
 1

Abstract—The high complexity and time-varying workload of

emerging multimedia applications poses a major challenge for
dynamic voltage scaling (DVS) algorithms. While many DVS
algorithms have been proposed for real-time applications, an
efficient method for evaluating the optimality of such DVS
algorithms for multimedia applications does not yet exist. In this
paper, we propose the first offline linear programming (LP)
method to determine the minimum energy consumption for
processing multimedia tasks under stringent delay deadlines.
Based on the obtained energy lower bound, we evaluate the
optimality of various existing DVS algorithms. Furthermore, we
extend the LP formulation in order to construct an online DVS
algorithm for real-time multimedia processing based on robust
sequential linear programming. Simulation results obtained by
decoding a wide range of video sequences show that, on average,
our online algorithm provides a scheduling solution which
requires less than 0.3% more energy than the optimal lower
bound with only 0.03% miss rate. In comparison, a very recent
algorithm consumes roughly 4% more energy than the optimal
lower bound at the same miss rate.

Index Terms—Dynamic voltage scaling, energy management,
linear programming, multimedia communication, scheduling,
system modeling.

I. INTRODUCTION

UE to the popularity of streaming multimedia
applications on mobile and pervasive computing devices,

computationally intensive multimedia applications must often
be processed by energy-limited systems. Dynamic voltage
scaling (DVS)-enabled processors are particularly attractive for
such devices, since they can adapt their voltage level and
associated clock frequency in real time to save energy while
handling time-varying workloads and display deadlines [1] [2].
In general, a DVS-enabled processor can conserve energy by
reducing its voltage level; however, decreasing the voltage
level will also slow the processor clock speed, thereby
increasing the processing time, and hence the overall delay
 [2] [3] [4]. DVS algorithms attempt to find a dynamic balance

This work was partially supported by NSF CCR-0306682, NSF CCF

0541453, and NSF CNS-0509522. Address comments to lhe@ee.ucla.edu.
Z. Cao, L. He and M. van der Schaar are with are with Department of

Electrical Engineering, University of California, Los Angeles, CA 90095 USA
(e-mail: caoz@ucla.edu, {lhe,mihaela}@ee.ucla.edu).

B. Foo, was with Department of Electrical Engineering, University of
California, Los Angeles, CA 90095 USA. He is now with research department
of Lockheed Martin, Sunnyvale, CA, USA.

Copyright (c) 2009 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

between the operating level (i.e. power and frequency) of the
processor, and the quality-of-service for multimedia
applications in terms of meeting stringent delay deadlines.

A. Existing Works
A wide variety of DVS algorithms have been proposed for

delay-sensitive applications [5] - [14]. Earlier DVS algorithms
perform optimization over one or two tasks, considering either
the worst case execution time (WCET), or the average case
execution time (ACET) [6] [9]. The performance of these
approaches is limited because future tasks with imminent
deadlines may require extremely high processing power to
finish in time. Alternatively, a stochastic soft real-time
scheduler was proposed to increase the voltage level adaptively,
as long as the soft deadline is met in the worst case [7].
However, this is based upon the assumption that all jobs follow
the same complexity distribution, which is rarely the case for
multimedia applications. Hence, setting periodic soft deadlines
and using the same complexity model for all jobs can be
suboptimal.

Another category of DVS algorithms considers joint power
scheduling based on multiple job deadlines. LaEDF [5]
attempts to process tasks at the lowest frequencies and tries to
defer jobs such that the minimum amount of work is done while
ensuring that all future deadlines will still be met. Some
approaches employ feedback control or adaptive linear
prediction to estimate the complexity of future jobs
 [8] [10]- [12], which take advantage of temporal-correlations
and patterns inherent in multimedia jobs. Some DVS
approaches also employ application-based feedback to the
operating system instead of expected statistical behavior [29],
and consider energy consumption for both microprocessor and
memory devices [32] or the whole system [23] [34]. Scalable
scheduling approaches also exist [11] [28], where the number of
tasks released for execution (and hence, the number of
deadlines to consider) can be controlled by adjusting various
parameters, such as the “aggressiveness” factor in [11]. To
improve the performance of application-aware DVS algorithms,
in our prior work [13], we proposed the construction of
stochastic multimedia complexity models, where different
video frames and sequence types are classified into different
sets of complexity distributions. The parameters of the
distributions can be transmitted in advance and used to
analytically approximate the delay for processing each frame at
different processor operating levels, thus enabling the system to
adapt the processor voltage in real-time. In [15], a technique
combining intra- and inter-task voltage scheduling is proposed.
However, the optimal voltage schedule solutions proposed are

Optimality and Improvement of Dynamic Voltage
Scaling Algorithms for Multimedia Applications

Zhen Cao, Brian Foo, Lei He Senior Member, IEEE, Mihaela van der Schaar, Senior Member, IEEE

D

 2

only optimal statistically.
In the existing works, online DVS algorithms are evaluated

by experimental comparisons with other online algorithms.
However, there has not been a low-complexity approach to
determine how far these algorithms are from the optimal power
scheduling scheme. A few studies have provided methods for
computing the optimal offline scheduling problem, such as
solving an integer linear program (ILP) [21], or a dynamic
programming problem [12]. However, in these works, the
complexity grows super-polynomially with the number of jobs
considered. This intractability results from certain assumptions,
such as the voltage switch overhead being significant compared
to the complexity required for processing each job, and thus
voltage switch should not be used within a job. However, this
assumption is not necessary if the multimedia job complexities
are very high compared to the switch overhead, which is
usually the case for state-of-the-art video coders.

