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Modern electronic systems consist of several circuit components for instance 
digital circuits, analog RF or mixed signal circuits, RF inductors, Micro-
Electro-Mechanical resonators.

These components are assembled over a semiconductive substrate or over a 
package (Multi-Chip-Module)  and live inside a very complicated network of 
wires.
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The designers of these Systems on Chip or Systems on Package are well aware 
that the performance of their systems depend critically on what they call 
“second order effects” (e.g. capacitive coupling, inductive coupling, 
electromagnetic fullwave coupling, skin effect, proximity effect, substrate 
noise, package resonances.)

These second order effects can be described accurately only starting from the 
underling partial differential equations (Maxwell, or Navier-stokes).
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Field Solvers discretize Field Solvers discretize 
geometry and produce large geometry and produce large 
systemssystems

PMOR produces a dynamical model: PMOR produces a dynamical model: 
–– automaticallyautomatically
–– match port impedance match port impedance 
–– small (10small (10--15 ODEs)15 ODEs)

In the previous talk we have seen how the field solver based parasitic 
extraction tools can efficiently assemble a very accurate model describing the 
input out behavior of the system components.

The model typically consist of a set of ordinary differential equations whose 
coefficients could in general depend on layout parameters such as wire width 
W and wire separation d.

The task of the Parameterized Model Order Reduction is to produce a 
dynamical system model automatically, with same input out behavior but much 
smaller number of ODE (e.g. 10-15), and that can still be instantiated quickly 
for different values of the layout parameters W and d.
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OutlineOutline

n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters

n Case 2: Model Reduction with Frequency Parameter

n Conclusions

Here is an outline for the remaining part of this talk.

We will first try to classify the Parameterized Model Order Reduction (PMOR) 
problem.

Then we will see in a simple example how one can assemble a large dynamical 
linear system model from the output of a field solver

Finally we will present techniques for reducing the size of the model.

We will have to distinguish two important cases: the case where the system 
parameters are geometrical (e.g. wire width and separation)

and the case where the parameter is frequency.
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Parameterized model order reduction.Parameterized model order reduction.
Problem classification [Rutenbar DAC02]Problem classification [Rutenbar DAC02]
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The level of difficulty of a parameterized model order reduction problem can 
be classified according to Rutenbar using 3 main axis:

the number of parameters 

the number of equations (or size of the system)

and how linear those equations are
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Parameterized Model Order ReductionParameterized Model Order Reduction
Problem Classification [D. APS04]Problem Classification [D. APS04]
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A linear system is a system for which

-if for instance I apply double the input I double the output

-if I sum two inputs the output is the some of their separate outputs.

However let me introduce a further distinction WITHIN the LINEAR systems.

The coefficients of the equations of a linear system could 

-either depend linearly on the parameters

-or could depend in a nonlinear way on the parameters
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Parameterized Model Order Reduction.Parameterized Model Order Reduction.
ApplicationsApplications

interconnect
RF inductors

matrix 
size

# parameters

linearity

linearly
parameterized

non-linearly 
parameterized

Linear Time Invariant Non-Linear Systems

LOLNA ADC

MEMS

Packages

Here is where some of the typically electronic components can be situated 
according to such classification:

-the systems generated by field solvers applied on interconnects are typically 
linear, have a very large number of equations (or matrix size) and have a 
LINEAR dependency on the parameters RF inductors.

-RF inductors, and IC packages produce similar systems but the dependency on 
design parameters such as wire size and separation is NONLINEAR

-typical analog circuits such as Low Noise Amplifiers (LNA), Analog to 
Digital Converters (ADC) and Local Oscillators are characterized by smaller 
matrix size, large number of parameters and are NONLINEAR SYTEMS.

-Finally MicroElectroMechanical resonators are the most difficult of all: lots of 
parameters, large matrices and very nonlinear systems. 
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Parameterized Model Order Reduction.Parameterized Model Order Reduction.
Previous workPrevious work

interconnect
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linearity
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statistical data miningLiu DAC99
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Non-Linear Systems

MEMS

Packages

RF inductors

The available approaches to PMOR can be divided into 2 main classes:

-statistical data mining approaches that can handle more easily nonlinear 
systems but cannot handle very large matrices

-moment matching approaches that can potentially handle much larger size 
matrices
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linearly
parameterized

Parameterized Model Order ReductionParameterized Model Order Reduction
Today’s TopicToday’s Topic
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In this talk we will cover the moment matching approaches that are more 
relevant when reducing the size of the systems produced by field solvers in IC-
package codesign problems
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OutlineOutline

n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters

n Case 2: Model Reduction with Frequency Parameter

n Conclusions

Let’s now see how one can assemble a dynamical linear system model from the 
output of one of the field solvers described in the previous presentation
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Example: PEEC Mixed Potential Integral Example: PEEC Mixed Potential Integral 
Equation [Equation [RuehliRuehli MTT74]MTT74]
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Let for instance consider the Mixed potential Integral equation formulation 
used in the Partial Element Equivalent Circuit method by Ruehli.

