-cost packaging
 • Meet design constraints for both SI and PI

(From P. Franzon)
Eye Diagram for LVDS with Frequency Dependent Coupled Transmission Lines

100Mbit/sec

1Gbit/sec

10Gbit/sec
A Co-Design Flow with RioMagic

CHIP Design
- Architecture Specs
- RTL, Logical FP, Synthesis
- Physical Floorplanning
- P&R, Timing, SI
- Final Routing/Timing/Buffer & Extraction
- IO/Pad/Bump: (Order, P&R, SI)
- Full chip LVS/DRC/ERC Verification

PCB/Package Design
- Design Planning
- Package/Substrate selection; Power/Thermal
- PCB Pin order, signal assignment, XY coords
- Package & PCB routing
- Substrate Extraction & Simulation
- Finalize Package Pin order, Signal Assignment
- Final Package & PCB route, extraction and ERC

RioMagic
- Exploration, Methodological, Insync Optimization
- Adhoc, in critical path, segregated
Outline

- Background and motivation
- Chip Package Co-design Flow
- Signal Integrity
 - Simultaneous Switching Noise
- Power Integrity
 - Plane impedance and resonance
- Conclusion
Chip-Package-PCB Co-optimization

Optimize by iterating on:
1. Signal pin/pad/bump location
2. # de-caps & its value & its position
3. # ground/pwr pins
4. Series resistance and its value
5. Different packages during architectural phase
6. …
Package Escape Routing

• Escape routing of IO pads imposes chip and package design constraints
IO Ring Planning

• Flip-chip Design: Area IO vs Peripheral IO
 ➢ Area IO breaks-up most current CAD tools
 ➢ Peripheral IO: cost-effective to transform from wire-bonding to FC
 ➢ Peripheral IO forms a ring
• IO Ring Planning
 ➢ IO locations (placement)
 ➢ Escape routing (escapability analysis)
 ➢ Signal IO vs PG cells/bumps (core power supply)
 ➢ Satisfy SI constraints (SSN)
• Needed early in the design to enable the chip-package co-design
 ➢ System Level Timing Constraints
 ➢ Chip Level Timing Constraints
• Placement of bump arrays
• Placement of I/O sites
• Placement of I/O cells
Example of IO placement

- Regular Bump pattern is preferred
- IO sites are decided by proximity
- IO sites are more than IO cells
- Power domains are defined
Voltage drop is given by the equation:

\[IR = J_z \rho_{m,sh} \frac{p^2}{8} \left(1 - \frac{W_p^2}{p^2}\right) \ln\left(\frac{p}{W_p}\right) \]

Given the maximum allowed IR drop, it is possible to solve for \(\rho_{m,sh} \), the required metal coverage, iteratively.

However, IR drop constraint should not be a major issue for FC design!
Wire-bounding IO Power Route

- IO P/G Cells embedded in IO Ring to feed signal IOs
- IO P/G Cells contain ESD cells
- Consumes a lot of space in Ring (constrains pad-limited designs)

Flip-chip IO Power Routes

- No P/G Cells in IO Ring
- Still Need ESD Cells
- P/G bumps cells feed IO Ring
- More Saving on Die Size (especially for pad-limited designs)
Outline

• Background and motivation

• Chip Package Co-design Flow

• Signal Integrity
 – Simultaneous Switching Noise

• Power Integrity
 – Plane impedance and resonance

• Conclusion
Simultaneous Switching Noise

- Package pins, signal traces, and stack-vias exhibit inductive effects
- Power/ground bounce effects limit the performance of design
- Noise effects become more prominent: \(\frac{L}{dI/dt} \)
 - Higher clock speed
 - More number of I/O drivers switches simultaneously

Compact RLC Model
Simultaneous Switching Noise

- SSN Issue Addressed by Signal to PG ratios (SPG) in the IO Ring
 - Accounts for package trace, termination, power and ground
 - Domain by domain: multiple-domain design is not un-usual
- SPG Estimation
 - Accurate and efficient driver model
 - Macro models: (IBIS)
 - Effective inductance modeling for signal traces and package (which yet to be designed)
 - Pre-characterized package templates
Simultaneous Switching Noise