Furthermore, leakage current in CMOS circuits today
contributes a significant portion to total power consumption.
Leakage current is expected to increase five-fold with each
generation [16]. Hence, leakage power in DVS problems has
been studied intensively [16] - [19]. When technologies such as
power gating are used to reduce leakage power, the zero power
and frequency of sleeping mode should be considered in a DVS
algorithm and it is possible that the power-frequency function
for processors could be non-convex. In this case, existing works
 [6] [8] [13] [17] that attempt to minimize idle periods under the
assumption of a convex power-frequency function will be no
longer effective. Hence, adaptive DVS algorithms and efficient
analysis of optimality for both convex and non-convex
power-frequency functions are needed.

B. Contributions of This Paper
The contributions of this paper are as follows: first, we

analyze the optimality of DVS algorithms by deriving a lower
bound for energy consumption, subject to processing all jobs
before their delay deadlines (i.e. zero miss rate). We propose a
linear programming (LP) DVS solution to obtain the optimal
offline scheduling solution for both convex and non-convex
power-frequency functions. Unlike the integer programming
formulation presented in [21] for temperature-aware DVS
scheduling, we take advantage of the fact that the delay
overhead of voltage switch is negligible compared to the high
multimedia job complexities. Based on the workload traces
collected during execution time, we solve the offline LP
problem to obtain the lower energy bound for DVS algorithms.
A thorough investigation of video decoding results (where
many video sequences are decoded at many different bit rates)
shows that, under the same zero miss rate, laEDF [5] consumes
approximately 15% more energy than the optimal solution, and
our prior queuing based algorithm in [13] consumes
approximately 4% more than the optimal solution.

Second, based on the proposed LP formulation and accurate
multimedia complexity modeling, we propose an online robust
sequential linear programming approach to DVS, namely SLP/r,
which outperforms existing DVS solutions. Experimental
results from real-time video decoding (where workloads are

highly time-varying) indicate that SLP/r consumes less than
0.3% more energy than the optimal DVS solution while
dropping only 0.03% of decoding jobs. While the a very recent
algorithm (the queuing-based algorithm 2 in [13] by coauthor
of this paper) consumes roughly 4% more energy than the
optimal at the same miss rate, our online approach has
significantly reduced the gap between online algorithms and
optimal solution from 4% to 0.3%. Also of note, the SLP/r
algorithm has only a small overhead, since the time complexity
of SLP/r mainly depends on the efficiency of the LP solver. The
relative complexity of SLP/r will scale down when supporting
increasingly computational applications (e.g. higher resolution
multimedia decoding) in the future.

While we have used video decoding as an example in this
paper for motivation and experiment, both the offline LP and
online SLP/r approaches are applicable to the DVS problem
concerning other delay-sensitive real-time applications with
time-varying workloads, such as data mining and stream
processing applications.

This paper extends our previous study in [27]. We extend the
online algorithm SLP/r to support adjustable granularities of
running sequential linear programming. Also, by studying and
optimizing over the granularity and conservativeness of SLP/r,
we further reduce the energy consumption gap between online
algorithms and optimal solution by 3× (from 1% to 0.3%).

The rest of this paper is organized as follows: section II
provides background on multimedia complexity and power
modeling. Section III formally states the real-time DVS
problem. Sections IV and V introduce the optimal offline LP
solution and the online SLP/r algorithm, respectively. Section
VI presents experimental results to validate our work. Section
VII concludes our work.

II. BACKGROUND AND MODELING

A. Multimedia Complexity
State-of-the-art video coders (H.264, SVC etc.) often encode

adjacent frames jointly in order to exploit the temporal
correlation existing in the video and thereby reduce video
transmission bit-rate. However, this leads to complicated
group-of-pictures (GOP) structures, where particular video
frames require the reconstruction of reference frames in order
to be decoded, and other video frames require few or no such
reference frame for their decoding. This results in significant
workload variations between adjacent decoding jobs (Fig. 1).
Moreover, the workload variations will also depend on the
different characteristics exhibited by video sequences (e.g.
different motion and texture characteristics etc.) [12] [13].

