
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008 1751

Exploiting Symmetries to Speed Up SAT-Based
Boolean Matching for Logic Synthesis of FPGAs

Yu Hu, Student Member, IEEE, Victor Shih, Rupak Majumdar, and Lei He, Member, IEEE

Abstract—Boolean matching is one of the enabling tech-
niques for technology mapping and logic resynthesis of field-
programmable gate arrays (FPGAs). Boolean satisfiability
(SAT)-based Boolean matching (SAT-BM) has been proposed, but
computational complexity prohibits its practical deployment. In
this paper, we leverage symmetries present in both Boolean func-
tions and target FPGA architectures to prune the solution space,
and we also propose some techniques to reduce the replication
runtime for SAT instance generation using the incremental SAT
reasoning engine. Experiment shows that our SAT-BM reduces
runtime by 226× compared with the original SAT-BM algorithm,
making SAT-BM more practical.

Index Terms—Boolean satisfiability (SAT), field-programmable
gate array (FPGA), logic synthesis.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) are pro-
grammable logic chips that can be configured to imple-

ment various digital circuits. The programmable logic block
(PLB) is the basic element of an FPGA. Various programmable
devices such as lookup tables (LUTs) or macro gates [1] can
be placed within a PLB. Given a logic-level design, a critical
step in the overall FPGA computer-aided design (CAD) flow
is technology mapping, where a circuit is converted into a
network of PLBs. The existing technology mapping algorithms
can be divided into two categories: structural and functional
[2]. Structural technology mappers [3]–[5] consider a given
circuit graph and find a corresponding graph of PLBs which
covers it. Functional approaches perform Boolean decomposi-
tion of the logic functions of circuit nodes into subfunctions
of limited size which are realizable by individual PLBs. Since
area-optimal technology mapping for LUT-based FPGAs is
NP-hard [6], logic resynthesis—rewriting circuit structures
while maintaining functionality—has been applied, accompa-
nied by technology mapping, to reduce area [7]–[9].

Manuscript received January 16, 2008; revised April 30, 2008. Current
version published September 19, 2008. This work was supported in part
by the NSF Grants CCR-0306682 and CCF-0702743 and in part by UC
MICRO sponsored by Actel. This paper was recommended by Associate Editor
W. Kunz.

Y. Hu and L. He are with the Electrical Engineering Department, Univer-
sity of California, Los Angeles, CA 90095 USA (e-mail: hu@ee.ucla.edu;
lhe@ee.ucla.edu).

V. Shih and R. Majumdar are with the Computer Science Department,
University of California, Los Angeles, CA 90095 USA (e-mail: vicshih@cs.
ucla.edu; rupak@cs.ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2003272

In both technology mapping and logic resynthesis, Boolean
matching [10], [11] serves as one of the enabling techniques.
Given a target PLB architecture p and a Boolean function
f , the Boolean matching problem either maps function f
to PLB p by describing the appropriate configuration bits,
or concludes that PLB p cannot implement function f . The
key characteristics of a Boolean matching algorithm are scal-
ability in terms of both runtime and memory, and flexibility
with regard to reusability across different PLB architectures.
Most of the existing work for Boolean matching is based on
function decomposition [10] or on canonicity and Boolean
signatures [11], [12]. However, the function decomposition
technique lacks flexibility and needs to be customized for
different PLB architectures, and canonicity-based approaches
can only handle functions of limited input size. For example,
Abdollahi and Pedram [12] assume that the technology library
can be precomputed before the mapping phase. While this
is feasible for application-specified integrated circuit designs,
it is computationally intensive for technology mapping with
complex programmable devices, which can implement millions
of different logic functions. Recently, a SAT-based approach
[8] has been proposed to solve Boolean matching, which was
improved by Safarpour et al. [13] with a 3× speedup and was
further improved by Cong and Minkovich [9] with up to 13×
speedup.

While SAT-based Boolean matching (SAT-BM) offers great
flexibility in handling various PLB architectures, runtimes
are excessively long due to high computational complexity,
even with the improvements by Cong and Minkovich [9] and
Safarpour et al. [13]. Recent FGPAs have employed heteroge-
neous PLBs to reduce power dissipation and area; this addi-
tional flexibility comes at the cost of even greater complexity
for Boolean matching. For instance, suppose that we map a
design to an FPGA with K-input heterogeneous PLBs; the
functionality of each K-bounded cover must be considered
explicitly during technology mapping.1 In practice, the Boolean
matching procedure is called over 50 000 times for an MCNC
circuit, i10, which has less than 3000 gates, with an aver-
age runtime of completing one SAT-BM [8] for a nine-input
subcircuit at more than 20 s. It appears that the runtime for
heterogeneous FPGA technology mapping is prohibitively high
due to the inefficiencies of SAT-BM.

1For LUT-based homogeneous FPGA, technology mapping becomes a
graph-covering problem as a K-LUT can implement any Boolean function with
no more than K inputs; therefore, the functionality check and the Boolean
matching are not needed.

0278-0070/$25.00 © 2008 IEEE



1752 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

This paper proposes an efficient SAT-BM that exploits the
symmetries exhibited in both the Boolean function and the
target PLB architecture. The experimental results show that
the proposed algorithm obtains up to 226× speedup compared
with the original algorithm [8], whereas recent papers [9], [13]
obtained up to 13× speedup.

The rest of this paper is organized as follows. Section II
introduces Boolean matching and SAT-based encoding [8].
Section III presents a technique to improve the efficiency
of SAT-BM using symmetries. Section V details our experi-
mental results, and Section VI concludes this paper. A four-
page extended abstract of preliminary results of this paper
was presented at the 2007 International Conference on CAD
[14]. More details of this work can be found in the technical
report [15].

