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Electronic Systems on a Integrated Circuit (IC)?SQED
or on a Multi-Chip Module (MCM)

On-Chip Interconnect
and Substrate
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Modern electronic systems consist of several circuit componentsfor instance
digital circuits, analog RF or mixed signal circuits, RF inductors, Micro-
Electro-Mechanical resonators.

These components are assembled over a semiconductive substrate or over a
package (Multi-Chip-Module) and live inside a very complicated network of
wires.
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The designers of these Systems on Chip or Systems on Package are well aware
that the performance of their systems depend critically on what they call
“second order effects’ (e.g. capacitive coupling, inductive coupling,
electromagnetic fullwave coupling, skin effect, proximity effect, substrate
noise, package resonances.)

These second order effects can be described accurately only starting from the
underling partial differential equations (Maxwell, or Navier-stokes).



From Field Solvers

to Parameterized Model Order Reduction (PMOR).
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Field Solvers discretize
geometry and produce large
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In the previous talk we have seen how the field solver based parasitic
extraction tools can efficiently assemble a very accurate model describing the

input out behavior of the system components.

The model typically consist of a set of ordinary differential equations whose
coefficients could in general depend on layout parameters such as wire width

W and wire separation d.

The task of the Parameterized Model Order Reduction isto produce a
dynamical system model automatically, with same input out behavior but much
smaller number of ODE (e.g. 10-15), and that can still be instantiated quickly

for different values of the layout parameters W and d.
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Hereis an outline for the remaining part of thistalk.

We will first try to classify the Parameterized Model Order Reduction (PMOR)
problem.

Then we will seein asimple example how one can assemble alarge dynamical
linear system model from the output of afield solver

Finally we will present techniques for reducing the size of the model.

We will have to distinguish two important cases. the case where the system
parameters are geometrical (e.g. wire width and separation)

and the case where the parameter is frequency.
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Parameterized model order reduction. ISQED
Problem classification [Rutenbar DACO02]
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Thelevel of difficulty of a parameterized model order reduction problem can
be classified according to Rutenbar using 3 main axis:

the number of parameters
the number of equations (or size of the system)
and how linear those equations are
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A linear system isasystem for which
-if for instance | apply double the input | double the output
-if 1 sum two inputs the output is the some of their separate outputs.

However let meintroduce a further distinction WITHIN the LINEAR systems.
The coefficients of the equations of alinear system could

-either depend linearly on the parameters

-or could depend in anonlinear way on the parameters



Parameterized Model Order Reduction. iSQED
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Here is where some of the typically electronic components can be situated
according to such classification:

Linear Time Invariant

linearly non-linearly
parameterized [|| parameterized

-the systems generated by field solvers applied on interconnects are typically
linear, have avery large number of equations (or matrix size) and have a
LINEAR dependency on the parameters RF inductors.

-RF inductors, and | C packages produce similar systems but the dependency on
design parameters such as wire size and separation isNONLINEAR

-typical analog circuits such as Low Noise Amplifiers (LNA), Analog to
Digital Converters (ADC) and Local Oscillators are characterized by smaller
matrix size, large number of parameters and are NONLINEAR SYTEMS.

-Finally MicroElectroMechanical resonators are the most difficult of al: lots of
parameters, large matrices and very nonlinear systems.
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The available approaches to PMOR can be divided into 2 main classes:

-statistical data mining approaches that can handle more easily nonlinear
systems but cannot handle very large matrices

-moment matching approaches that can potentially handle much larger size
matrices
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In thistalk we will cover the moment matching approaches that are more
relevant when reducing the size of the systems produced by field solversin IC-
package codesign problems

Today’s Topic
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Let’s now see how one can assemble a dynamical linear system model from the
output of one of the field solvers described in the previous presentation



Example: PEEC Mixed Potential Integral ~ /sQED
Equation [Ruehli MTT74]
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Let for instance consider the Mixed potential Integral equation formulation
used in the Partial Element Equivalent Circuit method by Ruehli.