In this work, to mitigate the detrimental effects of highly
time-varying workloads on DVS algorithms, we adopt the
application-aware model for the video coding complexity
described in [13] for the proposed online algorithm. In our prior
work [13], we showed that complexity statistics of decoding
jobs can be decomposed into the sum of complexity metrics
that follow simple, well-known distributions, such as Poisson
distribution for entropy decoding. Hence, we can approximate
each metric by i.i.d. random complexities, which sum up to
approximate a Gaussian distribution by the central limit

 3

theorem of probability. Hence, for experiments in our work, we
assume that the complexity of jobs follows Gaussian
distribution. However, our algorithms are applicable to other
media complexity models (e.g., the ones used in [12]) or media
compression tasks.

1 2 3 4
0

1

2

3

4

5

6

7

8

9
x 109

Job #

C
om

pl
ex

ity
 (i

n
cy

cl
es

)

Comparison of complexity of job types

Stefan
Coastguard

Fig. 1. Comparison of various decoding jobs for video sequences Stefan and
Coastguard.

In our work, a job class is defined as a particular frame type
in a GOP. For example, we may consider four job classes for a
GOP structure in a 3 temporal level MCTF wavelet video coder,
where each job involves decoding 2 video frames. Similarly,
job classes can be determined for MPEG and H.264 coders
based on I, B, and different P-frame types. To model the
complexity within each class of jobs, offline training of
decoding is used to obtain workload distributions of each job
class in different video sequences, as shown in Fig. 2 for the
MCTF wavelet coder. These distributions enable us to collect
important information about the decoding complexity of each
job class, such as the mean and standard deviation. Then, this
metadata information can be sent by the encoder/server ahead
of jobs with low transmission overhead whenever the sequence
characteristics or coder parameters change [25]. Such
information can be used by the proposed online DVS algorithm
to achieve the tradeoff between energy consumption and
quality-of-service.

Fig. 2. The workload distribution within one class of decoding jobs.

Finally, note that the complexity of each video decoding job
is on the order of a billion cycles. Hence, overheads associated
with voltage switches, which are on the order of less than one
hundred clock cycles [24], are negligible compared to the
processing complexity of multimedia tasks. On the other hand,
the number of voltage switches is the number of voltage levels
adopted within the job (we can integrate the time allocations of
each voltage level into one if more than one time allocation of a
voltage level is scheduled). The largest number of voltage

switches occurs for the job within which we utilize all different
voltage levels. Hence, the number of voltage switches within a
job is no more than the total number of voltage levels. Based on
these observations, we assume that the voltage switch overhead
can be ignored.

B. Dynamic and Leakage Power
In general, a processor consumes both dynamic and leakage

power for a given Vdd level, and consumes no power when the
Vdd level is zero, i.e. in the power gating or sleep mode. To
evaluate our proposed algorithms, we adopt the power model
proposed in [17] and used in [16] [21] for real-time applications.
However, the algorithms proposed in this paper can apply to
any power model, regardless of whether the power-frequency
function is convex or not. The dynamic power is:

 2
d ddP CV F= (1)

where C is the effective switching capacitance, Vdd is the supply
voltage and F is the clock frequency. We choose the leakage
power model from [17], which includes the subthreshold and
the reverse bias leakage power. For a given supply voltage Vdd,
the leakage power Ps and subthreshold leakage current Isub are:

 ()s g dd sub bs jP L V I V I= + (2)

 4 5
3

dd bsK V K V
subI K e e= (3)

where Lg is the number of devices in the circuit, Ij is the reverse
bias junction current, Vbs is the body bias voltage, K3, K4 and K5
are constant fitting parameters. The clock frequency F and
threshold voltage Vth are:

 () ()a
dd th dF V V L K= − (4)

 1 1 2th th dd bsV V KV K V= − − (5)
where Ld is the logic depth of the path, a, K1, K2 and Vth1 are
technology constants. We adopt the constants for 70nm
technology node from [16] in our experiment, shown in Table I.

TABLE I
70NM TECHNOLOGY CONSTANTS

Const Value Const Value Const Value
K1 0.063 K 5.26 x10-12 C 0.43x10-9
K2 0.153 Vth1 0.244 Ij 4.8x10-10
K3 5.38x10-7 Vbs -0.7 Ld 37
K4 1.83 A 1.5 Lg 4x106
K5 4.19

C. Assumptions and Clarifications
In this paper, the DVS problem we are solving has certain

attributes which must be considered: we consider a known
workload for the offline problem and an uncertain workload for
the online problem; we consider both inter- and intra-job
scheduling, where we allow voltage switch to occur within a
job as well as between jobs; similar to most DVS-enabled
processors, the configurable voltage levels are discrete.

Furthermore, we assume that power is constant if the voltage
and frequency level are set; this assumption is also adopted in
many existing works [5] - [15]. Also, we assume that compared
with multimedia decoding jobs, the voltage switch overhead is
small enough to be ignored. For the offline problem, we assume
that the complexity and arrival time for each decoding job are

 4

known. This information can be obtained from the trace of the
video decoding. For the online problem, we assume that the
mean and standard deviation of complexities are obtained by
off-line training and are transmitted to the decoder before
decoding of these jobs start [13].