II. BACKGROUND AND PRELIMINARIES

A PLB H(P ) consists of a network of interconnected non-
programmable and programmable logic devices with a set P of
input pins {p1, . . . , pm}. We sometimes omit the set of input
pins and write H to refer to the PLB H(P ). We consider the
mix of two kinds of programmable logic devices in this paper:
the K-input LUT and the K-input multiplexer (MUX). A
K-LUT consists of K inputs, one output, and 2K configuration
bits. A K-MUX consists of K inputs, one MUX output, and
�log K� configuration bits.

The Boolean matching problem takes as input a PLB H(P )
and a Boolean function f(X) over the variables X such that
|X| ≤ |P |, and it asks if the PLB H(P ) can implement the
function f(X). For the simple case where H is a K-LUT,
any function f(X) where |X| ≤ K can be implemented by the
K-LUT. When H contains multiple LUTs, however, the ques-
tion becomes nontrivial.

In the following, we first review the SAT encoding scheme
presented in [8] and then point out the inherent problem of this
approach.

A. From PLBs to CNF

For nonprogrammable devices (for example, combinational
gates) in a PLB, we can describe the logic of each device as
a Boolean formula in conjunctive normal form (CNF) relating
its inputs and outputs. For example, a two-input AND gate with
inputs x1 and x2 and output z can be expressed as

(x1 · x2 ↔ z)

which in CNF becomes

(x1 + ¬z) · (x2 + ¬z) · (¬x1 + ¬x2 + z).

For networks composed of multiple nonprogrammable de-
vices, we add intermediate variables for the output of each de-
vice and encode the relationship between the inputs and outputs
of each device as CNF formulas in terms of those intermediate
variables. Fig. 1 shows an example of a nonprogrammable de-
vice network, where an AND-2 gate and an OR-2 gate compose

Fig. 1. Example encoding for nonprogrammable devices.

Fig. 2. Four-input programmable MUX.

a three-input logic function g(x1, x2, x3). The corresponding
CNF fall is constructed as follows:

fAND2 = (x1 + ¬z) · (x2 + ¬z) · (¬x1 + ¬x2 + z)

fOR2 = (¬x3 + g) · (¬z + g) · (x3 + z + ¬g)

fall = fAND2 · fOR2.

A similar encoding can be performed for the programmable
devices (LUTs and MUXs) in a PLB. For a K-input LUT,
we introduce 2K additional variables, namely, L1, . . . , L2K , to
represent every possible setting of the configuration bits. For
example, the two-input LUT with inputs x1 and x2 and output
z1 can be encoded as follows:

(x1+x2+¬L1+z1) · (x1+x2+L1 + ¬z1)

· (x1+¬x2+¬L2+z1) · (x1+¬x2+L2+¬z1)

· (¬x1+x2+¬L3+z1) · (¬x1+x2 + L3+¬z1)

· (¬x1+¬x2+¬L4+z1) · (¬x1+¬x2+L4+¬z1).

For a K-input programmable MUX, we have �log K� con-
figuration bits; thus, we introduce �log K� additional variables.
Fig. 2 shows a four-input programmable MUX with inputs x1

and x2 and output z, where L1 and L2 are the variables corre-
sponding to the configuration bits. The derivation of the CNF
encoding for this four-input MUX is essentially symmetric to
that of the two-input LUT and is therefore omitted.

B. From Boolean Matching to SAT

Let G(x1, . . . , xn, L1, . . . , Lm, z1, . . . , zl, f) be a Boolean
function in CNF representing a PLB, where variables
x1, . . . , xn represent the input signals, variables L1, . . . , Lm

represent configuration bits, variables z1, . . . , zl represent the



HU et al.: EXPLOITING SYMMETRIES TO SPEED UP SAT-BASED BOOLEAN MATCHING 1753

Fig. 3. (a) Truth table for a function f . (b) Example PLB.

intermediate circuit signals, and f represents the output func-
tion of the configuration. Let F (x1, . . . , xn, f) represent a
Boolean function over the variables x1, . . . , xn with output
signal f . We assume that F is represented in CNF, for example,
by computing a CNF formula from a truth table representation
of the function. The Boolean matching problem then asks if
there exists a setting of the configuration signals L1, . . . , Lm

such that, for all input variables x1, . . . , xn, there are valuations
of the intermediate signals such that the output f of the PLB is
equivalent to the output of the Boolean function f . Formally,
the Boolean matching problem is formulated as the following
quantified Boolean satisfiability (QSAT) problem:

∃L1, . . . , Lm∀x1, . . . , xn∃z1, . . . , zl, f

· G(x1, . . . , xn, L1, . . . , Lm, z1, . . . , zl, f)
F (x1, . . . , xn, f). (1)

As in [8], the universal quantifiers in (1) can be removed
by enumerating the truth table of the function F (x1, . . . , xn).
Therefore, (1) can be solved with SAT, where a satisfying
assignment implies that the function can be realized by the
configuration.

C. Example

Consider the example PLB shown in Fig. 3(b), which con-
tains a LUT-2 and an AND-2 gate. We want to test if function
f , whose truth table is shown in Fig. 3(a), can be implemented
by this PLB. Let X = {x1, x2, x3} be the set of input pins. We
generate a SAT problem using the following steps.

1) Create CNF formulas for individual elements in the PLB.