One can use the equation in red to capture current distribution inside the
conductor.

One can use the charge — voltage equation in blue to capture the charge
distribution on the surface of the conductors

And one can link the two imposing current conservation in the interior of the
conductors and charge conservation on the surface.

Observe that the main unknowns are the current distribution Jin the interior
and the charge density rho on the surface



PEEC Discretization Basis Functions /sQED
[Ruehli MTT74, MIT course 6.336J and 16.920J]__
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one can represent such unknowns using a collection of basis functions. For
instance one can use a collection of small thin filaments for the current and a
collection of small panelsfor the charges.

Using such basis functions and a standard Galerkin test procedure one can
transform the previous equations into a set of linear algebraic equations
representing the branch equations of an equivalent circuit where currents are

modeled by equivalent partial inductors and charges are modeled by equivalent
capacitors.



Mesh (Loop) Analysis
[Kamon Trans Packaging98]

Imposing current
conservation with
mesh (loop) analysis
(KVL)
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Finally one can impose the remaining two current and charge conservation

equations using for instance a mesh analysis approach.

In other words one can write a Kirckof Voltage Law for each mesh in the

equivalent circuit.

Using the PEEC branch equations and using simple network theory results one
can easily assemble in thisway alinear system that can be solved using for
instance Krylov subspace iterative methods combined with a fast matrix vector

product such as PFFT



:ngED

Example of Field Solver output:
current distributions on a package power grid
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In afield solver, solving the system can provide values for the currents (and
charge) distribution everywhere in the system as shown for instance in this

simulation of alarge power distribution grid on an package.



Example of a Field Solver output: fsQED
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Another possible output of afield solver comes for instance from solving the
system at several frequency points creating in this way afrequency response
plot for the same package power grid example.



From Field Solvers iSQED
to a Dynamical Linear System Model

Imposing current
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mesh (loop) analysis
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The previous slides showed typical results of afield solver type of anaysis.
However here we want to assemble a dynamical model for the system.

Firsof al instead of working with the frequency omegaw let’ sintroduce the
more general Laplace variable s=jw

Then we can identify a set of states, for instance the current in the mesh loops,
and the voltages on the surface panels



Discretization produces a HUGE “nonlinearly /sQED
parameterized” dynamical linear system [D. BMASO03]
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Multiplying out the terms and rearranging them it is easy to rewrite the systems
in terms of adynamical linear system.

Itisa“dynamical” system because please remember that sx on the left side of
the equation has the meaning in the time domain of the derivative of x:
dx/dt

Y ou can see that the two large matrices L and R describing the model:

a) can be calculated using the partial inductance and coef of potential matrices
produced by the field solver

b) have different values when the layout parameters or frequency are change

We will now discuss the reduction of the size of these matrices and will divide
the discussion in two cases

« first wewill discuss the case where the matrices do not depend only on
geometrical parameters (for instance wire width W and separation d)

» thenif timeremainswe will discuss a possible the dependency on
frequency.
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L et’s now consider the case where the model matrices depend only on
geometrical parameters.

The dependency on the parameters can be in general nonlinear. First we will
see asimple method to cast such dependency in aeasier to handle polynomial
dependency

Then we will briefly review the standard non-parameterized moment matching
reduction technique “PRIMA”

Then we extend the moment matching reduction technique to parameterized
systems

Finally we show some implementation results on modeling for instance an RF
inductor



Case 1. Capturing non-linear dependency on ’sQED
GEOMETRICAL parameters [D. BMASO03]
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The dependency of the system matrices L and R on the parameters (for
instance wire width W and separation d) can be in general nonlinear L(W,d)
and R(W,d)
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Asafirst stem we can use for instance a simple fitting approach to cast such
dependency in aeasier to handle polynomial dependency.
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Calculating Interpolation coefficients [D. BMASO03]

m E.G. for a 29 order polynomial fit: we need to
calculate 6 coefficients

m Hence we need at least 6 equations imposing the fit
in 6 test points

m However in general it is better to use more
evaluation points than the minimum.