One can use the equation in red to capture current distribution inside the 
conductor.

One can use the charge – voltage equation in blue to capture the charge 
distribution on the surface of the conductors

And one can link the two imposing current conservation in the interior of the 
conductors and charge conservation on the surface.

Observe that the main unknowns are the current distribution J in the interior 
and the charge density rho on the surface
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PEEC Discretization Basis Functions PEEC Discretization Basis Functions 
[Ruehli MTT74, MIT course 6.336J and 16.920J][Ruehli MTT74, MIT course 6.336J and 16.920J]

n PEEC discretizes volumes in short thin filaments, small 
surface panels

thin volume thin volume 
filamentsfilaments
with constant with constant 
currentcurrent

small surface small surface 
panelspanels
with constant with constant 
chargecharge

•• PEEC discretization gives branch equations:PEEC discretization gives branch equations:
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one can represent such unknowns using a collection of basis functions. For 
instance one can use a collection of small thin filaments for the current and a 
collection of small panels for the charges.

Using such basis functions and a standard Galerkin test procedure one can 
transform the previous equations into a set of linear algebraic equations 
representing the branch equations of an equivalent circuit where currents are 
modeled by equivalent partial inductors and charges are modeled by equivalent 
capacitors.
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Mesh (Loop) Analysis Mesh (Loop) Analysis 
[Kamon Trans Packaging98][Kamon Trans Packaging98]

Imposing current Imposing current 
conservation with conservation with 
mesh (loop) analysis mesh (loop) analysis 
(KVL)(KVL)
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Finally one can impose the remaining two current and charge conservation 
equations using for instance a mesh analysis approach.

In other words one can write a Kirckof Voltage Law for each mesh in the 
equivalent circuit.

Using the PEEC branch equations and using simple network theory results one 
can easily assemble in this way a linear system that can be solved using for 
instance Krylov subspace iterative methods combined with a fast matrix vector 
product such as PFFT
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Example of Field Solver output: Example of Field Solver output: 
current distributions on a package power gridcurrent distributions on a package power grid

input terminals

In a field solver, solving the system can provide values for the currents (and 
charge) distribution everywhere in the system as shown for instance in this 
simulation of a large power distribution grid on an package.
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Example of a Field Solver output: Example of a Field Solver output: 
package powergrid admittance amplitudepackage powergrid admittance amplitude

*   3 proximity templates per cross-section
- 20 non-uniform thin filaments per cross-section

Another possible output of a field solver comes for instance from solving the 
system at several frequency points creating in this way a frequency response 
plot for the same package power grid example.
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From Field Solvers From Field Solvers 
to a Dynamical Linear System Modelto a Dynamical Linear System Model
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Imposing current Imposing current 
conservation with conservation with 
mesh (loop) analysis mesh (loop) analysis 
(KVL)(KVL)

The previous slides showed typical results of a field solver type of analysis. 
However here we want to assemble a dynamical model for the system. 

Firs of all instead of working with the frequency omega w let’s introduce the 
more general Laplace variable s=jw

Then we can identify a set of states, for instance the current in the mesh loops, 
and the voltages on the surface panels
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Discretization produces a HUGE “nonlinearly Discretization produces a HUGE “nonlinearly 
parameterized” dynamical linear system [D. BMAS03]parameterized” dynamical linear system [D. BMAS03]

thin volume filamentsthin volume filaments
with constant currentwith constant current

small surface panelssmall surface panels
with constant chargewith constant charge
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Multiplying out the terms and rearranging them it is easy to rewrite the systems 
in terms of a dynamical linear system. 

It is a “dynamical” system because please remember that  sx on the left side of 
the equation has the meaning in the time domain of the derivative of x:   
dx/dt

You can see that the two large matrices L and R describing the model:

a) can be calculated using the partial inductance and coef of potential matrices 
produced by the field solver

b) have different values when the layout parameters or frequency are change

We will now discuss the reduction of the size of these matrices and will divide 
the discussion in two cases

• first we will discuss the case where the matrices do not depend only on 
geometrical parameters (for instance wire width W and separation d)

• then if time remains we will discuss a possible the dependency on 
frequency.
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OutlineOutline

n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters
o Polynomial Interpolation
o Moment Matching (non-parameterized: PRIMA)
o Moment Matching (parameterized)
o Example RF inductor

n Case 2: Model Reduction with Frequency Parameter

n Conclusions

Let’s now consider the case where the model matrices depend only on 
geometrical parameters.