GLUT = (x1+x2+¬L1+z)(x1+x2+L1+¬z)

· (x1+¬x2+¬L2+z)(x1+¬x2+L2+¬z)

· (¬x1+x2+¬L3+z)(¬x1+x2+L3+¬z)

· (¬x1+¬x2+¬L4+z)(¬x1+¬x2+L4+¬z)

GAND = (z+¬f) · (x3+¬f) · (¬z+¬x3+f).

2) The characteristic function of the PLB can then be
expressed as

G = GLUT · GAND. (2)

3) Decide on either a QSAT-based formulation or a
SAT-based formulation.

a) QSAT-based formulation. For the QSAT-based for-
mulation, write the CNF for the truth table of the
Boolean function f as follows:

Gf = (¬x1+¬x2+¬x3+f) · (¬x1+¬x2+x3+f)

· (¬x1+x2+¬x3+f) · (¬x1+x2+x3+f)

· (x1+¬x2+¬x3+¬f) · (x1+¬x2+x3+f)

· (x1+x2+¬x3+¬f) · (x1+x2+x3+¬f).

The QSAT formulation can then be expressed as
follows:

∃L1∃L2∃L3∃L4∀x1∀x2∀x3∃z, f.(G · Gf ).

A satisfiable assignment to the aforementioned QSAT
instance implies that f can be implemented by
the PLB.

b) SAT-based formulation. In the SAT-based formula-
tion, we replicate (2) to remove the universal quan-
tifiers on the input variables in X .2 This defines
GSAT as

G[X/000, f/0, z/z1] · G[X/001, f/0, z/z2]

· G[X/010, f/1, z/z3] · G[X/011, f/0, z/z4]

· G[X/100, f/1, z/z5] · G[X/101, f/1, z/z6]

· G[X/110, f/1, z/z7] · G[X/111, f/1, z/z8].

(3)

Finding a satisfiable assignment of GSAT implies
that f can be implemented by the PLB. In this case, the
SAT solver will find that the problem is unsatisfiable,
which means that the Boolean function shown in
Fig. 3(a) cannot be implemented by the PLB shown
in Fig. 3(b).

D. Input Permutation

An important issue in Boolean matching is input permuta-
tion, which expands the solution space of a given circuit by con-
sidering different mappings from the variables of the Boolean
function to the pins of the PLB. Fig. 4 shows two Boolean
functions which are equivalent under input permutation—
i.e., function fa can be transformed into fb by the permutation
τ = (3, 2, 1). Note that fa cannot be implemented by the PLB
shown in Fig. 3(b), whereas fb can.

In practice, input permutation is employed in FPGA designs
and must be considered during Boolean matching to maximize
the number of implementable functions. However, the number
of permutations for a K-input Boolean function is K!, which
grows extremely quickly as K increases. In order to consider
input permutations in the SAT formulation, Ling et al. [8]
proposed adding programmable MUXs before each primary
input of the target PLB (see Fig. 5). All possible permutations

2Note that such a transformation is an application of the general expand
operator used in Quantor [16] and also used by Ayari and Basin [17].



1754 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 4. (a) Truth table of fa = x1 · (x2 + x3). (b) Truth table of fb = x3 ·
(x1 + x2).

Fig. 5. Considering input permutation with additional MUXs.

are encoded by these MUXs. For each of these programmable
MUXs, �log n� + 1 additional variables are needed to repre-
sent the configuration bits (e.g., L11, L12, L21, L22, L31, L32 in
Fig. 5) and intermediate pins (e.g., z1, z2, z3), as well as O(n2)
clauses. Thus, accounting for input permutation by adding n
MUXs adds n · (�log n� + 1) variables and O(n2) clauses to
the original formulation. Depending on the circuit, this can
have significant impact on the problem size. For instance, a
typical SAT/QSAT problem effectively doubles when adding
MUXs to a circuit composed of four LUTs. Since the runtime
complexity is exponential to the size of a SAT instance, these
programmable MUXs increase the runtime exponentially.

III. CONSIDERING SYMMETRIES

We present an efficient algorithm which eliminates the need
for permutation MUXs by explicitly considering symmetry in
the SAT formulation.

A. Symmetry in Boolean Functions

Variables xi and xj of Boolean function f(x1, . . . , xn)
are symmetric if the truth table of f remains the same
when xi and xj are swapped, i.e., if f(. . . , xi, . . . , xj , . . .) =
f(. . . , xj , . . . , xi, . . .). By observing the variable symmetries
exhibited in a Boolean function, we can make the program-
mable MUXs added in Section II-D unnecessary by pruning
all but the distinct permutations.

Given an n-input Boolean function f(x1, . . . , xn), we can
first test the symmetry of every input pair (xi, xj) by comparing
the truth tables before and after swapping variables xi and

xj . Once all symmetric relationships between variable pairs
are computed, we can find the connected components of the
undirected graph where each variable is a node and each
symmetry between variables is an edge. For example, consider
a nine-input Boolean function having the four symmetries
(0, 1, 6, 8), (3, 4, 5), (2), and (7). For any two permutations
τ1 and τ2, if the only difference between them is within the
same symmetry cluster [(0, 1, 6, 8) or (3, 4, 5), in this example],
we have f ◦ τ1 = f ◦ τ2, and only one of these permutations
needs to be tested in the Boolean matching. In fact, the number
of distinct permutations under such a symmetry is 9!/(4! ×
3! × 1! × 1!) = 2520, reducing the number of permutations to
consider by a factor of 144.

Note that the time required to identify symmetries of an
n-input function using the aforementioned algorithm is O(n2 ·
2n). This computational cost is negligible in practice com-
pared with the Boolean matching time, however, as usually
n < 9. Taking advantage of the symmetries exhibited by a
Boolean function allows us to significantly reduce the number
of permutations to test. In addition, symmetries can be detected
efficiently using sophisticated algorithms [18].