m For instance here we used aregular grid of 9
evaluation points for different combination of
parameters. E.G.:

(W,d) = (lum,lum), (Lum,3um), (Lum,5um),
(3um,lum), (3um,3um), (3um,5um),
(5um,1um), (5um,3um), (5um,5um)
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For instance if we want to use a 2" order polynomial fit we need to calculate 6
coefficients.

therefore we need to impose at least 6 equations

but it is generally more numerically robust to impose a much larger number of
equations

and then use aleast square solveto find the best 6 coefficients.
In this example we used 9 equations obtained evaluating the large matrices
L(W,d) and R(W,d) in 9 different pointsin the design space
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Calculating Interpolation coefficients IsQED

O Use PEEC to generate system matrices L, = L(W, ,d,)
and R, = R(W, ,d,) for each of the 9 combination of
parameters in the test points
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Note that in order to calculate the large matrices L(W,d) and R(W,d) for any of
the 9 combinations of (W,d)

we can simply use nine times our PEEC field solver
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Calculating Interpolation coefficients IsQED
m Use a least square method to find the best fit for the 6
coefficients of the 2"d order polynomial matching the 9
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Finally we can write the 9 equations one after the other and collect them into a
system form.

Note that the indices (i,j) indicate the coefficient (i,j) of the matrix R(W,d)

Since the system has more equations than unknowns we can use a least square
solve algorithm (e.g. QR)



Reducing matrices’ size. ’sQED

Given alarge parameterized linear system:
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construct a reduced order system:
< with similar frequency response
« same physical properties (e.g. stability, passivity)
e small

« automatically
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Now that we have captured the dependency of the parametersin asimple
polynomial form, the second step of the procedure consists in the reduction of
the size of the matrices E.

We want to do that

- preserving the frequency response of the system for different values of the
parameters

-preserving some physical properties such as stability and passivity
-we want the produced matrices to be very small
-and we want the entire procedure to be completely automatic

The final output that we give to the user (the designer) is a small model
consisting of afew SMALL matrices.

If the user wants to instantiate a new model for his’her own chosen value of
parameters W and d he/she only

needs to multiply and sum up afew matrices of very small size
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Let’snow review briefly the standard non-parameterized moment matching
reduction technique “PRIMA”



Reducing matrices’ size. fsQED
Moment matching idea [Grimme PhD97]
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In PRIMA we have one single matrix E and parameter s.
First let’ swrite the transfer function from the input u to the state x

Let’sthen write its Taylor series expansion in the variable s around some point
in frequency (for instance here s=0)

Let’slook at what we wrote: we just wrote the state x as a linear combination
of awhole bunch of vectors

for instance the vector b, and the vector Eb and the vector E*2b and so on and
so forth...

Another way to express this concept is to say that the state x livesin the
subspace generated by those vectors.

When adding each of those vectors | add one more term of the Taylor series
expansion (also called moment) or in other words I match one more derivative

with respect to s of the frequency response (which | am showing here with
yellow circles).

If I want use only the first g=3 vectorsto write x | will match only the first 2
moments (or derivatives).



Reducing matrices’ size: ’sQED
Congruence Transformation [PRIMA TCAD98]
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substituting this change of variablesin the original system | immediately
recognize that | have not a system with a much smaller number of components
in the reduced state.

However | still have avery large number of equations.

In order to reduce the number of equations| could for instance multiply on the
left the whole system by some matrix.

PRIMA for instance uses the SAME matrix used for the change of basis.
Thisis NOT optimal in terms of accuracy

However it guarantees as we will see later that the final system is stable and
passive.

For now in this slide let’ sjust note graphically how the size of the system
matrix has been reduced by the

multiplication on both sides by matrix U (congruence transformation)
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let’ stry now to extend this approach to the parameterized cased



Parameterized moment matching fsQED
[D. TCADO4] [D. PhD04]
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We now have many parameters and many matrices.