III. PROBLEM STATEMENT

For the DVS problem, we are given a sequence of decoding
jobs. Each job has a given complexity (workload in unit of
clock cycles), arrival time and display deadline. Because we are
performing real-time media transmission and decoding, the
arrival time can be influenced by the time-varying network
characteristics [26]. Also, a voltage/frequency configurable
system can switch the frequency of its processor by
dynamically adapting its voltage level. Hence, we have a set of
active operating levels with frequencies and corresponding
powers (sum of leakage power and dynamic power).
Furthermore, if power gating is enabled, we have an additional
operating level for the sleep mode. The goal of a DVS
algorithm is to find a scheduling solution to minimize the total
energy consumption. The DVS problem is formalized below:

Problem Formulation 1
Given M decoding jobs with their associated complexities,

arrival times and display deadlines, plus K voltage levels with
the associated clock frequencies and power, the DVS problem
is to find the voltage scheduling solution to minimize the
energy consumption for the entire sequence of jobs under the
following constraints: the decoder can only start a job after it
arrives from the network and the decoder needs to finish each
job before its deadline.

To write DVS problem in formulas, let C = {C1,…,CM} , T =
{T1,…,TM}, and D = {D1,…,DM} be the complexity, arrival
time and display deadline of each job, respectively. Let F =
{F0,…,Fk},and P = {P0,…,Pk} (F0 and P0 for sleeping mode) be
the associated clock frequencies and powers for each voltage
level, respectively. The scheduling solution is S = {Ts, Vs, N},
where N is the number of voltage switches, Ts = {t0,…, tN, tN+1,
t0=0} and Vs = {v0,…,vN} are the time (not including tN+1) and
voltage level for each switch; tN+1 is the time all jobs are
finished.

Then, the DVS problem is:

 ()1
0

min
N

i i vi
i

E t t P+
=

= −∑ (6)

Subject to

1 1 1
0

() (()) (), 0
n

n vj i i n
j

L t F t t U t for n N+ + +
=

≤ − ≤ ≤ ≤∑ i (7)

where equation (6) describes the total energy consumption,
equation (7) describes the constraints: the decoder can only
start decoding a job after it arrives, and each job should be
finished before its display deadline. U(t) and L(t) are the upper
and lower bound of cumulative decoding complexity at time t
and will be defined precisely later in this section.

When the precise complexity of each job is known, the
constraints for the problem are given by deterministic Ci and Ti.
When uncertainties exist in the workload and transmission time,
Ci and Ti can be viewed as stochastic variables and DVS

scheduling algorithms cannot guarantee that all jobs will be
decoded before their deadlines. Hence, in the stochastic case,
the hard deadline constraint can be replaced with the constraint
of keeping the miss rate for jobs within a tolerable range.

Fig. 3. DVS problem formulation in time-complexity space.

We further illustrate the DVS problem in the
time-complexity space, as shown in Fig. 3. Here, the x-axis is
time and the y-axis is the cumulative complexity of jobs. Ti
indicates arrival time and Di indicates deadline. Ci is the
complexity of each job. The step function U(t) is the cumulative
complexity of jobs based on their arrival times. It indicates the
maximal computation that can by done by time t. Step function
L(t) is the cumulative complexity of jobs based on their
deadlines. It indicates the minimal computation that needs to be
done by time t. So, U(t) depends on Ti and Ci while L(t) depends
on Di and Ci. U(t) is not simply a shift of L(t) over time, since
U(t) captures the transmission time of a job over a network. On
the other hand, the display deadlines are deterministic and
correspond to the video frame display times. The constraints
are given by:

1 0
1

() (), , 1 , 0
k

j k k
j

U t C for T t T k M T−
=

= < ≤ ≤ ≤ =∑ (8)

1

1 0 0
0

() (), , 1 , 0, 0
k

j k k
j

L t C for D t D k M C D
−

−
=

= ≤ < ≤ ≤ = =∑ (9)

Since the decoder cannot start decoding a job before it is
completely received from the network, and it must finish the
job before its deadline, a valid DVS solution is a piecewise
linear curve between U(t) and L(t). As shown in Fig. 3, the
point connecting two segments indicates the time for a voltage
switch while the slope of a segment indicates the clock
frequency. We call this curve the cumulative computation curve,
as described in (7).

IV. OPTIMAL OFFLINE SOLUTION

In this section, we show that the deadline-driven multimedia
DVS problem can be mapped into a tractable LP problem. If we
know the precise complexity and arrival time of each decoding
job, we can obtain the optimal scheduling solution.

We define a transition point as the time when a new job
arrives (i.e. any Ti), or when a job deadline is reached (i.e. any
Di). We also define an adaptation interval as the time period
between two adjacent transition points. The adaptation
intervals for sample U(t) and L(t) curves are marked in dotted
lines in Fig. 4. We now prove an important theorem for DVS.

 5

Time

U(t)
total complexity

of transmitted jobs

L(t)
complexity consumption

deadline

Ti

… …

… …

Ti+1 Dj+1Ti+2 Dj+2 Ti+3Dj
Fig. 4. Adaptation intervals.

Fig. 5. Different voltage scheduling orderings.