Once the functional symmetries have been computed, the
reduced set of distinct input permutations can be generated.
First, the variables within each cluster are sorted to form a
canonical representation—(0, 1, 6, 8), in the preceding exam-
ple. Each cluster is then assigned a label, which all variables
in that cluster inherit. A list is generated from these variable
labels, and the permutations of this list are computed. In the
example, the following labels are applied: (0, 1, 6, 8) = A,
(3, 4, 5) = B, (2) = C, and (7) = D. Thus, the list of labels
is (A,A,A,A,B,B,B,C,D). For each of the distinct per-
mutations of this list, the corresponding order of inputs is
created by enumerating the permutation, restoring a variable
from each cluster of that label, in cluster order. In the example,
the label permutation (A,B,A,A,B,A,B,C,D) corresponds
to the order (0, 3, 1, 6, 4, 8, 5, 2, 7).

B. Symmetry in PLB Architectures

Most commercial PLB architectures exhibit symmetry with
respect to their input pins. Additional levels of symmetry can
be found if more logical levels are considered. Formally, we
define first- a and second-order architectural symmetries as
follows.

Definition 1: First-Order Architectural Symmetry: Any two
input pins xi, xj connected directly to the same k-input LUT
are symmetric under the permutation (xi, xj).

Definition 2: Second-Order Architectural Symmetry: The
inputs x1, . . . , xk and inputs y1, . . . , yk for two k-input LUTs
Lx and Ly , respectively, are symmetric under permutation
π(yi1 , . . . , yik

, xj1 , . . . , xjk
) if the outputs x and y of these two

LUTs are symmetric.
For example, in the PLB shown in Fig. 6, the inputs x1 and

x2 are symmetric, as are the inputs x3 and x4, which means
that ignoring the configurations where they are swapped avoids
redundant calculations. The symmetries between x1 and x2

and between x3 and x4 are first-order architectural symme-
tries. Furthermore, since the outputs of both LUTs feed into a



HU et al.: EXPLOITING SYMMETRIES TO SPEED UP SAT-BASED BOOLEAN MATCHING 1755

Fig. 6. Second-order symmetric PLB.

two-input AND gate whose inputs are symmetric, ignoring the
configurations where two groups of pins (x1, x2) and (x3, x4)
are swapped under the permutations π = (x3, x4, x1, x2), π =
(x3, x4, x2, x1), and π = (x4, x3, x1, x2) will not affect the
Boolean matching decision. This is an example of a second-
order architectural symmetry.

C. Detection of Architectural Symmetry

Architectural symmetry detection can be done as a process-
ing step before resynthesis and can be performed either man-
ually or automatically. For automatic symmetry detection, we
propose the following algorithm.

Architectural symmetry information is computed for a par-
ticular PLB by generating a constraint list, as described in
Algorithm 3. A constraint in this context is an enforced ordering
between the function variable indices mapped to two specified
pins. That is, a “less than” constraint between pins m and n
implies that the index of the variable mapped to m must be less
than the index of the variable mapped to n. A constraint list is
simply a collection of constraints, which together can describe
the symmetries exhibited by a particular PLB.

The constraint list is computed recursively for all gates of the
PLB by comparing the topologies of each gate’s fan-in cone.
Topologies are compared by first recursively generating string
representations of each cone, as described in Algorithm 1, and
then comparing strings. All fan-in cones with the same topology
are symmetric; therefore, we enforce an ordering between these
cones. Doing so requires calculating a fan-in cone’s first pin, as
described in Algorithm 2.

Algorithm 1 topology (gate)
1: {Returns τ , a string representation of gate’s topology}
2: τ = “”
3: {gate.gateType is a string unique to each gate type: “AND,”

“LUT,” etc.}
4: if gate.gateType = “PI” then
5: {Base case—a primary input}
6: τ = “PI”
7: else

8: {Recursive case—aggregate topologies of fanins, in
sorted order}

9: λ = []
10: for all f ∈ gate.fanins do
11: λ.add(topology(f ))
12: τ =gate.gateType + “(” + λ.sort().join(“, ”) + “)”
13: return τ

Algorithm 2 firstPin(gate)
1: {Returns the first (lowest index) PI of gate’s cone}
2: if {gate.gateType = “PI”} then
3: {Base case—a primary input}
4: return gate
5: else
6: return firstPin(gate.fanins[0])

Algorithm 3 computeConstraintList(architecture)
1: {Returns a list of constraints which all unique

permutations will satisfy}
2: constraintList = []
3: for all g ∈ architecture.gates do
4: {φ is a queue of untested fanins}
5: φ = g.fanins
6: testFanin = φ.pop()
7: for allf ∈ φ
8: {Perform string comparison on topologies}
9: if topology(testFanin) = topology(f)
10: {Constrain permutations such that testFanin’s

cone should always come before f ’s cone in pin
ordering}

11: χ = ConstrainLessThan(
firstPin(testFanin).pinIndex,
firstPin(f ).pinIndex

)
12: constraintList.add(χ)
13: {New constraints should reference f}
14: testFanin = f
15: {f has been tested}
16: φ.remove(f )
17: return constraintList

For example, in Fig. 6, the inputs X1 and X2 both have the
topology “PI,” since they are primary inputs. Therefore, they
are symmetric, and since they are primary inputs, their first pins
are the inputs themselves. Thus, a constraint specifying that the
variable mapped to X1 must have an index less than that of
the variable mapped to X2, which we express as [X1] < [X2].
Similarly, the constraint [X3] < [X4] is added after analyzing
the second LUT.