The dependency on the parameters can be in general nonlinear. First we will 
see a simple method to cast such dependency in a easier to handle polynomial 
dependency

Then we will briefly review the standard non-parameterized moment matching 
reduction technique “PRIMA”

Then we extend the moment matching reduction technique to parameterized 
systems

Finally we show some implementation results on modeling for instance an RF 
inductor
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Case 1. Capturing nonCase 1. Capturing non--linear dependency on linear dependency on 
GEOMETRICAL parameters [D. BMAS03]GEOMETRICAL parameters [D. BMAS03]

n Fit a low order polynomial (e.g. quadratic) to the field 
solver matrices R(W,d) and L(W,d)
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The dependency of the system matrices L and R on the parameters (for 
instance wire width W and separation d) can be in general nonlinear L(W,d) 
and R(W,d)

As a first stem we can use for instance a simple fitting approach to cast such 
dependency in a easier to handle polynomial dependency.
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Calculating Interpolation coefficients [D. BMAS03] Calculating Interpolation coefficients [D. BMAS03] 

n E.G. for a 2nd order polynomial fit:  we need to 
calculate 6 coefficients

n Hence we need at least 6 equations imposing the fit 
in 6 test points

n However in general it is better to use more 
evaluation points than the minimum.

n For instance here we used a regular grid of 9 
evaluation points for different combination of 
parameters. E.G.:
(W,d) = (1um,1um), (1um,3um), (1um,5um),

(3um,1um), (3um,3um), (3um,5um),
(5um,1um), (5um,3um), (5um,5um)

For instance if we want to use a 2nd order polynomial fit we need to calculate 6 
coefficients. 

therefore we need to impose at least 6 equations

but it is generally more numerically robust to impose a much larger number of 
equations

and then use a least square solve to find the best 6 coefficients.

In this example we used 9 equations obtained evaluating the large matrices

L(W,d) and R(W,d) in 9 different points in the design space
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Calculating Interpolation coefficientsCalculating Interpolation coefficients

o Use PEEC to generate system matrices Lk = L(Wk ,dk)
and Rk = R(Wk ,dk) for each of the 9 combination of 
parameters in the test points

Lk = L(Wk ,dk) Rk = R(Wk ,dk)
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Note that in order to calculate the large matrices L(W,d) and R(W,d) for any of 
the 9 combinations of (W,d)

we can simply use nine times our PEEC field solver 
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Calculating Interpolation coefficientsCalculating Interpolation coefficients

n Use a least square method to find the best fit for the 6 
coefficients of the 2nd order polynomial matching the 9 
test grid points
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Finally we can write the 9 equations one after the other and collect them into a 
system form.

Note that the indices (i,j) indicate the coefficient (i,j) of the matrix R(W,d)

Since the system has more equations than unknowns we can use a least square 
solve algorithm (e.g. QR)
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Reducing matrices’ size.Reducing matrices’ size.

Given a large parameterized linear system:Given a large parameterized linear system:

construct a reduced order system:construct a reduced order system:
•• with similar frequency responsewith similar frequency response
•• same physical properties (e.g. stability, passivity)same physical properties (e.g. stability, passivity)
•• smallsmall

•• automaticallyautomatically
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Now that we have captured the dependency of the parameters in a simple 
polynomial form, the second step of the procedure consists in the reduction of 
the size of the matrices E.

We want to do that 

- preserving the frequency response of the system for different values of the 
parameters

-preserving some physical properties such as stability and passivity

-we want the produced matrices to be very small

-and we want the entire procedure to be completely automatic

The final output that we give to the user (the designer) is a small model 
consisting of a few SMALL matrices.

If the user wants to instantiate a new model for his/her own chosen value of 
parameters W and d he/she only

needs to multiply and sum up a few matrices of very small size
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n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters
o Polynomial Interpolation
o Moment Matching (non-parameterized: PRIMA)
o Moment Matching (parameterized)
o Example RF inductor

n Case 2: Model Reduction with Frequency Parameter

n Conclusions

Let’s now review briefly the standard non-parameterized moment matching 
reduction technique “PRIMA”
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ω
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( )Ĥ s

Taylor series expansion:
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Reducing matrices’ size.Reducing matrices’ size.
Moment matching idea [Grimme PhD97]Moment matching idea [Grimme PhD97]
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In PRIMA we have one single matrix E and parameter s.

First let’s write the transfer function from the input u to the state x

Let’s then write its Taylor series expansion in the variable s around some point 
in frequency (for instance here s=0)

Let’s look at what we wrote: we just wrote the state x as a linear combination 
of a whole bunch of vectors

for instance the vector b, and the vector Eb and the vector E^2b and so on and 
so forth…

Another way to express this concept is to say that the state x lives in the 
subspace generated by those vectors.

When adding each of those vectors I add one more term of the Taylor series 
expansion (also called moment) or in other words I match one more derivative 
with respect to s of the frequency response (which I am showing here with 
yellow circles).