Primary Theorem: Within an adaptation interval where U(t)
and L(t) are constant, a feasible voltage scheduling can be
expressed as the time allocation of each voltage level. Another
voltage scheduling with the same allocation will have the same
cumulative computation and the same amount of energy
consumed by the end of the adaptation interval.

Proof: First, if the scheduling has more than one time
allocation for a voltage level, we can integrate these allocations
into one. The total energy consumption is the sum of each time
allocation multiplied by the corresponding power, and the total
computation consumption is the sum of each time allocation
multiplied by the corresponding frequency. If the time
allocation is fixed for all voltage levels, the energy
consumption and cumulative computation are both fixed.
Second, the cumulative computation curve will lie between U(t)
and L(t). If U(t) and L(t) are constant, the order of voltage levels
will not affect the performance. Fig. 5 presents an example for
two different orders (2,0,1,3,4) and (0,1,2,3,4) (the numbers
refer to the slopes) with the same time allocation.

The primary theorem is the key idea to map the DVS
problem to a tractable LP problem. Rather than finding the
precise times for voltage switches, which would create an
intractable integer linear programming (ILP) problem as in [21],
we instead solve for the percentage of time for each voltage
level within an adaptation interval. The LP problem is
formulated as following.

Problem Formulation 2
The offline DVS problem is:

 1
1 0

min (())
N K

ij j i i
i j

E A P I I −
= =

= −∑∑ i i (10)

Subject to

0
0 1, 0 1

K

ij ij
j

A for j K and A
=

≤ ≤ ≤ ≤ =∑ (11)

1
1 0

() (()) (), 1
n K

n j ij i i n
i j

L I F A I I U I for n L−
= =

≤ − ≤ ≤ ≤∑∑ i i (12)

Here, we label the transition points as an ordered set I =
{I0,…,IL}, where I0=0 and IL = Tend, i.e. we have a total of L
adaptation intervals. For these L intervals, we have voltage
level allocation vectors given by A = {A1,…,AL}, where Ai =
{Ai0,…,AiK} and Aij is the percentage of voltage level j in
adaptation interval Ii to Ii+1. Then, the unknown is the voltage
level allocation vectors given by A. The constraint in (12) is that
the valid DVS solution should be between U(t) and L(t) defined
in (6) and (7).

Fig. 6. Scheduling solution.

One can easily prove that the problem defined in (10) to (12)
is a linear programming problem [30]. Hence, with this
formulation, solving the LP problem leads to the optimal
solution for the offline DVS problem. Once the optimal time
allocation in each adaptation interval is obtained, we schedule
the voltage from lowest to highest. We show an example with 3
voltage levels (including power gating) in Fig. 6. For the first
adaptation interval, voltage level 0, 1, 2 occupy 50%, 25%,
25% of time respectively, for the second, the third and fourth
intervals, the time allocation is (0%, 100%, 0%), (66%, 34%,
0%) and (75%, 25%, 0%). As shown in the figure, we start from
the lowest voltage level with non-zero time allocation and we
skip the unused voltage levels.

Note that this formulation is pervasive: the operating
voltages can be of any discrete values, and there is no
requirement for the power-frequency model. Furthermore, this
formulation is also applicable to other delay-sensitive DVS
problems for real-time applications.

The offline approach can be used to determine the
operational lower bound for energy consumption, as well as
whether the utilized online DVS algorithm operates close to the
optimal scheme. In the next section, we will discuss an online
adaptation of the proposed algorithm.

V. EFFECTIVE ONLINE ALGORITHM

For online multimedia applications, where jobs are received
over a network, we often do not know the precise complexity
and arrival times of each decoding job. Nevertheless, the idea
of mapping DVS into a linear programming problem in section
IV can still be used for online DVS. We solve the stochastic
online DVS problem by sequentially solving a robust linear

 6

program (rLP). We label our algorithm SLP/r.
There are three stages in each round of SLP/r: prediction,

solving rLP and commitment. For prediction, we predict the
stochastic complexity of decoding jobs in a future time window
by using the linear combination of the mean and standard
deviation of jobs. As discussed in section II.A, this information
can be transmitted to the decoder before decoding start. Then
we solve an rLP problem to obtain the scheduling solution for
the predicted decoding jobs in the window. Finally, we commit
one or more jobs based on the scheduling solution obtained
from solving rLP. The committed number of jobs is defined as
the granularity of rLP. It is smaller than the number of jobs
predicted in prediction stages. After commitment, we move the
window forward, predict the complexity in the new window,
and repeat the rLP based on new statistics.

A. Consideration of Stochastic Complexity
The prediction of future decoding job complexities in the

sliding window is crucial to our online solution. Using only the
mean of each job class for prediction may lead to a high miss
rate. To reduce the probability of misses, we incorporate the
standard deviation of each job class with the mean to estimate
the bounded “worst case” complexity in a probabilistic manner.
In SLP/r, we adopt the linear combination of the mean and
standard deviation for each job class to explicitly adjust U(t)
and L(t), and hence, to determine the miss rate probability. The
adjustments are based on a conservativeness α. Note that for
jobs far into the future of a prediction window, the cumulative
standard deviation over jobs may be large. Therefore, a scaled
coefficient α (possibly 0, such that only the mean is considered)
can be used to guarantee feasibility of rLP. This does not
necessarily increase the miss rate, because we only commit the
imminent jobs and not all predicted jobs in commit stage.