The topology for the AND gate F in the same figure is
represented by the string “AND(LUT(PI, PI), LUT(PI, PI)).”
Because the second LUT has the same topology as the first,
the two LUTs are also symmetric. Thus, a constraint is added
between the first pin of the first LUT (X1) and the first pin of
the second LUT (X3), namely, [X1] < [X3].

Once the constraint list is calculated, it is applied to the
remaining input permutations, which has already been pruned
according to functional symmetries. Each permutation is tested



1756 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 7. Overall algorithm flow.

whether it satisfies the list of constraints, as described in
Algorithm 4. If the permutation violates any one of the con-
straints, it is considered redundant and, thus, pruned.

Algorithm 4 pruneInputPermutations(constraintList,
inputPerms)

1: for all π ∈ inputPerms do
2: for all χ ∈ constraintList do
3: if not χ.isSatisfiedBy(π) then
4: inputPerms.remove(π)

Note that a more sophisticated algorithm than the one just
described could be developed which would extend the structural
analysis algorithm presented in [19] to consider programmable
logic devices. Alternatively, detecting symmetry manually is a
reasonable approach since the number of PLB structures used
in an FPGA is very limited.

D. Algorithm Overview

Fig. 7 shows the overall flow of our approach. We first extract
the architectural symmetry information from the target PLB
(manually or using the algorithm in Section III-C) and generate
a template of its characteristic function. We also generate the
template clause-set by replicating the characteristic function
for each possible truth table entry (to be explained in detail
in Section IV). For each Boolean function to be tested, we
compute its functional symmetries (using the algorithm in
Section III-A or in [18]). Of the possible input permutations,
we prune those considered redundant as informed by the

Fig. 8. Replication time as a proportion of total runtime.

architectural and functional symmetry calculations, and the
distinct permutations are collected (“distinct permutation set”).
We iterate over this set (“pop a permutation p”), generating a
SAT problem for each permutation by replicating the PLB’s
characteristic function for each possible truth table entry (as in
(3) of Section II-C). Note that during SAT problem generation,
we do not actually replicate the CNFs for every truth table
entry, for each permutation. The precalculated template enables
us to update only the truth table output values for each min-
term of the Boolean function (“Resolve output value literals,”
details to be explained in Section IV-B). After solving the
generated SAT problem, if any permutation gives rise to a
satisfiable solution, the Boolean function can be implemented
by the target PLB. On the other hand, if instead none of the SAT
instances are satisfiable, we conclude that the function cannot
be implemented by the target PLB.

IV. IMPLEMENTATION ISSUES

As a practical consideration, a large proportion of the runtime
of SAT-BM techniques is spent on replicating clauses. In our
initial implementation, we observed that the percentage of time
consumed by the replication phase was as high as 57% of the
total runtime for nine inputs, whereas actual SAT solution time
peaked at only 4% of the total runtime for the same number
of inputs. Fig. 8 shows the proportion of total runtime that
replication consumes as compared with that of SAT solving
time, with the trend increasing as the number of inputs grows.

A number of techniques are applied to address this dispro-
portionate amount of time spent on problem construction. In
the following, we describe two different attempts and their
corresponding improvements to the overall runtime.

A. Iterative Clause Testing

Clause replication requires much more runtime than SAT
solving; it is prudent, therefore, to avoid unnecessary replica-
tion if possible. SAT solving, on the other hand, is relatively
inexpensive in this context; it is worth making several SAT
solver calls if doing so saves even a few replications. This
observation motivates the following approach, which takes
advantage of the characteristic structure of the SAT problem
by breaking down each problem into smaller subproblems.



HU et al.: EXPLOITING SYMMETRIES TO SPEED UP SAT-BASED BOOLEAN MATCHING 1757

Since an SAT problem is made up simply of several clauses
which are ANDed together, it can easily be partitioned into
any combination of subsets of clauses which, in turn, must be
ANDed together. If any subset is found to be unsatisfiable, then
clearly the entire SAT problem is unsatisfiable. If, on the other
hand, the conjunction of all subsets is found satisfiable, then
the entire problem is satisfiable. This leads to a straightforward
solution to the costly replication issue—replicate subsets of
clauses, testing each one for satisfiability.

If any subset is unsatisfiable, we return unsatisfiable and can
avoid the cost of replicating the remaining clauses. If instead the
subsets are all satisfiable, at some point, the algorithm should
determine that it is worth testing the entire set of clauses. We
call this technique iterative clause testing. What remains to be
determined is how exactly to partition the clauses into subsets.
Partitioning into too many subsets will incur the cost of unnec-
essary replications in the satisfiable case; partitioning into too
few will not achieve significant savings in the unsatisfiable case.

Note also that two SAT clauses may be satisfiable, yet their
conjunction may be unsatisfiable if a conflict exists between
them. Thus, partitioning the problem into disjoint subsets is not
an efficient approach, as conflicts will not be detected as early
as possible. Iteratively testing a set of clauses which subsumes
the previous subset is a better technique. This can also take
advantage of any incremental capabilities of the SAT solver; if
supported, the replication of the previous subset can be avoided
as new clauses are simply added to the currently instantiated
problem.

In our implementation, we start with a subset containing
clauses representing one truth table entry. Whenever the subset
is found satisfiable, we double its size by adding the appropriate
number of untested clauses. We continue doubling the size of
the subset until it is either found unsatisfiable, or it contains all
clauses of the SAT problem and is found satisfiable. Our results
show the iterative clause testing technique to be a significant
improvement, performing faster than the implicant representa-
tion improvement presented by Cong and Minkovich [9].