Let’s redefine these monomial parameters with new names for ssimplicity.

We can recognize now that we have afunction dependent on many variables (the new
redefined parameters).

So we can useaMULTIVARIABLE Taylor series expansion.

If we do that in asimilar way to what we did for a single parameter in PRIMA we can
recognize

that the state x can be expressed as a linear combination of a whole bunch of vectors.

Each of these vectors will add one more term to the Taylor series expansion (that is one more
moment

or derivative with respect to some parameter).

If we want to approximate the system we can just truncate that Taylor expansion as before to
the

first few g moments. Mechanically we do that with a change of variable where the change of
basis
matrix as before has in the columnsthe first few g vectors of the subspace



(cont.)

Parameterized moment matching

fsQED
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gxq

We can now do the same steps we did before:
1) substitute the change of variables

2) and premultiply the system by the same matrix U

We notice that the size of each of the final resulting matrix is reduced to

simply gxq VERY SMALL
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PEEC Discretization Example: fsQED
On-Chip RF Inductor [D. BMASO03]

picture not to scale overall dimensions = 600um x 600um
wire thickness 1um

x100um S s

In example we constructed a model for an RF inductor that can be instantiated
instantaneously for different values of wire with W and wire separation d.
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Results: Inductance vs. frequency [D. BMASO03]
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After the parameterized model is produced we verified its accuracy by
1) instantiating it for different values of wire with and separation

2) and comparing it to field solver results run on layout constructed with those
same wire width and separation

On the left we show models instantiate with wire width 1um. on the left 5um

the red dashed lines are the result of imaginary part of the frequency response
divided by jw vs. frequency

for the reduced model size 12 instantiated for different values of wire
separation.

those lines compare quite nicely with the reference blue continuous values
produced by the field solver with matrices size 420

Worst case error on frequency position is 3%
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Results: Quality factor (Q=wL/R) vs. frequency 'SQED
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and worst case error on the magnitude of the quality factor is 4%




Open issues isQED
in the PMOR Matrix Reduction step

m Model order grows as O(p™) where p = # parameters and m =
# derivatives matched for each parameter

O however model order is linear in # of parameters when
matching only one derivative per parameter (m = 1) and
still produces good accuracy in our experiments.

O furthermore, for higher accuracy instead of increasing # of

matched derivatives, can instead match multiple points (or
combine the two approaches)
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There are still several open issues regarding this approach.
For instance if p isthe number of parameters and m is the number of
derivatives matched for each parameter

then the order of the produced reduced model grows with a nasty exponential
complexity O(p™)

Fortunately If one matches only one derivative (m=1) per parameter the order grows
only linearly with the number of parameters.

But is that enough accuracy? For some applications probably yes: you will be the judge
of that since the RF inductor example corresponds exactly to that case.

For higher accuracy, instead of matching more derivatives, one could try matching
several points
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in the PMOR non-linear parameter interpolation step
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Let’slook at another open issue.

There are two kinds of error introduced by our procedure.
The error of the first polynomial fitting step.

And the error of the actual matrix reduction step.

If welook very closely at the quality factor matching results we see that the parameterized
reduced

model match VERY well for separation values d=1um, 3um and 5um

A little lesswell instead for 2um and 4um.

Y ou may remember that the values 1um, 3um and 5um are the values we chose
to use when we did the polynomial fitting the matrices R(W,d) and L(W,d)

The error in those pointsis very small and must be due to only to the matrix reduction step
whichisthen

working very well.

Instead the error in d=2um and 4um is larger. Hence we can see that in this case
the error of the first polynomial fitting step islarger that the matrix reduction step.

