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Dual-Vdd Buffer Insertion for Power Reduction

King Ho Tam, Yu Hu, Lei He, Tom Tong Jing, and Xinyi Zhang

Abstract—This paper presents the first in-depth study on dual-Vdd

buffer insertion for power minimization under delay constraint. Compared
with delay-optimal single Vdd buffer insertion, the dual-Vdd buffer in-
sertion reduces power by 16%. Such power reduction increases when the
delay specification is relaxed. Whereas the van Ginneken algorithm can
be extended to handle the new problem formulation optimally, its time
complexity increases from quadratic time (O(|B|n2)) to pseudopolyno-
mial time (O(|B|n3c2

max log(ncmax)), where |B| is the size of buffer
library, n is the number of buffer stations, and cmax is proportional to
the number of all possible subtrees of the net. To improve the time com-
plexity, we propose an approximation technique by sampling subsolutions
(i.e., options) and apply predictive min-delay and prebuffer slack pruning
rules from a related work. Experiments show that sampling is most effec-
tive to reduce run time, whereas the two pruning rules further improve
efficiency and accuracy loss due to sampling. We show that our proposed
algorithm has linear time complexity with respect to the tree size. It runs
over 1000 times faster at a cost of less than 2% delay and power increase
over the extended van Ginneken algorithm.

Index Terms—Buffer insertion, delay, dual-Vdd , low power.

I. INTRODUCTION

Aggressive scaling of very large scale integration circuits makes
interconnects as the performance bottleneck, and buffer insertion is
used extensively to reduce the interconnect delay at the expense
of more power dissipation. Van Ginneken [1] presented a dynamic
programming-based algorithm for the delay-optimal buffer insertion
problem. Given a routing tree, partial solutions called options at each
tree node are constructed and propagated in a bottom-up fashion.
When the optimal solution is identified at the root node, a top–down
back trace is performed to get the optimal buffer assignment. Fol-
lowing this dynamic programming framework, various delay opti-
mization buffer insertion algorithms have been developed. Alpert and
Devgan [2] proposed wire segmenting with buffer insertion. Lil-
lis and Cheng [3] studied repeater insertion in a multisource net.
Alpert et al. [4] considered noise and delay optimization simul-
taneously. Shi and Li [5] presented an efficient algorithm with
O(n log2 n) time complexity, where n is the number of possible
buffer positions. Buffer insertion with variations on wire length and
fabrication was considered in [6] and [7], respectively.

Buffer insertion may increase power dissipation if an excessive
number of buffers are used. A power-optimal buffer insertion
algorithm was proposed in [8], achieving minimal power for a given
target delay based on the aforementioned dynamic programming
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framework. The time complexity is O(|B|n3c2
max log(ncmax)),

where |B| is the size of buffer library, n is the number of buffer
stations, and cmax is the number of different capacitance values
among all options, which, in turn, is proportional to the number of all
possible subtrees of the net. To reduce run time for large nets due to the
increase of uncontrolled options, Rao et al. [9] assumed a large buffer
library with near continuous buffer sizes and solved the power-optimal
buffer insertion problem with five times speedup over [8] with a small
loss of delay and power optimality. However, single Vdd was assumed
in all existing works for power-optimal buffer insertion. Programmable
dual-Vdd buffers have been used to reduce field-programmable gate
array (FPGA) power [10], [11]. Other approaches on FPGA to budget
time among dual-Vdd buffers [12] and the application of dual-Vdd

buffer circuitry, using a single power supply network [13], have also
been proposed. As buffers are preplaced in FPGAs, the dual-Vdd

buffer routing can be realized as dual-Vdd assignment for buffers.
However, the power-optimal dual-Vdd buffer insertion problem in

application specific integrated circuit designs is more complicated
because the flexible buffer locations increase the solution space
substantially. This problem has not been studied in existing work.
Compared with the single Vdd buffer insertion problem, the dual-Vdd

version introduces voltage as an extra dimension to the solution
space that destroys the true polynomial time complexity, making a
straightforward extension of the classical buffer insertion algorithm
that is inapplicable in practice.