We also applied the iterative clause testing technique to
the implicant representation implementation; however, this en-
hancement only provided modest improvement. In fact, the
iterative technique with the truth table representation outper-
formed the iterative technique with the implicant representation
by a factor of two on average. We suspect that nature of the
clauses generated by the truth table representation enables early
unsatisfiability detection more often than with the implicant
representation.

B. Template Clause-Set

Noting the incremental capabilities of our particular SAT
solver led us to an improvement which surpassed all of our
previous approaches regarding CNF replication time. Note that
there is a large amount of information common to all input
permutations to be tested. The key to this technique lies in
extracting it effectively to reduce unnecessary replication.

Given a Boolean function f(x1, x2, . . . , xn), the truth table
of f has 2n entries, with possible inputs 000. . .0 through
111. . .1. Note that any permutation of f will have not only the

Fig. 9. Illustration of identical input values for function f and permutation f ′.

same number of inputs but also, in fact, the exact same set of
input values 000. . .0 through 111. . .1, although in a different
order. What remains distinct between the permutations is the
order of the output values induced by the permuting of the input
values. Fig. 9 shows an example where f ′ is equivalent to f , but
with x1 and x3 swapped.

We can take advantage of this common information during
the replication phase in the following way. Rather than generat-
ing a new set of SAT clauses for each permutation, we instead
create a CNF template clause-set once for all permutations of a
particular SAT problem. Recall that in the replication phase,
the set of clauses representing the characteristic function is
replicated several times, once for each truth table entry. In each
replication, the Boolean literals representing the circuit inputs
and outputs are substituted with the input and output values
of the corresponding truth table entry, respectively. Instead of
substituting both input and output values, the improved strategy
continues to substitute the input values but leaves the output
values f1, f2, . . . , f2n unmodified, effectively leaving them as
unbound free variables for the SAT solver. This is the template
clause-set.

To test a permutation, we calculate the reordering of output
values induced by the permutation of input variables. Applying
this new order to the function’s output values, we then deter-
mine how the unbound variables f1, . . . , f2n of the template
clause-set should be constrained. By taking advantage of our
SAT solver’s ability to accept assumptions as a parameter when
solving, each unbound variable is bound as an assumption
accordingly. Testing each new permutation only requires cal-
culating the output value order and binding the output values
as assumptions. Thus, the CNF replication process, which was
performed for every truth table entry, for each permutation,
is now performed only once per Boolean function tested.
Note that although any information learned by the incremental
SAT solver is reset between permutations, information is still
recorded and used to speed up conflict-finding when testing the
input vectors under one permutation.

We find that the template clause-set technique with incre-
mental SAT reasoning is significantly better at reducing runtime
than the iterative-clause-testing-based approach. The compari-
son between these two approaches is shown in Section V-A.



1758 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 10. Nine-input PLB and 12-input PLB.

Fig. 11. Comparison of the number of distinct permutations when pruning
function symmetries (“func”) and when pruning function and architectural
symmetries (“arch”).

V. EXPERIMENTS

We implement our algorithms in C++ and Perl, using
miniSAT2.0 [20] as our SAT solver. The implicant table-based
SAT encoding [9] has been implemented and integrated into
our algorithm, as shown in Fig. 7. To show the effective-
ness of our improvement to the SAT-BM algorithm (shown in
Fig. 7), we extract over 10 000 fan-out-free cones with five
to nine inputs from MCNC benchmarks based on the method
presented in [4] as the Boolean functions. The target PLB
architecture is the nine-input PLB shown in Fig. 10. This
architecture exhibits both first-order symmetry (e.g., permuta-
tions of the input variables x1, x2, x3, x4 are redundant) and
second-order symmetry (e.g., permutations which swap the
input groups (x1, x2, x3, x4) and (x5, x6, x7, x8) are redun-
dant). Both levels of symmetry are used in our SAT-BM. All
experiments are run on a 1.9-GHz CPU Linux server with 2-GB
memory.

We first randomly select 30 nine-input Boolean functions
from the nine-input cut set and calculate the number of unique
permutations considering symmetries, as shown in Fig. 11.

TABLE I
COMPARISON OF SAT SOLVING TIME BETWEEN SAT-BM AND OUR

IMPROVED ALGORITHM (SAT-IP-TEMPLATE)

Compared with the total number of unique permutations (9! =
362, 880), we reduced computation by over two orders of
magnitude by considering Boolean function symmetries and by
another two orders of magnitude by considering architectural
symmetries.

Table I compares the original algorithm SAT-BM presented
in [8] and our improved algorithm, SAT-IP-template, which
is our symmetry-aware algorithm combined with the template
clause-set improvement, as described in Section IV-B. The
average SAT instance sizes and runtime of both algorithms are
shown in the table. As the number of inputs in the Boolean func-
tion increases, the SAT instance size increases exponentially
for SAT-BM. On the other hand, the size of the SAT problem
representing a single permutation for our SAT-IP-template al-
gorithm remains virtually the same, independent of the number
of inputs in the Boolean function. In fact, the size of each
SAT-IP-template SAT instance is decided by the number of
distinct permutations, which is further dependent on the sym-
metries exhibited by the Boolean function and the PLB archi-
tecture. As shown in Table I row “unique perm#,” the number of
unique permutations grows slowly after pruning based on sym-
metries. Compared with SAT-BM, SAT-IP-template achieves
1364× and 226× speedup in terms of SAT reasoning runtime
and total runtime, respectively, for nine-input logic functions.
More significant speedup is expected if Boolean functions with



HU et al.: EXPLOITING SYMMETRIES TO SPEED UP SAT-BASED BOOLEAN MATCHING 1759

Fig. 12. Comparison of average runtime with different CNF replication
speedup techniques.

wider inputs are considered.3 Note that two recent improve-
ments on the SAT-BM problem, namely, [9] and [13], obtained
up to 13× speedup compared with [8]. The substantial speedup
obtained by SAT-IP-template makes it possible to integrate
the SAT-BM algorithm within technology mapping and logic
optimization during heterogeneous FPGA synthesis.