In general one should try to balance the two steps and obtain similar errors in both steps for an
optimal job.
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Let’ s consider now the case where the parameter is Frequency with a bit more
attention



Distributed Linear Systems fsQED

E(s,s,,...,S,)X=hu

y=c'x

where the dependgcy on the Laplace variable s is not linear

E(s,sl,...,sp’)(:l‘,‘iE(si,...,sp)- A(S.....S,)

Examples:
ofull-wave PEEC

OPEEC using layered-media Green functions (e.g. for
handling substrate or dielectrics)

Ofrequency-dependent basis functions
Ofrequency dependent discretizations
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Distributed systems are systems whose dependency on the frequency parameter
isnot linear (or more precisely affine)

This may happens for instance

-when the field solver uses afullwave formulation

-when layered mediais treated using green functions

-when one uses higher order frequency dependent basis functions
-or when one uses afrequency dependent discretization



[Phillips96]

Polinomial interpolation for frequency fsQED

E(s)x=bu  y=c'x

m Polynomial approximation e.g. Taylor expansion, or a
polynomial interpolation for E(S)

(E, + sE, + S’E, +--- + s"E,, Jx = bu

m Convert to non-distributed model reduction problem
X=[Xx sx sx - s"X]
SEX = X + bu

m Performance: Fast and accurate in the frequency
band of interest

m Problem: Can not be used in a time domain circuit
simulator because does not guarantee stability and
passivity
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One could try to use the same “polynomial” fitting approach that we used for

geometrical parameters.
The first attempt along these lines is due to Joel Phillips.
The approach is fast an accurate in the frequency band of interest

unfortunately one the produced model is used withina TIME DOMAIN
simulator, some numerical instability problems can often occur.

Thisis due to the fact that often the models produced by polynomial fitting are

not stable nor passive



B
.. i i ISQED
Need to preserve passivity of passive interconnect

Analog or digital IP PCB, package, IC
blocks interconnects
—|D QI % =

c rawer|  Z(f) [ e

Note: pas'sive!
Hence, need to guarantee
passivity of the model
otherwise can generate
energy and the
simulation will
explode!!
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Would like to capture the
results of the accurate
interconnect field solver
analysis into a small model
for the impedance at some
ports.

Usually we are instead in producing small models of the PCB, package, and IC
interconnect wires that connect circuit components.

Such systems are intrinsically passive, hence the model we produce for them
needs to be passive as well otherwise the time domain simulation may explode

asitisclearly illustrated in the picture in the corner ©
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The Composition of Passive Models is Passive

m The composition of “stable” models is not
necessarily stable

m But the composition of “passive and stable models”
Is passive and stable.

ISQED 2005 Tutorial 1l 41

Furthermore, we would like the designers to be able to freely connect our
models in the same way they connect their actual componentsto create larger
systems.

Unfortunately the interconnection of stable models may not be guaranteed to
be stable

But fortunately the interconnection of any passive modelsis always apassive
model (and hence also stable)

Therefore it isimportant to produce models that are not only guaranteed stable
but also guaranteed passive.



- " : : isQE
Passivity condition on transfer function [Willems72]

m For systems with immittance matrix representation,
passivity is equivalent to positive-realness of the
transfer function

y(s) = H(s)u(s)
H(s) isanayticfor Re(s)> 0 «mmmm (no unstable poles)
% =H (5) for Re(s)>0 < (impulse responseisreal)
H(s) *H(s)" 2 O,for s= jW < (no negative resistors)

It means positive resistance (conductance) for any frequency.
Note: it is a global property!!!
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mathematically, for immitance systems (that is systems whose input and
outputs are currents and voltage, or the opposite)

passivity is equivalent to “positive realness of the transfer function”
or in other words
1) H(s) has no unstable polesin the right half plane

2) theimpulseresponseis“rea”, so the system isaphysical system with real
coefficients

3) therea part of the transfer function is always positive for any frequency
(or in other words the system dissipates energy at al frequencies)

Note that the most important property is the 39 and the most important part of
it isthat the real part is positive FOR ALL frequencies

so passivity isa GLOBAL property of the system.