The major contributions of this paper are as follows. We present
the first in-depth study on dual-Vdd buffer insertion for power mini-
mization under delay constraint. Furthermore, to cope with the sub-
stantial increase of the time complexity, we present an approximation
technique to sample options, which is coupled with our extension to
predictive min-delay pruning (PMP) and prebuffer slack pruning (PSP)
rules that are originally taken from [5] and [14]. Sampling is most
effective to reduce run time, and the two pruning rules are needed
to further improve the efficiency and accuracy loss due to sampling.
Our speed-up techniques reduce the algorithm time complexity from
pseudopolynomial time [8] to linear time with respect to the tree
size. Experimental results show that dual-Vdd buffer insertion reduces
power by 16% compared with the delay-optimal single Vdd buffer
insertion. Such power reduction increases when the delay specification
is relaxed. As a result of the speed-up techniques, we achieve a
combined speedup of more than 1000 times over the exact power-
optimal buffer insertion algorithm (extended from [8]) at the expense
of less than 2% delay and power increase, respectively.

The remainder of this paper is organized as follows. Section II
presents our dual-Vdd modeling and the problem formulation.
Section III proposes the baseline algorithm and the related speed-up
techniques. We conclude in Section IV. An extended abstract of this
paper without using Vdd-level converters and speed-up techniques,
such as adaptive 3-D sampling and predictive pruning, was presented
in [15].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Delay, Slew Rate, and Power Model

We use a distributed Elmore delay model as in [1]–[5] and recent
works [16]–[19]. We use a simple power model similar to that in [15].

B. Dual-Vdd Circuits

Dual-Vdd buffering uses both high and low Vdd buffers in intercon-
nect synthesis. Designs using low Vdd buffers consume less buffer
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power Eb and interconnect power. By applying this technique to
noncritical paths, we reduce power without worsening the delay of the
overall interconnect tree.

C. Problem Formulation

We assume that the loading capacitance and the required arrival
time (RAT) qs

n are given at all sink nodes (terminals and pins) ns. We
assume that the driver resistance at the source node nsrc is given, and
all types of buffers can be placed only at the buffer candidate nodes nk

b .
We use the RAT at the source nsrc to measure delay performance. Our
goal is to minimize the power of the interconnect subject to the RAT
constraint at the source nsrc.
Definition 1: The RAT qn at node n is defined as

qn = min
ns∀s

(qs
n − d(ns, n))

where d(ns, n) is the delay from the sink node ns to node n.
Dual-Vdd buffer insertion (dBIS): Given an interconnect fanout

tree, which consists of a source node nsrc, sink nodes ns, Steiner
nodes np, candidate buffer nodes nb, and the connection topology
among them, the dBIS problem is to find a buffer placement, size
assignment, and Vdd level assignment solution such that the RAT qsrc

n

at the source nsrc is met and the power consumed by the interconnect
tree is minimized, whereas the slew rate at every input of the buffers
and the sinks ns are upper bounded by ŝ.

III. DUAL-Vdd BUFFER INSERTION ALGORITHM

A. Baseline Algorithm

Power-optimal solutions, namely, options in this paper, are con-
structed from partial solutions to the subtrees, which are defined
hereafter.
Definition 2: An option Φn at the node n refers to the buffer place-

ment, size, and Vdd assignment for the subtree Tn rooted at node n.
To perform delay and power reduction, the option is represented as a
four-tuple (cn, pn, qn, θn), where cn is the downstream capacitance at
node n, pn is the total power of Tn, qn is the RAT at node n, and θn

signifies whether there exists any high Vdd buffer at the downstream.
The option with the smallest power psrc

n at the source node nsrc is the
power-optimal solution.