A. Comparison of Speedup Techniques

Fig. 12 shows a comparison of the average runtime on
3000 nine-input Boolean functions with the following dif-
ferent speedup techniques: 1) Ling’s approach (SAT-BM);
2) our initial algorithm without optimization for CNF repli-
cations (SAT-IP-base); 3) our algorithm with iterative clause
testing and the truth-table-based representation (SAT-IP-iter-
TT); 4) our algorithm with iterative clause testing and the
implicant table-based representation [9] (SAT-IP-iter-IT); and
5) our algorithm with the template clause-set improvement
(SAT-IP-template). The average (geometric mean) runtime for
these techniques under all testing cases is shown in Fig. 12.

An interesting observation is that the improvements gained
by our incorporation of the implicant representation as pre-
sented by Cong and Minkovich [9] are completely superseded
by our template clause-set implementation. There are a number
of possible reasons for this. First, for every programmable PLB
element with k inputs in the original architecture, the implicant
representation adds another 2k − 1 such elements. During the
replication phase, this effectively allows for element-centric
replication rather than circuit-centric replication. That is, rather
than replicating CNF clauses which represent the entire circuit,
as is the case when replicating the truth table representation,
only clauses which represent each circuit element are repli-
cated. While replication at the PLB element level may result in
fewer duplicated SAT clauses overall, typical reduction of SAT
problem size is on the order of one half. Thus, performance is
improved, but not substantially. Second, the template clause-
set implementation is very effective because the majority of

3We are limited to nine-input Boolean functions; for larger functions, SAT-
BM generates SAT problems which exhaust available memory when run with
miniSAT.

Fig. 13. Scalability study of SAT-IP-template.

CNF replication time is incurred only once, while the implicant
representation must repeat the same CNF replication for each
input permutation.

We have also compared our best algorithm, i.e., SAT-IP with
the template clause-set, with a symmetry detection and CNF
optimization tool, namely, Shatter/Saucy [21], which takes ad-
vantage of the symmetries existing in CNFs of a SAT instance.
Our results (described in our extended technical report [15])
show that Shatter is not able to take much advantage of the sym-
metry inherent in these SAT problems. This is to be expected, as
the tool targets symmetries among literals and is not designed
to be aware of the particular nature of our problems. These
results validate the need for specialized symmetry detection at
the Boolean matching level.

B. Scalability Study

To test the scalability of our SAT-IP-template algorithm,
we have used SAT-IP-template to map Boolean functions (ex-
tracted from MCNC benchmarks) with 5 to 12 inputs against
the 12-input PLB shown in Fig. 10. Fig. 13 compares the
runtime for SAT-BM with the 12-input PLB and the nine-
input PLB shown in Fig. 10. The average runtime for each input
number is shown. Compared with SAT-BM with the nine-input
PLB, SAT-BM with the 12-input PLB shows a 10× runtime
increase. Note that the runtime growth is much slower than
the growth of the problem complexity, which depends on the
number of configuration bits (1.3× increase) and permutations
(> 1000× increase). In addition, the curve for SAT-BM with
12-input PLB indicates that our algorithm scales well for
Boolean matching with large PLBs and wide inputs. Note that
the runtime for functions with 10, 11, and 12 inputs remains
virtually the same. Again, the reason is that the overall runtime
is dependent on the number of distinct permutations after
pruning; the SAT solving time for each permutation is largely
determined by the target PLB architecture and does not change
significantly from one input number to the next.

VI. CONCLUSION

Leveraging the symmetries exhibited in both Boolean func-
tions and target PLB architectures, we have obtained two orders
of magnitude speedup compared with the original SAT-BM
algorithm [8]. In contrast, recent work [9], [13] obtained up
to 13× speedup. Our work makes SAT-BM more practical for
synthesis and optimization of heterogeneous FPGAs. Since our



1760 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

SAT-BM applies to any PLB architecture, it is valuable for
FPGA architecture evaluation. Nevertheless, our SAT-BM is
still slow compared with structural technology mapping and
may not prove practical for FPGA end users. In the future,
we plan to improve SAT-BM further and apply it to FPGA
architecture exploration.

REFERENCES

[1] Y. Hu, S. Das, S. Trimberger, and L. He, “Design, synthesis and evaluation
of heterogeneous FPGA with mixed LUTs and macro-gates,” in Proc. Int.
Conf. Comput.-Aided Design, 2007, pp. 188–193.

[2] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” in Proc. ACM Int. Symp.
Field-Program. Gate Arrays, 2006, pp. 41–49.

[3] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 1,
pp. 1–12, Jan. 1994.

[4] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. ACM Int. Symp.
Field-Program. Gate Arrays, 1999, pp. 29–35.

[5] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs,” in Proc. Int. Conf. Comput.-Aided
Design, 2004, pp. 752–759.

[6] A. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table mini-
mization problem for FPGA technology mapping,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 13, no. 11, pp. 1319–1332,
Nov. 1994.

[7] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting,” in Proc. Design Autom. Conf., 2005.

[8] A. Ling, D. Singh, and S. Brown, “FPGA technology mapping: A study
of optimality,” in Proc. Design Autom. Conf., 2005, pp. 427–432.