If I want use only the first q=3 vectors to write x I will match only the first 2 
moments (or derivatives).
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Reducing matrices’ size: Reducing matrices’ size: 
Congruence Transformation [PRIMA TCAD98]Congruence Transformation [PRIMA TCAD98]

nxnnxn
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nxqnxq

qU xs x T
qU bu
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qUx̂ +x̂E

E
qxqqxq

Ê =s T
qU bux̂ +x̂

substituting this change of variables in the original system I immediately 
recognize that I have not a system with a much smaller number of components 
in the reduced state.

However I still have a very large number of equations.

In order to reduce the number of equations I could for instance multiply on the 
left the whole system by some matrix.

PRIMA for instance uses the SAME matrix used for the change of basis. 

This is NOT optimal in terms of accuracy

However it guarantees as we will see later that the final system is stable and 
passive.

For now in this slide let’s just note graphically how the size of the system 
matrix has been reduced by the

multiplication on both sides by matrix U (congruence transformation)
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n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters
o Polynomial Interpolation
o Moment Matching (non-parameterized: PRIMA)
o Moment Matching (parameterized)
o Example RF inductor

n Case 2: Model Reduction with Frequency Parameter

n Conclusions

let’s try now to extend this approach to the parameterized cased
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Parameterized moment matching Parameterized moment matching 
[D. TCAD04] [D. PhD04][D. TCAD04] [D. PhD04]
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Once again change basis:Once again change basis:
oo use first few vectors of the use first few vectors of the 

Taylor expansion,Taylor expansion,
oo matching first few matching first few 

derivatives with respect to derivatives with respect to 
each parametereach parameter

We now have many parameters and many matrices.

Let’s redefine these monomial parameters with new names for simplicity.

We can recognize now that we have a function dependent on many variables (the new 
redefined parameters).

So we can use a MULTIVARIABLE Taylor series expansion.

If we do that in a similar way to what we did for a single parameter in PRIMA we can 
recognize

that the state x can be expressed as a linear combination of a whole bunch of vectors.

Each of these vectors will add one more term to the Taylor series expansion (that is one more 
moment

or derivative with respect to some parameter).

If we want to approximate the system we can just truncate that Taylor expansion as before to 
the

first few q moments. Mechanically we do that with a change of variable where the change of 
basis

matrix as before has in the columns the first few q vectors of the subspace
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Congruence transformations on each of the matrices
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Parameterized moment matching Parameterized moment matching 
(cont.)(cont.)

We can now do the same steps we did before:

1) substitute the change of variables 

2) and premultiply the system by the same matrix U

We notice that the size of each of the final resulting matrix is reduced to 
simply qxq VERY SMALL
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n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters
o Polynomial Interpolation
o Moment Matching (non-parameterized: PRIMA)
o Moment Matching (parameterized)
o Example RF inductor

n Case 2: Model Reduction with Frequency Parameter

n Conclusions



32ISQED 2005 Tutorial II

PEEC Discretization Example: PEEC Discretization Example: 
OnOn--Chip RF Inductor [D. BMAS03]Chip RF Inductor [D. BMAS03]

x100um

x100um

wire separation d = 1um-5um
wire width W = 1um-5um

overall dimensions = 600um x 600um
wire thickness 1um

picture not to scale

W

d

In example we constructed a model for an RF inductor that can be instantiated 
instantaneously for different values of wire with W and wire separation d. 
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Results: Inductance vs. frequency [D. BMAS03]Results: Inductance vs. frequency [D. BMAS03]

frequency [ x10GHz ]

Wire width = 5um
separation = 1um, 2um, 3um, 4um, 5um

frequency [ x10GHz ]

Wire width = 1um
separation = 1um, 2um, 3um, 4um, 5um

L L
__ original system (order 420)
--- reduced model (order 12)

__ original system (order 420)
--- reduced model (order 12)

Worst case error
in resonance position = 3%

After the parameterized model is produced we verified its accuracy by

1) instantiating it for different values of wire with and separation

2) and comparing it to field solver results run on layout constructed with those 
same wire width and separation

On the left we show models instantiate with wire width 1um. on the left 5um

the red dashed lines are the result of imaginary part of the frequency response 
divided by jw   vs. frequency

for the reduced model size 12 instantiated for different values of wire 
separation.

those lines compare quite nicely with the reference blue continuous values 
produced by the field solver with matrices size 420

Worst case error on frequency position is 3%
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Results: Quality factor (Q=wL/R) vs. frequencyResults: Quality factor (Q=wL/R) vs. frequency

Wire width = 1um
separation = 1um, 2um, 3um, 4um, 5um

Wire width = 5um
separation = 1um, 2um, 3um, 4um, 5um

frequency [ x10GHz ]frequency [ x10GHz ]

Worst case error
in amplitude = 4%

__ original system (order 420)
--- reduced model (order 12)

__ original system (order 420)
--- reduced model (order 12) 

Q Q

and worst case error on the magnitude of the quality factor is 4%
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Open issues Open issues 
in the PMOR Matrix Reduction stepin the PMOR Matrix Reduction step

n Model order grows as O(pm) where p = # parameters and m = 
# derivatives matched for each parameter
o however model order is linear in # of parameters when 

matching only one derivative per parameter (m = 1) and 
still produces good accuracy in our experiments.

o furthermore, for higher accuracy instead of increasing # of 
matched derivatives, can instead match multiple points (or 
combine the two approaches) 

W or d

There are still several open issues regarding this approach.