Positive real transfer function fsQED
in the complex plane for different frequencies

Im{H (jw)}

original system H(jw)

e N
fe={ | RelH(iwy

Active | Passive region
region ' Re{H(jw)}3 0, for alfrequencies w
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One graphical way to visualize the passivity property isto draw the path of the
transfer function in the complex plain for all frequencies.

If the system is passive H(jw) will always be at |least at a distance epsilon from
the imaginary axis, completely contained in the passive right region.



Why does polynomial interpolation fail fsQED
when applied to the Laplace parameter ‘s’'?

m Although accurate in the frequency band of interest

m Polynomial interpolation is unlikely to preserve
. GLOBAL properties such as positive realness
Im{ H (jW)}because it is GLOBALLY not well-behaved

// A/original system H(jw)
~ N\ .
el ] ReH(wy

Active | Passive region
region ' Re{H(jw)}3 0, for alfrequencies w
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A polynomial fitting approach can achieve avery accurate matching in alarge
band of frequency of interest to the user.

However it can have a very very inaccurate matching for much higher
frequencies where the users THINK'S he/she does not care.

But in reality he/she MUST care, because if the matching is very inaccurate it
could potentially go for some frequency into the

active region.

In other wordsiif the system is excited by some small noise at those frequencies
it will generate lots of energy and the numerical ssmulation

can quickly become unstable.

The problem with the polynomial interpolation approach isthat it isNOT well
behaved GLOBALLY
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one solution is therefore to loot for some other interpolation that is globally
convergent.



Observation: practical systems fsQED
have some loss at all frequency

m Most systems are non-ideal i.e. contain some small
loss € atany frequency W i.e.they can be
described by strictly positive real matrices E(jw)

Im
original system E(jw)

P
] e V " Re

Active | Passive region
region ' Re{E(jw)}3 0, forallfrequencies w
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Let’ sfirst note that most practical systemsare STRICLTLY passive, meaning
that the path in the active region never touches that active region

and they are actually at |east some epsilon away from it. (on in other words
there is always some loss mechanism at any frequency).



Using global uniformly convergent fsQED
interpolants [D. DACO02] [D. PhDO04]

m If E(S) is strictly positive real, a GLOBALLY and UNIFORMLY
convergent interpolant will eventually get close enough (for a
large enough order M of the interpolant) and be positive-real

as well. M
E™(s)=a Ef(s)
Im K

original system E(jw)

reduced system E(jw)

v

—-d m I m Proof: just choose
, V """ Re| accuracy of
interpolationd

smaller than minimum
distance from
imaginary axis @

Active | Passive region
region ' Re{E(jw)}3 0, forallfrequencies w
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If we use a“globally and uniformly convergent set of basis functions phi(s)
then we can guarantee that

for ANY frequency the path of the reduced system can be restricted to a
distance deltathat we can make as small aswe

want as long as we pick enough interpolation basis functions.

well the solution to make sure we have a PASSIVE reduced systemisto make
sure we pick enough interpolation

functions such that delta < epsilon. In that case the reduced system path is
guaranteed to be never cross into the active region.



A good example of uniformly convergent interpolants: fsQED
the Laguerre basis functions [D. DACO02] [D. PhDO04]

m Consider the family of basis functions:

f (=28 - 59 s=jw; k=0L..Y¥
k gl +Sg’ ) g ey

m They form a complete, rational, orthonormal basis
over the imaginary axis which gives a uniformly
convergent interpolant

m No poles in RHP (stable)

m f,(s)=f.(S) (real time-domain representation)
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Now we need to find at least one set of globally and uniformly convergent
basis functions.

For instance the following Laguerre basis could be a good choice:

1) they are acomplete set, so they can represent any function we want

2) they arerational, so they can be manipulated easily and will produce an
easily synthesizable model

3) they are orthonormal so it will be easy to calculate the coefficients for the
interpolation using ONE single inner product

4) they have no polesin theright half place (RHP) so they areintrinsically
stable

5) they have the conjugate symmetry property so they areintrinsically
associated with a“real” time domain representation



)
Calculation of interpolation coefficients IsQED

y &t's('jk K
EM(s)=q Ef f (s)= =
(9=a Bfi(9 (=67

m Note: it is a bilinear transform that maps the Laguerre basis to

Fourier series on the unit circle.
Im{ s} /__Im\{z}
Rels \./

m Hence in practice one can use FFT to calculate the interpolation
coefficients: very efficient!