Our algorithm is based on [8] with a few improvements. We add
support for dual-Vdd buffer insertion, which inserts level converters
where necessary. To facilitate explanation, we define the concept of
option dominance here.
Definition 3: An option Φ1 = (c1, p1, q1, θ1) dominates another

option Φ2 = (c2, p2, q2, θ2) if c1 ≤ c2, p1 ≤ p2, and q1 ≥ q2.
We enhance the dynamic programming framework in [8] to accom-

modate the introduction of dual-Vdd buffers, which is summarized
as enhanced dynamic programming (EDP) algorithm in Table I. We
use the same notation as in Definition 2 to denote options Φ and
their components. Moreover, we use ck

b , Ek
b , V k

b , and dk
b (cload)

to denote the input capacitance, the power, the Vdd level, and the
delay with output load cload of the buffer bk, respectively. dn,v and
En,v(V ) are the delay and the power of the interconnect between
nodes n and v operating at voltage V , respectively. The set of available
buffers Set(B) contains both low and high Vdd buffers. We first
call the algorithm EDP (line 2 in Table I) at the source node nsrc,
which recursively visits the children nodes and enumerates all possible
options in a bottom-up manner until the entire interconnect tree T src

n is
traversed.

TABLE I
EDP

TABLE II
TEST-CASE CHARACTERISTICS

There are several new features in our EDP algorithm to support
the insertion of dual-Vdd buffers with potential level converters. Our
implementation considers potential level converters, as shown in
line 0 in Table I. Lines 10 and 12 in Table I produce the new
options Φnew for the cases of no buffer insertion and buffer bk

insertion, respectively, between nodes n and v. In the case of no buffer
insertion, we set V to either VH for high Vdd or VL for low Vdd

in line 9 in Table I, according to the downstream high Vdd buffer
indicators θi and θj , and use V to update the power consumed by
the interconnect (line 10 in Table I). Note that, when θ = false (i.e.,
there are no high Vdd buffers in the downstream), only the low Vdd

option has to be created because the high Vdd counterpart is always
inferior. In the case of buffer insertion, we simply add En,v(V k

b ),
according to the operational voltage of buffer bk to pnew, and update θ
accordingly. To consider level converters, we propose the following
strategy. If high Vdd buffers drive low Vdd buffers (as shown in
line 11 in Table I), level converters are not needed. Otherwise (as
shown in line 13 in Table I), a level converter is inserted to drive
downstream buffers with high Vdd. This algorithm theoretically allows
level converters inserted at nonsink nodes in the buffered tree, but
this never happens in any buffering solution in our experimental
experience.
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TABLE III
EXPERIMENTAL RESULTS FOR SINGLE AND DUAL-Vdd BUFFER INSERTIONS

B. Experimental Results for Baseline Algorithm

We generate nine test cases s1–s9 by randomly placing source and
sinks in a 1 × 1 cm box. We use the GeoSteiner package [20] to
generate the topologies of the test cases. We also break interconnect
between nodes longer than 500 µm by inserting two-degree nodes.
The Vdd types of level converters under each sink are set randomly.
The characteristics of our test cases are shown in Table II.

In the first experiment, we assume that every nonsink node is a
candidate buffer node. We set the RAT at all sinks to zero and that at
the source to RAT∗, which is the optimal delay found by the baseline
buffer insertion algorithm [1]. The slew rate upper bound ŝ is set
to 100 ps. We have made buffers by using an inverter cascaded with
another inverter that is four times larger. There are six types of buffers
(high and low Vdd buffers of 16×, 32×, and 64×) in our buffer
library.

We conduct experiments to show the effectiveness of power re-
duction due to dual-Vdd buffer insertion. Without influencing solution
quality, we compare single and dual-Vdd buffer insertions in Table III
without employing any advanced pruning rules shown in Table I. The
experiments are on cases s1 to s4 only, whereas the rest cannot finish in
a reasonable run time.1 In Table III, RAT∗ is the maximum achievable
RAT at the source. The percentages in the brackets show the relative
power change from BIS (single Vdd buffer insertion) to dBIS. On
average, dBIS reduces power by 16% compared with BIS. When we
relax the RAT at the source to 105% of RAT∗, dBIS saves 30% of
power over BIS.