For instance if p is the number of parameters and m is the number of 
derivatives matched for each parameter 

then the order of the produced reduced model grows with a nasty exponential 
complexity O(pm)

Fortunately If one matches only one derivative (m=1) per parameter the order grows 
only linearly with the number of parameters.

But is that enough accuracy? For some applications probably yes: you will be the judge 
of that since the RF inductor example corresponds exactly to that case.

For higher accuracy, instead of matching more derivatives, one could try matching 
several points
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Open issues Open issues 
in the PMOR nonin the PMOR non--linear parameter interpolation steplinear parameter interpolation step

Wire width = 1um
separation = 1um, 2um, 3um, 4um, 5um

frequency [ x10GHz ]

__ original system (order 420)
--- reduced model (order 12)

Q

very little error in the
points used for fitting
1um, 3um, 5um

Worst case errors far 
from fitting points 2um, 4um 
(3% in resonance position)

so the critical step
is the fitting!!

Let’s look at another open issue.

There are two kinds of error introduced by our procedure.

The error of the first polynomial fitting step.

And the error of the actual matrix reduction step.

If we look very closely at the quality factor matching results we see that the parameterized 
reduced

model match VERY well for separation values d=1um, 3um and 5um

A little less well instead for 2um and 4um.

You may remember that the values 1um, 3um and 5um are the values we chose

to use when we did the polynomial fitting the matrices R(W,d) and L(W,d)

The error in those points is very small and must be due to only to the matrix reduction step 
which is then

working very well.

Instead the error in d=2um and 4um is larger. Hence we can see that in this case

the error of the first polynomial fitting step is larger that the matrix reduction step.

In general one should try to balance the two steps and obtain similar errors in both steps for an 
optimal job.
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n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters

n Case 2: Model Reduction with Frequency Parameter
o Preserving Stability and Passivity
o Globally Convergent Interpolation
o Example 2 lines over substrate, full-wave

n Conclusions

Let’s consider now the case where the parameter is Frequency with a bit more 
attention
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Distributed Linear Systems Distributed Linear Systems 

where the dependency on the Laplace variable s is not linear

Examples:
o full-wave PEEC 
oPEEC using layered-media Green functions (e.g. for 

handling substrate or dielectrics)
o frequency-dependent basis functions 
o frequency dependent discretizations  

xcy

buxsssE
T

p

=

=),,,( 1 K

),,(),,(),,,( 111 ppp ssAssEssssE KKK −≠

Distributed systems are systems whose dependency on the frequency parameter 
is not linear (or more precisely affine)

This may happens for instance 

-when the field solver uses a fullwave formulation

-when layered media is treated using green functions

-when one uses higher order frequency dependent basis functions

-or when one uses a frequency dependent discretization
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Polinomial interpolation for frequency Polinomial interpolation for frequency 
[Phillips96][Phillips96]

n Polynomial approximation e.g. Taylor expansion, or a 
polynomial interpolation for E(s)

n Convert to non-distributed model reduction problem

n Performance: Fast and accurate in the frequency 
band of interest

n Problem: Can not be used in a time domain circuit 
simulator because does not guarantee stability and 
passivity

][~ 2 xsxssxxx ML=
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M =++++ L2

2
10

buxxEs += ~~~
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One could try to use the same “polynomial” fitting approach that we used for 
geometrical parameters.

The first attempt along these lines is due to Joel Phillips.

The approach is fast an accurate in the frequency band of interest

unfortunately one the produced model is used within a TIME DOMAIN 
simulator, some numerical instability problems can often occur.

This is due to the fact that often the models produced by polynomial fitting are 
not stable nor passive
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Need to preserve passivity of passive interconnectNeed to preserve passivity of passive interconnect

PCB, package, IC PCB, package, IC 
interconnects interconnects 

Analog or digital IP Analog or digital IP 
blocksblocks

Z(f)Z(f)
Note: passive! Note: passive! 
Hence, need to guarantee Hence, need to guarantee 
passivity of the model passivity of the model 
otherwise can generate otherwise can generate 
energy and theenergy and the
simulation will simulation will 
explode!! explode!! 

Picture byPicture by
M. ChouM. Chou

QD

C

-

+
+
-

Picture byPicture by
J. PhillipsJ. Phillips

Would like to capture the Would like to capture the 
results of the accurate results of the accurate 
interconnect field solver interconnect field solver 
analysis into a small model analysis into a small model 
for the impedance at some for the impedance at some 
ports.ports.