Problem Formulation 3:
The rLP problem for a given prediction window is:

1 0
min ()

W K

ij j
i j

E A P ϕ
= =

=∑∑ i i (13)

Subject to

0
0 1, 0 1

K

ij ij
j

A for j K and A
=

≤ ≤ ≤ ≤ =∑ (14)

1 0

() () (), 1
n K

n j ij n
i j

L I F A U I for n Wϕ
= =

≤ ≤ ≤ ≤∑∑ i i (15)

where ϕ the display interval, and W is the prediction window
size. Adaptation intervals I, U(t) and L(t) are defined as the
following:

0{ ,..., },W iI I I I i ϕ= = i (16)

i
0 1

1
() (), , 1

k

W j k k
j

U t C for I t I k W+ −
=

= < ≤ ≤ ≤∑ (17)

() max(0, ())L t U t θ ϕ= − i (18)

where W0 is the current adaptation interval and i iC is the
predicted stochastic complexity of job i. (17) and (18) show that
U(t) and L(t) are the upper and lower bounds of the cumulative
predicted complexity. Also, since we assume each job is
released θ display intervals before the display deadline, U(t) is

simply a time-shifted version of L(t). Please refer to the detailed
description in section V.B and V.C. Specifically, we have:

i
0 0 0W j W j j W jC vρ α+ + +≤ + i (19)

max(0, (1)/), 1
j

R j R for j Wα α= − + ≤ ≤i (20)
where ρi and vi are the mean and variance of stochastic
complexity of job i, α is the conservativeness and R is a
constant. Equation (20) indicates that the coefficient of
standard deviation decreases between α and 0 over time. Note
that a tradeoff between miss rate and energy consumption can
be achieved by tuning α. For example, increasing α will make
the bounds tighter and leads to a lower miss rate at the cost of
higher average energy consumption.

One can show that the problem defined by equations (13) to
(20) is an rLP problem [31]. Once we get the schedule solution,
we schedule the voltage in the order from lowest to highest
voltage level, identical to the offline problem. Note that with
stochastic complexity model, the proposed online algorithm
applies to other real-time applications although we only use
video decoding as an example. After committing one or more
jobs, we need to adjust U(t) and L(t) dynamically. The idea will
be discussed and demonstrated in section V.C.

B. Extension to Unreliable Network
For SLP/r, another challenge is that we need to cope with the

time-varying network characteristics, since we do not know the
exact arrival time of a job. We assume that a network buffer at
the decoding side collects packets and dispatches jobs to the
decoder according to the display frame rate. Then, we predict
the time when each job is ready to be decoded is θ display
intervals before the deadline. This indicates that the adaptation
intervals are divided by the display deadlines of each job, and
the number of adaptation intervals is M + θ, where M is the
number of jobs. In this fashion, we can reduce the number of
adaptation intervals from 2M to M + θ (hence the size of the
rLP problem). In this case, the adaptation intervals I, U(t) and
L(t) are defined as (16) to (18). If a job arrives before the
scheduling time (i.e. the real U(t) is higher than the complexity
consumption line), we determine the voltages as guided by rLP.
If a job arrives late due to insufficient network bandwidth,
power gating can be used to shut down the processor until this
new job arrives, based on which U(t) and L(t) are adjusted for
the next rLP.

C. Illustration of SLP/r
We further illustrate SLP/r in the time-complexity space, as

shown in Fig. 7. Fig. 7(a) shows the prediction stage. We
predict the complexity of each job using the linear combination
of mean and standard deviation (gray area). We predict the
arrival time U(t) is ahead of L(t) by θ display intervals; then, U(t)
is only a shift of L(t). Please note that while we show a
prediction of 3 jobs here, in our implementation we often
predict 8 or 16 jobs. We then solve an rLP for jobs in the
window, as shown in Fig. 7(b); the dotted line perpendicular to
the x-axis indicates the adaptation intervals and the dotted
piecewise linear curve indicates the scheduling solution from
solving rLP. The solid curve in the bottom indicates the existing

 7

cumulative computation curve from the previous round.
……

L(t) for robust
linear programming

……

L(t) for robust
linear programming

L(t) for robust
linear programming

TimeD1 D2 D3T1' T2' T3' TimeD1 D2 D3T1' T2' T3'

U(t) for robust
linear programming

U(t) for robust
linear programming

S D

mean

(a) Prediction

……

TimeD1 D2 D3T1' T2' T3' TimeD1 D2 D3T1' T2' T3'