To handle large nets such as s5–s9 efficiently, we propose effective
speed-up techniques for the dBIS problem as follows.

C. Speedup

1) Three-Dimensional Sampling: The 2-D sampling under the
same capacitance has shown speedup [15]. However, the run time
in our experiments for large test cases (those with over 200 buffer
stations) is still very long. The number of distinct capacitance values
among Φ grows rapidly with the tree size; therefore, the number
of solutions is still growing at a tremendous rate. This observa-
tion indicates a need to extend sampling to 3-D, where capaci-
tance is included as the third dimension. As a result, we sample
a 3-D space formed by the triplet dimension of power, delay, and
capacitance.

The idea is to pick only a certain number of options among all
uniformly over the power-delay-capacitance space for upstream prop-
agation. Fig. 1(a) shows a presample option set and Fig.1(b) shows
an after-sample option set. Each black dot corresponds to an option.
We divide each side of the bounding box of all options into equal

1A straightforward extension of [8] destroys the nice property of option
ordering. In [8], options are generated in increasing order of capacitance,
making it possible to efficiently merge option sets during propagation. Here,
we have voltage as an extra dimension. Therefore, the complexity of merging
options and option growth quickly go out of control even for medium-sized test
cases like s4.

Fig. 1. Three-dimensional sampling for nonredundant options. (a) Before
sampling. (b) After sampling.

segments such that the entire 3-D domain is superposed by cubic grids.
For each grid cube shown in Fig. 1(a), we retain only one option if
there is any and obtain the sampled nondominated option set shown in
Fig. 1(b).

Both the density of the sampling grid and the frequency of oc-
currence of the sampling candidate may affect the accuracy of the
solutions. We study the effects of 3-D sampling, using uniform and
adaptive grid sizes. Let N be the number of grids along the span
of each dimension. For uniform grid size 3-D sampling, the whole
space is divided evenly into N -by-N -by-N cubes. In the adaptive
sampling, we discretize the cubic grid only if there exists any pair
of options that are more than 1/N · δ apart in any dimension within
the grid, where δ is the overall span of values in one dimension. This
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TABLE IV
PERFORMANCE COMPARISON BETWEEN UNIFORM GRID SIZE AND ADAPTIVE GRID SIZE 3-D SAMPLING

TABLE V
RUNTIME COMPARISON BETWEEN UNIFORM GRID SIZE

AND ADAPTIVE GRID SIZE 3-D SAMPLING

procedure is performed recursively until no cubic grid requires further
partitioning. Practically, we set N = 100, which indicates that the
distances between pruned and sampled options are less than 1% of
the overall span. This leads to good abstraction of the distribution of
the original (optimal) solution space.

We implement both uniform and adaptive grid size 3-D sampling
and test on cases s1–s8. In our second experiment, we compare four
methods—no sampling (NS), which is optimal, uniform sampling
(US), adaptive sampling with N = 80 (ADS1), and adaptive sampling
with N = 100 (ADS2) in Table IV. Target RATs∗ at the source node
are summarized in the second column. Their run times are summarized
in Table V. To achieve the same RAT, adaptive sampling usually has
a lower power consumption but longer run time compared with US.
The larger the threshold is, the longer the adaptive sampling takes,
and the closer it is to the optimal solution. In subsequent discussion,
we use adaptive grid size 3-D sampling method with the threshold set
to 100.