Usually we are instead in producing small models of the PCB, package, and IC 
interconnect wires that connect circuit components.

Such systems are intrinsically passive, hence the model we produce for them 
needs to be passive as well otherwise the time domain simulation may explode

as it is clearly illustrated in the picture in the corner ☺
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The Composition of Passive Models is  PassiveThe Composition of Passive Models is  Passive

n The composition of “stable” models is not 
necessarily stable

n But the composition of “passive and stable models” 
is passive and stable.
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Furthermore, we would like the designers to be able to freely connect our 
models in the same way they connect their actual components to create larger 
systems.

Unfortunately the interconnection of stable models may not be guaranteed to 
be stable

But fortunately the interconnection of any passive models is always a passive 
model (and hence also stable)

Therefore it is important to produce models that are not only guaranteed stable 
but also guaranteed passive.
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Passivity condition on transfer function [Willems72]Passivity condition on transfer function [Willems72]

n For systems with immittance matrix representation, 
passivity is equivalent to positive-realness of the 
transfer function

)()()( susHsy =

It means positive resistance (conductance) for any frequency.
Note: it is a global property!!!

ωjsss

(s)ss
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0Refor )()(

0Refor analyticis)(

HH

HH

H (no unstable poles)

(impulse response is real)

(no negative resistors)

mathematically, for immitance systems (that is systems whose input and 
outputs are currents and voltage, or the opposite) 

passivity is equivalent to “positive realness of the transfer function”

or in other words

1) H(s) has no unstable poles in the right half plane

2) the impulse response is “real”, so the system is a physical system with real 
coefficients

3) the real part of the transfer function is always positive for any frequency 
(or in other words the system dissipates energy at all frequencies)

Note that the most important property is the 3rd and the most important part of 
it is that the real part is positive FOR ALL frequencies

so passivity is a GLOBAL property of the system.
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Positive real transfer functionPositive real transfer function
in the complex plane for different frequenciesin the complex plane for different frequencies

)}(Re{ ωjHε

ωω    sfrequencie allfor       ,0)}(Re{ ≥jH
Passive regionActive

region

)}(Im{ ωjH

original system )( ωjH

One graphical way to visualize the passivity property is to draw the path of the 
transfer function in the complex plain for all frequencies.

If the system is passive H(jw) will always be at least at a distance epsilon from 
the imaginary axis, completely contained in the passive right region.
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Why does polynomial interpolation failWhy does polynomial interpolation fail
when applied to the Laplace parameter ‘s’?when applied to the Laplace parameter ‘s’?

original system )( ωjH

)}(Im{ ωjH

Passive regionActive
region

n Although accurate in the frequency band of interest 

n Polynomial interpolation is unlikely to preserve 
GLOBAL properties such as positive realness 
because it is GLOBALLY not well-behaved

)}(Re{ ωjH

ωω    sfrequencie allfor       ,0)}(Re{ ≥jH

ε

A polynomial fitting approach can achieve a very accurate matching in a large 
band of frequency of interest to the user.

However it can have a very very inaccurate matching for much higher 
frequencies where the users THINKS he/she does not care.

But in reality he/she MUST care, because if the matching is very inaccurate it 
could potentially go for some frequency into the

active region.

In other words if the system is excited by some small noise at those frequencies 
it will generate lots of energy and the numerical simulation

can quickly become unstable.

The problem with the polynomial interpolation approach is that it is NOT well 
behaved GLOBALLY
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n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters

n Case 2: Model Reduction with Frequency Parameter
o Preserving Stability and Passivity
o Globally Convergent Interpolation
o Example 2 lines over substrate, full-wave

n Conclusions

one solution is therefore to loot for some other interpolation that is globally 
convergent.
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Observation: practical systems Observation: practical systems 
have some loss at all frequencyhave some loss at all frequency

Re

original system )( ωjE

ε

Im

n Most systems are non-ideal i.e. contain some small 
loss         at any frequency        i.e. they can be 
described by strictly positive real matrices

ε ω

ωω    sfrequencie allfor       ,0)}(Re{ ≥jE
Passive regionActive

region

)( ωjE

Let’s first note that most practical systems are STRICLTLY passive, meaning 
that the path in the active region never touches that active region

and they are actually at least some epsilon away from it. (on in other words 
there is always some loss mechanism at any frequency).
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Using global uniformly convergent Using global uniformly convergent 
interpolants interpolants [D. DAC02] [D. PhD04][D. DAC02] [D. PhD04]

n If E(s) is strictly positive real, a GLOBALLY and UNIFORMLY 
convergent interpolant will eventually get close enough (for a 
large enough order M of the interpolant) and be positive-real 
as well.