Re{ 2}

m Note: FFT coefficients typically drop quickly and the series can
be truncated to the first few M coefficients because field solver

matrices E(s) are often smooth.
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The most useful property of all isthat it is computationally very easy to
calculate the coefficients E_k for the interpol ation.

One can simply realized that the Laguerre functions are some sort of bilinear
transformation that frequencies s on an imaginary axis

into frequencies z on a unit circle.

in other words they can be interpreted as “ powers of z* and hence the
coefficients of the interpolation simply becomes

coefficients of a Discrete Fourier Transform that can be calculated in NlogN
time using an FFT.

Finally one may wonder: “what if | need avery very large number of
interpolation functions in order to get an accuracy delta

good enough to guarantee passivity 7?7’

well that could in general be possible, however if theinitial function is smooth
enough than we know from the properties

of the Fourier transforms that the Fourier coefficientswill drop very quickly
and only afew of them will be enough to get an accurate

interpolation of the smooth function.



B
Reduction procedure [D. DAC02] [D. PhD04] SQED

Matrix System
sizes order

m Start from original system described
by causal, strictly positive-real ~ 3000

matrices
E(s)x =hbu

1) Evaluate and squash them at
uniformly spaced points on the unit | _¢ ~6x64
circle using congruence
transformation which preserves
positive realness

UTE(s U, k=1,2,...,64

infinite

b,=UTb
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Let’s now summarize the main steps of the procedure

we start from the original system that is produced by afullwave or green function based field
solver.

The matrices are large e.g. 3000x3000 and the order of the system is infinite because those
matrices are frequency dependent

We can construct a change of basis matrix using for instance a multipoint scheme where each

column of U issimply the state of the system for some frequency point. (Zhenhai: you don’t
need to say this.

| wroteit here only if people ask how you can get U)

Asafirst step of the procedure we can evaluate the large system matrix at some points (e.g 64)
aong

the imaginary axis corresponding to equally spaced points on the unit circle.

using U and the congruence transformation we can reduce the size of those matrices to for
instance 6x6.

The order of the system is now 6x64 since we have powers of z up to order 64.



)
Reduction procedure IsQED
Matrix | System
sizes |order
3) Calculate first few (e.g 5) FFT of the
reduced system matrix coefficient 6 6x5
7 4 N\
€ ~ U
& EZ (x=hu
e=0 u
4) Introduce extended state and realize a
single matrix discrete time system 6x5 6x5
X=[x zx z°x --- Z"¥]
ZEX = AX +bu
5) Transform to continuous time 6x5 6x5
sEX=AX+hbu
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We can now calculate the FFT coefficients of those 64 small matrices.
The FFT coefficients will be some other 6x6 matrices.
Since they drop very quickly we can use maybe only the first 5 of them.

We have now obtained a reduced system with matrices of size 6 and the total
order is 6x5

since there are powers of z up to 5.
Thefinal steps4) and 5) are ssimple algebraic steps where we substitute back
sfor z and we obtain afinal system in the variable s of order 30

Details of all this can befound in [Daniel DACO2 and in the PhD thesis Daniel
PhD04]
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let’slook how well it works on 2 wires over a multichip module package using
fullwave and green function field solver



An implementation example:
Two wires on a MCM package [D. DACO02]

package

m Discretize Maxwell equations in integral form using
PEEC

[ sL (w.d,s)- R(w.,d,s) ] x=b u

m NOTE: system matrices are frequency dependent
because the substrate is handled by layered Green
functions
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let’slook how well it works on 2 wires over a multichip module package using
fullwave and green function field solver

in this example the matrices L(W,d,s) and R(W,d,s) are frequency dependent
because we used green functions to capture the package substrate