We present two additional prediction-based pruning rules in the fol-
lowing sections—PMP and PSP, which can further prune redundancy
so that 3-D sampling can be performed in a better option pool. This is
achieved by regressively removing options that are impossible to result
in the optimal solution as the algorithm progresses.
2) Dual-Vdd Buffer PMP: Using the formula in [21], we precom-

pute a unit length minimum delay table indexed by buffer, unit length
resistance and capacitance, and the path length from the source to
each tree node. Given an option, its upstream delay lower bound
can be calculated by basing on the unit length minimum delay given
by the precomputed table. An option is pruned if the difference
between the source’s RAT and its RAT is greater than this minimum
delay, which renders the option infeasible under the source’s RAT
requirement.
3) Dual-Vdd Buffer PSP: PSP is extended from [5] and [14] for

single Vdd buffer insertion. The basic idea is to remove options that
are going to become inferior with respect to other options upon buffer
insertion in the upstream. Due to page limitations, details are not
repeated in this context.

D. Experimental Results and Discussions on Speed-up Techniques

1) Study of Individual Speed-up Technique: To evaluate the speed-
up capability and the effect on the solution qualities of the three
speed-up techniques (PMP, PSP, and adaptive grid size 3-D sampling),
we run dBIS by using each of them individually. We then compare
all pruning techniques with the exact algorithm (EDP) without any
advanced pruning rules presented in the previous section. Owing to
the exorbitant computational cost of EDP, we do not give the results of
the large test cases. Table VI shows the comparisons on run time and
solution qualities. Note that PMP and PSP give the same solution as
EDP; thus, we collapse their RAT and power columns under EDP. In
Table VI, we find that PMP and PSP can achieve some speedup upon
EDP without losing optimality. Adaptive grid size 3-D sampling can
achieve ten times speedup at a cost of 3% delay increase for small test
cases.
2) Combine Sampling and Other Pruning Rules: To find out the

effect of combining sampling and pruning rules, we test dBIS by
combining adaptive grid size 3-D sampling with PMP and PSP, respec-
tively. The results are shown in Fig. 2. We also list the results produced
by employing adaptive grid size 3-D sampling only in Fig. 2. In Fig. 2,
we observe the following.

1) Adaptive grid size 3-D sampling itself (column “3d”) introduces
significant loss of optimality for large test cases, although it
brings substantial speedup.

2) PSP and PMP with 3-D sampling both result in better run time
and solution quality compared with 3-D sampling-only solution.
This shows that both rules contribute to removing redundant
options, which create a superior candidate pool for sieving
through 3-D sampling.

3) By combining PSP, PMP, and 3-D sampling (column “psp +
pmp + 3d”), dBIS achieves the best performance on both so-
lution quality and run time among 3d, psp + 3d, and pmp + 3d.
The application of PSP and PMP maximizes the efficiency of
3-D sampling. Compared with the exact algorithm in Table VI,
“psp + pmp + 3d” achieves over 1000 times speedup for s4
with less than 2% delay and power increase. More speedup is
expected for larger test cases.

4) Both “psp + 3d” and “pmp + 3d” run much faster than 3-D
sampling for small test cases (s1 and s2), but such speedup
degrades for larger test cases. Among the speed-up techniques,
only 3-D sampling confines number of options to linear growth
with respect to tree size; therefore, the scaling trend of all other
configurations follows that of 3-D sampling in larger test cases.

IV. CONCLUSION

This paper presents the first in-depth study on dual-Vdd buffer
insertion for power minimization under delay constraint. Compared
with single Vdd buffers, dual-Vdd buffers reduce power by 16% at the
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TABLE VI
COMPARISON OF INDIVIDUAL SPEED-UP TECHNIQUES

Fig. 2. Combining adaptive grid size 3-D sampling and other pruning rules.
(a) Runtime. (b) Power. (c) RAT.

minimum delay specification. To cope with the increased complexity
due to simultaneous delay and power consideration and increased
buffer choices, we propose a speed-up technique combining sampling
and two prediction-based pruning rules. The run time of the resulting
algorithm grows linearly with respect to the tree size. We achieve a

combined speedup of more than 1000 times over the exact power-
optimal buffer insertion algorithm extended from [8] at the expense of
2% delay and power, respectively. In the future, we will study dual-Vdd

buffered tree construction and consider cross-talk noise for buffering
multiple nets.
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