Re

Im
original system )( ωjE

reduced system )(ˆ ωjE

ε
δ

n Proof: just choose 
accuracy of 
interpolation       
smaller than minimum 
distance from 
imaginary axis ε

δ
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region

If we use a “globally and uniformly convergent set of basis functions phi(s) 
then we can guarantee that 

for ANY frequency the path of the reduced system can be restricted to a 
distance delta that we can make as small as we

want as long as we pick enough interpolation basis functions.

well the solution to make sure we have a PASSIVE reduced system is to make 
sure we pick enough interpolation

functions such that delta < epsilon. In that case the reduced system path is 
guaranteed to be never cross into the active region.
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A good example of uniformly convergent interpolants:A good example of uniformly convergent interpolants:
the Laguerre basis functions the Laguerre basis functions [D. DAC02] [D. PhD04][D. DAC02] [D. PhD04]

n Consider the family of basis functions: 

n They form a complete, rational, orthonormal basis 
over the imaginary axis which gives a uniformly 
convergent interpolant

n No poles in RHP (stable)

n (real time-domain representation)
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Now we need to find at least one set of globally and uniformly convergent 
basis functions.

For instance the following Laguerre basis could be a good choice:

1) they are a complete set, so they can represent any function we want

2) they are rational, so they can be manipulated easily and will produce an 
easily synthesizable model

3) they are orthonormal so it will be easy to calculate the coefficients for the 
interpolation using ONE single inner product

4) they have no poles in the right half place (RHP) so they are intrinsically 
stable

5) they have the conjugate symmetry property so they are intrinsically 
associated with a “real” time domain representation
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Calculation of interpolation coefficientsCalculation of interpolation coefficients

n Note: it is a bilinear transform that maps the Laguerre basis to
Fourier series on the unit circle.
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Re{s}

Im{s}

Re{z}

Im{z}

n Hence in practice one can use FFT to calculate the interpolation
coefficients: very efficient!

n Note: FFT coefficients typically drop quickly and the series can
be truncated to the first few M coefficients because field solver 
matrices E(s) are often smooth.

The most useful property of all is that it is computationally very easy to 
calculate the coefficients E_k for the interpolation.

One can simply realized that the Laguerre functions are some sort of bilinear 
transformation that frequencies s on an imaginary axis 

into frequencies z on a unit circle.

in other words they can be interpreted as “powers of z” and hence the 
coefficients of the interpolation simply becomes

coefficients of a Discrete Fourier Transform that can be calculated in NlogN 
time using an FFT.

Finally one may wonder: “what if I need a very very large number of 
interpolation functions in order to get an accuracy delta

good enough to guarantee passivity???”

well that could in general be possible, however if the initial function is smooth 
enough than we know from the properties

of the Fourier transforms that the Fourier coefficients will drop very quickly 
and only a few of them will be enough to get an accurate

interpolation of the smooth function.
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Reduction procedure [D. DAC02] [D. PhD04]Reduction procedure [D. DAC02] [D. PhD04]

~ 6 x 64~ 6

1)  Evaluate and squash them at 
uniformly spaced points on the unit 
circle using congruence 
transformation which preserves 
positive realness 

UTE(sk)U,         k=1,2,...,64

br=UTb

infinite~ 3,000

n Start from original system described 
by causal, strictly positive-real 
matrices

System 
order

Matrix 
sizes

buxsE =)(

Let’s now summarize the main steps of the procedure

we start from the original system that is produced by a fullwave or green function based field 
solver.

The matrices are large e.g. 3000x3000 and the order of the system is infinite because those

matrices are frequency dependent

We can construct a change of basis matrix using for instance a multipoint scheme where each

column of U is simply the state of the system for some frequency point. (Zhenhai: you don’t 
need to say this.

I wrote it here only if people ask how you can get U)

As a first step of the procedure we can evaluate the large system matrix at some points (e.g 64) 
along

the imaginary axis corresponding to equally spaced points on the unit circle.

using U and the congruence transformation we can reduce the size of those matrices to for 
instance 6x6.

The order of the system is now 6x64 since we have powers of z up to order 64.
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6 x 56 x 5