An implementation example: ’sQED
Two wires on a MCM package

FFT coefficients of L (s)

105 | ;
[ A
106 | Py |
: 'l"lll'.l ‘--1-‘--.._ __.:
10'7 \{E | \ ‘“_f”fﬂ-_r_ 1
1085 | V | %;EE!!.!_EHIIEIIIIF}’E\:..-:-J?“IIIII+!!Il"“lllli
0 10 20 30 40 50 60
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Hereisaplot of some of the FFT coefficients of L(S)

you can see that, as promised the coefficients drop by 3 orders of magnitude
after they first 5

thisis because typically the partial inductance and coefficient of potentialsin
L (s) have a smooth dependency on frequency



An implementation example: ’sQED
Two wires on a MCM package

L (s) reconstructed from first 5 out of 64 FFT coefficients
and compared to original L (9)

nH Real part | Imaginary part

el H

© P N W~ O

0O 10 20 30 40 50 60
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Asaproof of the previous observation,

if we use only those first 5 fft coefficients to reconstruct the coefficients of L(s)
we see quite agood matching

(compare blue circles with straight red line)



An implementation example: fsQED
Two wires on a MCM package
m Real part of frequency « Inductive part of
response frequency response
x10* Ohm nH
5, —— original system 3000 distrib
| O reduced system 30 5
4
4
3
3
2 2 original system
. ' © reduced system _
106 107 108 10° 1010 106 10/ 108 10° 100
frequency frequency
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finally the overall transfer function of the reduced system of size 30 in red and
the original system size 3000 match quite nicely

both in the real and in the imaginary part



Open issues for distributed systems ’sQED

m Guaranteeing positive realness relies on accuracy of the
uniform interpolant. Hence if the matrices are NOT
smooth, we might need a large order of the interpolant.

oworking on internal matrices might give smoother matrices

m Laguerre basis functions are an efficient choice since
once can use FFT to calculate interpolation coeff.
OHowever equally spaced points on the unit circle
correspond to non-equally spaced points on the imaginary
axis accumulating around a reference center frequency.
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There are severa open issues in this approach.

For instance, let me repeat that we guarantee passivity by relying on accuracy
of aglobally convergent set of basis functions (e.g. Laguerre)

That can be achieved for smooth functions by few Interpolants.

But other formulations may not have smooth frequency dependency in their
matrices and in that case we would need many more fft coefficients.

Another issue comes from the observation that the equally spaced points on the
unit circle do not correspond to equally spaced points

the imaginary frequency axis. This might be desirable for some applications
but not for others.



Conclusions fsQED

m From Field Solvers to large Non-Linearly
Parameterized dynamical models of interconnect or
RF inductors

m Model Reduction for Non-Linear dependency on
geometrical parameters:

Ocan use simple polynomial interpolation
omoment matching and congruence transformation
Oe.g. RF inductor (no substrate)

m Model Reduction for Non-linear dependency in ‘s’
(distributed systems):
DOe.g. full-wave, substrate layered green functions,
high order basis functions

Ocan use globally convergent interpolant implemented
with FFT
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In conclusion in this 3 part of this tutorial we have shown an example of how
one can construct large non-linearly parameterized dynamical models from the
output of field solver based parasitic extractors such as PEEC.

The non-linear dependency when the parameters are geometrical can be
handled using a simple polynomial interpolation approach

combined with a moment matching congruence transformation. We have
shown an RF inductor example where an

EMQS PEEC field solver and the substrate was neglected so that the system
matrices are not frequency dependent

Finally we have seen that if one uses fullwave solvers or green functions, the
system matrices may be frequency dependent

and in that case one cannot use a simple polynomial interpolation becauseit is
NOT globally convergent and it does not guarantee passivity.

For passivity one could use instead Laguerre basis that are globally convergent
and their coefficients can be efficiently calculated using

asimple FFT.
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