[9] J. Cong and K. Minkovich, “Improved SAT-based Boolean matching
using implicants for LUT-based FPGAs,” in Proc. ACM Int. Symp. Field-
Program. Gate Arrays, 2007, pp. 139–147.

[10] J. Cong and Y.-Y. Hwang, “Boolean matching for LUT-based logic blocks
with applications to architecture evaluation and technology mapping,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 9,
pp. 1077–1090, Sep. 2001.

[11] L. Benini and D. Micheli, “A survey of Boolean matching techniques for
library binding,” ACM Trans. Design Autom. Electron. Syst., vol. 2, no. 3,
pp. 193–226, Jul. 1997.

[12] A. Abdollahi and M. Pedram, “A new canonical form for fast Boolean
matching in logic synthesis and verification,” in Proc. Design Autom.
Conf., 2005.

[13] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, “Efficient
SAT-based Boolean matching for FPGA technology mapping,” in Proc.
Design Autom. Conf., 2006, pp. 466–471.

[14] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting symmetry in
SAT-based Boolean matching for heterogeneous FPGA technology
mapping,” in Proc. Int. Conf. Comput.-Aided Design, 2007, pp. 350–353.

[15] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting symme-
tries to speed-up SAT-based Boolean matching for logic synthesis of
FPGAs,” Tech. Rep. UCLA Engr 07-265, 2007. [Online]. Available:
http://www.ee.ucla.edu/~hu/pub/techReport07_sat_bl.pdf

[16] A. Biere, “Resolve and expand,” in Proc. SAT, 2004, pp. 238–246.
[17] A. Ayari and D. Basin, “Qubos: Deciding quantified Boolean logic

using propositional satisfiability solvers,” in Proc. FMCAD, 2002,
pp. 187–201.

[18] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R. Burch,
“Generalized symmetries in Boolean functions: Fast computation and
application to Boolean matching,” in Proc. Int. Workshop Logic Synth.,
2004.

[19] J. S. Zhang, A. Mishchenko, R. Brayton, and M. Chrzanowska-Jeske,
“Symmetry detection for large Boolean functions using circuit represen-
tation, simulation, and satisfiability,” in Proc. Design Autom. Conf., 2006,
pp. 510–515.

[20] N. Een and N. Sorensson, [Online]. Available: http://www.minisat.se/
[21] F. Aloul, I. Markov, and K. Sakallah, “Efficient symmetry-breaking for

Boolean satisfiability,” in Proc. IJCAI, 2003, pp. 271–282.

Yu Hu (S’04) received the B.S. and M.S. de-
grees in computer science from Tsinghua University,
Beijing, China, in 2002 and 2005, respectively. He
is currently working toward the Ph.D. degree in
the Electrical Engineering Department, University of
California, Los Angeles (UCLA).

He was with Xilinx Research Laboratory in the
summer of 2006. He is currently a Graduate Student
Researcher with the Electrical Engineering Depart-
ment, UCLA. He is the author of over 30 technical
papers and the holder of four patents in the field

of computer-aided design (CAD) for very large scale integration designs.
His current research interests include CAD for field-programmable gate array
synthesis and application-specified integrated circuit physical synthesis.

Mr. Hu has been a full member of Sigma Xi since 2007. He was the recipient
of the Outstanding Graduate Student Award in 2005 from Tsinghua University
and of the Best Contribution Award of IEEE Programming Challenge at the
International Workshop on Logic and Synthesis in 2008.

Victor Shih received the B.S. degree in computer
science from the University of California, San Diego,
in 1996 and the M.S. degree in computer science
from the University of California, Los Angeles
(UCLA), in 2008.

He is currently working on a startup venture as
a Senior Software Developer with the Computer
Science Department, UCLA.

Rupak Majumdar received the B.Tech. degree in
computer science from the Indian Institute of Tech-
nology (IIT), Kanpur, India, in 1998 and the Ph.D.
degree in computer science from the University of
California (UC), Berkeley, in 2003.

Since 2003, he has been an Assistant Professor
with the Computer Science Department, University
of California, Los Angeles. His research interests
include the verification and control of reactive, real-
time, hybrid, and probabilistic systems; software
verification and programming languages; game the-

oretic problems in verification; and logic and automata theory.
Dr. Majumdar was the recipient of the President’s Gold Medal from IIT, the

Leon O. Chua Award from UC Berkeley, and the National Science Foundation
CAREER Award in 2006.

Lei He (S’94–M’99) received the Ph.D. degree in
computer science from the University of California,
Los Angeles (UCLA), in 1999.

He was a Faculty Member with the University of
Wisconsin, Madison, between 1999 and 2001. He
is currently an Associate Professor with the Electri-
cal Engineering Department, UCLA. He also held
visiting or consulting positions with Intel, Hewlett-
Packard, Cadence, Synopsys, Rio Design Automa-
tion, and Apache Design Solutions. He has published
over 160 technical papers. His research interests

include very large scale integration circuits and systems and electronic design
automation.

Dr. He has been a technical program committee member for a number of
conferences, including the Design Automation Conference, the International
Conference on Computer-Aided Design, the International Symposium on Low
Power Electronics and Design, and the International Symposium on Field-
Programmable Gate Array. He was the recipient of the National Science
Foundation CAREER Award in 2000, the UCLA Chancellor’s Faculty Career
Development Award (highest class) in 2003, the IBM Faculty Award in 2003,
the Northrop Grumman Excellence in Teaching Award in 2005, and the Best
Paper Award at the 2006 International Symposium on Physical Design.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