- \(\frac{dl}{dt} = f(IV, R_{\text{term}}, VT) \)
- Effective L assumed \textit{Common Excitation} for All Ports
- SPG value assumes all drivers switch simultaneously
Design: PEEC-based characterized models are employed for SSN estimation

Verification: Detailed PEEC extracted models are employed for SSN analysis

ISQED’05
Return Path Modelling

• Needed to model $L\frac{di}{dt}$ Noise

• L is defined for a current loop

• Current distribution depends on routing path and switching pattern

• In early stages, no package routes or power planes exist, and estimated models are developed

• Rather pessimistic than optimistic

• Efficient, with reasonable accuracy
Return Path Modelling

• Loop Model: a conservative (pessimistic) model

• To build a seed IO plan

\[L_{\text{loop}} = L_s + L_g - 2L_{sg} \]

• Effective Inductance Modeling: based on early PEEC models (accurate with computation cost)

• Based on Impedance/Admittance

\[L_{\text{eff}} = \frac{1}{2\pi f \ \text{Im}(Y_{in})} \]
Simultaneous Switching Noise

More ground balls
Outline

• Background and motivation

• Chip Package Co-design Flow

• Signal Integrity
 - Simultaneous Switching Noise

• Power Integrity
 - Plane impedance and resonance

• Conclusion
Power Integrity

- Frequency domain analysis of Power Planes Impedance
 - Return Path Modelling for EMI and SSN analysis
 - EMI Analysis
 - Package Plane Resonance

- Time domain Power and Signal integrity
 - Signal Noise Analysis coupled with power plane models
 - Superposition of Power Noise on Signal Noise
 - IBIS, SPICE and PEEC models are employed
PDS: Power Distribution System

Detailed Network Modeling is needed for accurate analysis of Core and IO Power
Ideal Package Power Planes

Early Package Design Exploration

- Planes have no holes or perforations
- Perfect Microstrip or Stripline Patterns
- Impedance is well conditioned
Non-ideal Package Power Planes

Detailed Plane Modeling

- Planes are split for different voltage domains
- Planes could have any number of holes / perforations
- Microstrip or Stripline Patterns: imperfect
PDS Design

- Assign power planes in package stackup
- Assign power domains: V_{18}, V_{25}, V_{analog}, ...
- Decide via stapling
 - Improve power delivery
 - Reduce current loop and eliminate noise
- Assign P/G balls
PDS Concerns

• DC Concerns
 ➢ On-Chip IR Drop
 ➢ Not a big concern in Flip-chip Designs
 ➢ In-Package IR Drop
 ➢ Important but still very small
 ➢ In-PCB IR Drop
 ➢ Can be ignored

• AC Concerns
 ➢ Low impedance Network across a broad frequency spectrum
 ➢ Reduce inductive effective to reduce SSN
 ➢ Control Chip/Package resonance
AC-Dominant Power Plane Noise

![Graph of Vdd plane voltage showing the effect of number of chips running on the voltage stability.](image)
PDS Design

• PDS Impedance
 • Smaller Zo ⇔ larger current

\[Z_o = \frac{0.05 \times V_{dd}}{I_{transient}} \]

• PDS Bandwidth
 • Maintain Zo from 0 to fmax

• Decide on Decap Allocation
 • High speed drivers draw current from nearby decoupling capacitors
 • Decoupling capacitors reduce the size of the current loop
Chip-Package Plane Resonance

Resonances are produced due to inductance and capacitance

Resonant frequency is

\[f_{max} = \frac{1}{2\pi \sqrt{2L_{pkg} C_{pkg}}} \]

Need a set of capacitors to cover small, medium, and high frequency ranges
Power Plane Cuts
Power Plane Cuts (Island)
Power Domain Routing
Power Domain Routing
Plane Impedance
(impact of de-cap)
Conclusion

• High-speed IO signaling requires package-aware design and analysis (co-design)

• Package-aware chip IO planning improves convergence and turnaround time

• On-chip devices are increasingly exposed to package effects

• Power integrity is getting harder

• Efficient and accurate macro models are needed to enable chip-package co-design