L(t) for robust
linear programming

L(t) for robust
linear programming

L(t) for robust
linear programming

U(t) for robust
linear programming

U(t) for robust
linear programming

(b) Solving rLP

L(t) for robust
linear programming

L(t) for robust
linear programming

L(t) for robust
linear programming

……U(t)
real complexity

and arrive time of jobs

U(t)
real complexity

and arrive time of jobs

TimeD1 D2 D3T1' T2' T3' TimeD1 D2 D3T1' T2' T3'
(c) Commitment, jobs arrive late

L(t) for robust
linear programming

L(t) for robust
linear programming

L(t) for robust
linear programming

……
U(t)

real complexity
and arrive time of jobs

U(t)
real complexity

and arrive time of jobs

TimeD1 D2 D3T1' T2' T3' TimeD1 D2 D3T1' T2' T3'
(d) Commitment, jobs arrive early

Time

L(t) for robust
linear programming

L(t) for robust
linear programming

D1 D2 D3

U(t)
real complexity

and arrive time of jobs

U(t)
real complexity

and arrive time of jobs

U(t)
real complexity

and arrive time of jobs

(e) Move the future window forward

Fig. 7. Detailed illustration of SLP/r.

The strategies for dealing with unreliable networks are
shown in Fig. 7(c) and 7(d). Fig. 7(c) highlights the case when a

job arrives late, while Fig. 7(d) highlights the case when a job
arrives early. Here, the dotted step curve indicates U(t) for
robust linear programming while the solid step curve indicates
real U(t) (the same applies for Fig. 7(d)). In Fig. 7(c), the solid
piecewise linear curve illustrates that we power gate over the
delayed time period, and then commit a given number of jobs
(the given number is the granularity of SLP/r). Because the unit
of commitment is an adaptation interval, the granularity of rLP
defines a lower bound on the number of jobs to be committed.
If the decoder finishes decoding and has extra computation to
be done in the last adaptation interval, we begin decoding the
next job (and possibly more jobs if these jobs have arrived, and
extra resources are available). As shown in Fig. 7(c), we also
commit part of the second job because extra computation is
done within the third adaptation interval. Fig. 7(d) indicates the
case when jobs arrive earlier. In this case, we commit two jobs
plus part of the third job. This is because the first job cannot be
finished within the first two adaptation intervals, and in the
third adaptation interval the second job and part of the third job
are finished. Note that though the granularity set for this
example is one job, it’s possible to commit more jobs in each
round of rLP, two and part of the third shown in this case. After
commitment, we need to adjust the prediction for the third job
in the next run of rLP, since part of the third job has been
completed. As shown in Fig. 7(e), we reduce the predicted
complexity of the third job as part of it has been finished. Also,
we move the future window forward to start the next round, as
indicated by the dotted rectangle. Then, we repeat this process
until all jobs are finished.

VI. SIMULATIONS AND RESULTS

A. Experimental Setup
In our experiments, we adopted the power and frequency

model for the 70nm technology node in [16] [17]. We
considered discrete voltage levels Vdd between 0.6V and 1.0V
with voltage step sizes of 0.1V. The clock frequencies and
power for different Vdd levels are presented in Table II.

We combined 10 video sequences with different
characteristics into a long sequence, which was then decoded
using a 4 temporal level MCTF coder1 . We measured the
complexity of each decoding job in terms of clock cycles of real
computers and used the measurement for offline scheduling.
We pre-trained the stochastic model using the measurement for
the proposed online algorithm SLP/r as in [13].

TABLE II
FREQUENCY AND POWER FOR DIFFERENT VDD LEVELS
Vdd (V) 0.6 0.7 0.8 0.9 1.0

Frequency (GHz) 0.79 1.27 1.81 2.42 3.09
Dynamic Power (10-5W) 0.12 0.27 0.50 0.84 1.33
Leakage Power (10-5W) 0.21 0.29 0.40 0.54 0.72

Total Power (10-5W) 0.33 0.56 0.90 1.38 2.05

To simulate a real-time video decoding environment with
sequences that have a frame rate of 30Hz, we fixed display

1 We chose the MCTF coder since the workload variations are highly noticeable
for the different sequences. Note that using a different coder would only lead to
a different complexity trace for the decoding jobs, but would not affect the
optimality of our offline algorithm.

 8

deadlines for the application. We assumed that the frame
arrivals from the network following the normal distribution as
discussed in [25] to simulate a wireless network, and we
applied the same generated arrival times of jobs for all
algorithms in our experiments. For all algorithms, we
calculated the energy using the same power model considering
the leakage power. Since the actual value of energy is not
important for comparison between the three methods, we report
the normalized energy, given by the energy consumption ratio
of online schemes to the optimal solution.

Furthermore, due to the stochastic nature of complexities and
transmission delays, we present results based on a Monte Carlo
simulation, where the Gaussian distribution of decoding
complexities is from the trace of a real decoding system [13].
We also modeled the transmission delay using a normal
distribution [25].