4) Introduce extended state and realize a 
single matrix discrete time system

6 x 56 x 5 5) Transform to continuous time

6 x 56

3)  Calculate first few (e.g 5) FFT of the 
reduced system matrix coefficient

System 
order

Matrix 
sizes

ubxzE r
k

k
k =







∑
=

~~4

0

][~ 2 xzxzzxxx ML=
ubxAxEz

~~~~~ +=

ubxAxEs ˆˆˆˆˆ +=

Reduction procedureReduction procedure

We can now calculate the FFT coefficients of those 64 small matrices.

The FFT coefficients will be some other 6x6 matrices. 

Since they drop very quickly we can use maybe only the first 5 of them. 

We have now obtained a reduced system with matrices of size 6 and the total 
order is 6x5

since there are powers of z up to 5.

The final steps 4) and 5) are simple algebraic steps  where we substitute back 

s for z and we obtain a final system in the variable s of order 30

Details of all this can be found in [Daniel DAC02 and in the PhD thesis Daniel 
PhD04]
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OutlineOutline

n Introduction

n Parameterized Model Order Reduction Classification

n From Field Solvers to Parameterized Models

n Case 1: Model Reduction with Geometrical Parameters

n Case 2: Model Reduction with Frequency Parameter
o Preserving Stability and Passivity
o Globally Convergent Interpolation
o Example 2 wires on a MCM package, full-wave

n Conclusions

let’s look how well it works on 2 wires over a multichip module package using 
fullwave and green function field solver
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An implementation example:An implementation example:
Two wires on a MCM package [D. DAC02]Two wires on a MCM package [D. DAC02]

n Discretize Maxwell equations in integral form using 
PEEC

n NOTE: system matrices are frequency dependent 
because the substrate is handled by layered Green 
functions

packagepackage

[ s L (W,d,s)- R(W,d,s) ] x= b u

let’s look how well it works on 2 wires over a multichip module package using 
fullwave and green function field solver

in this example the matrices L(W,d,s) and R(W,d,s) are frequency dependent 
because we used green functions to capture the package substrate
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An implementation example:An implementation example:
Two wires on a MCM packageTwo wires on a MCM package

FFT coefficients of L (s)

0 10 20 30 40 50 60

10-4

10-5

10-6

10-7

10-8

Here is a plot of some of the FFT coefficients of L(s)

you can see that, as promised the coefficients drop by 3 orders of magnitude 
after they first 5

this is because typically the partial inductance and coefficient of potentials in 
L(s) have a smooth dependency on frequency
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An implementation example:An implementation example:
Two wires on a MCM packageTwo wires on a MCM package

L (s) reconstructed fromreconstructed from first 5 out of 64first 5 out of 64 FFT coefficients FFT coefficients 
and compared to original and compared to original L (s)

0 10 20 30 40 50 60

5

4

3

2

1

0

nH Real part Imaginary part

As a proof of the previous observation,

if we use only those first 5 fft coefficients to reconstruct the coefficients of L(s) 
we see quite a good matching

(compare blue circles with straight red line)
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An implementation example:An implementation example:
Two wires on a MCM packageTwo wires on a MCM package

n Real part of frequency 
response

ll Inductive part of Inductive part of 
frequency responsefrequency response

5

4

3

2

nH

frequencyfrequency frequencyfrequency

5

4

3

2

x104 Ohm

106 107 108 109 1010 106 107 108 109 1010

original system 3000 distrib

reduced system 30

original system

reduced system

finally the overall transfer function of the reduced system of size 30 in red and 
the original system size 3000 match quite nicely 

both in the real and in the imaginary part
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Open issues for distributed systemsOpen issues for distributed systems

n Guaranteeing positive realness relies on accuracy of the 
uniform interpolant. Hence if the matrices are NOT 
smooth, we might need a large order of the interpolant.
oworking on internal matrices might give smoother matrices

n Laguerre basis functions are an efficient choice since 
once can use FFT to calculate interpolation coeff. 
oHowever equally spaced points on the unit circle 

correspond to non-equally spaced points on the imaginary 
axis accumulating around a reference center frequency. 

There are several open issues in this approach.

For instance, let me repeat that we guarantee passivity by relying on accuracy 
of a globally convergent set of basis functions (e.g. Laguerre)

That can be achieved for smooth functions by few Interpolants. 

But other formulations may not have smooth frequency dependency in their 
matrices and in that case we would need many more fft coefficients.

Another issue comes from the observation that the equally spaced points on the 
unit circle do not correspond to equally spaced points 

the imaginary frequency axis. This might be desirable for some applications 
but not for others.
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n From Field Solvers to large Non-Linearly 
Parameterized dynamical models of interconnect or 
RF inductors

n Model Reduction for Non-Linear dependency on 
geometrical parameters: 
ocan use simple polynomial interpolation
omoment matching and congruence transformation
oe.g. RF inductor (no substrate)

n Model Reduction for Non-linear dependency in ‘s’ 
(distributed systems):
oe.g. full-wave, substrate layered green functions, 

high order basis functions
ocan use globally convergent interpolant implemented 

with FFT

ConclusionsConclusions

In conclusion in this 3rd part of this tutorial we have shown an example of how 
one can construct large non-linearly parameterized dynamical models from the 
output of field solver based parasitic extractors such as PEEC.

The non-linear dependency when the parameters are geometrical can be 
handled using a simple polynomial interpolation approach

combined with a moment matching congruence transformation. We have 
shown an RF inductor example where an

EMQS PEEC field solver and the substrate was neglected so that the system 
matrices are not frequency dependent

Finally we have seen that if one uses fullwave solvers or green functions, the 
system matrices may be frequency dependent

and in that case one cannot use a simple polynomial interpolation because it is 
NOT globally convergent and it does not guarantee passivity.

For passivity one could use instead Laguerre basis that are globally convergent 
and their coefficients can be efficiently calculated using

a simple FFT.
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