Two parameters need to be set by the user in SLP/r. The first
one is the conservativeness (α in Problem Formulation 3)
which decides the trade-off between miss rate and energy. The
second one is the granularity of SLP/r. It is the number of jobs
to commit before shifting the future time window. It decides the
tradeoff between runtime and quality of solution. Intuitively, a
large conservativeness and a small granularity may lead to
higher energy consumption, while a low conservativeness and a
large granularity may lead to a high miss rate. Our experiment
in the next sub-section will study different combinations of
conservativeness and granularity to verify whether the above
intuition is correct.

B. Optimality Study
In our experiment, we extended laEDF [5] and the queuing

based algorithms [13] to use the leakage-aware power model.
Also we extended these algorithms to consider sleep mode for a
fair comparison. For queuing based algorithms 1 and 2 in [13],
we selected algorithm 2 for comparison as it outperforms
algorithm 1 experimentally. We tuned the parameters to obtain
different trade off points for energy and miss rate. For the
queuing based algorithm, we tuned the delay sensitivity
parameter ε, and for laEDF, we used different WCETs.

The results are presented in Fig. 8. The energy achieved by
the optimal offline LP solution (e.g. the lower bound) is
normalized to 1. Note that based on our formulation, the
optimal solution always has zero miss rate. The result shows
that for a zero miss rate, laEDF consumes approximately 15%
more than the optimal and queuing based algorithm 2 consumes
approximately 4% more than the optimal.

We also compared SLP/r with the optimal solution and
existing algorithms. For this experiment, we set granularity as 1
job, and we tuned the conservativeness α to obtain different
trade off points for energy and miss rate. The sliding window
size of SLP/r is set to 16 jobs (2 GOPs). From Fig. 8, one can
see that SLP/r has only about 0.6% more energy consumption
than the optimal solution while keeping the miss rate below
0.1%. The queuing-based algorithm 2 consumes roughly 3.5%
more energy than SLP/r under the same miss rate (0.1%), while
laEDF consumes approximately 13% more than SLP/r. Though
existing work in [13] is very close to optimal, SLP/r further

explores the potential of online DVS algorithms and
significantly reduces the gap between online algorithms and
optimal solution. Also, note that the comparison is based on the
result from SLP/r with granularity of 1 job. However, we can
achieve an even better solution by changing other parameter
settings, shown in the following section.

Fig. 8. Energy and miss rate.

Fig. 9. Granularity versus solution quality.

C. Optimizing SLP/r
To study the impact of granularity on the decoding quality of

the solution, we ran simulations for granularities from 1 job to 8
jobs and compare the lowest energy points. In Fig. 9, the
simulation results for granularities 1, 2, 4 and 6 jobs are plotted.
We found that for a granularity of 4 jobs, we achieved 0.03%
miss rate with 0.3% more energy compared to the optimal
offline solution, which outperforms all other granularities. Also,
the increase of normalized energy with an increasing miss rate
for large granularities is an interesting phenomenon. This is
because, for large granularities, when the conservativeness is
low, the predicted complexity bounds may be looser than the
actual bounds, especially for jobs far in the window. The
scheduling solution from the loose bounds will adopt lower
voltage level than needed. Hence, when jobs are committed,

 9

computation complete before deadline may be less than needed,
thus cause a missed job. Meanwhile, computation that needs to
be complete will be more for the next immediate job in next
round of SLP/r. In this way, the voltage levels adopt will be
higher for the next immediate job in the window and lower for
the jobs far in the window. Hence, the overall energy
consumption will be higher. For small granularities such as 1
job, the adjustment is faster. Hence, the energy consumption
will not be higher.

To further study the impact of parameter settings, we applied
different combinations of conservativeness (from 0 to 4) and
granularities (from 1 job to 8 jobs). The corresponding results
for energy and miss rate are presented in Fig. 10 and Fig. 11
respectively.

Fig. 10. Energy versus granularity/conservativeness.

The impact of parameters on energy is shown Fig. 10. One
can see that, for a fixed granularity, larger conservativeness
usually leads to higher energy consumption. Also, for
conservativeness less than 1, energy consumption increases
while conservativeness decreases. This trend is more distinct
for larger granularities. The interpretation is that a large
conservativeness leads to a larger prediction of job complexity
in the window. Thus, the corresponding schedule solution tends
to adopt a higher voltage level, which leads to higher energy
consumption. A very small conservativeness on the other hand
leads to a less than needed computation done. Hence, if the next
job carries a large workload, the processor needs to operate at a
high voltage level to compensate for lost time. For larger
granularity, this phenomenon is more significant because the
feedback and adjustment are slower. Another interesting
phenomenon is that energy vibration appears in the large
conservativeness region. For a large conservativeness,
granularities 4 and 8 jobs consume less energy than others. This
is because of the specific GOP structure adopted in our
experiment. Granularities of 4 and 8 jobs always have jobs that
contain I frames (large workload) as the immediate next job in
the future time window. Due to the large α of the immediate
next job (see equation (19) and (20) for details), the prediction
will be very conservative. Hence, the prediction will result in
higher energy consumption and lower miss rate. This
phenomenon is more distinct for conservativeness 4 due to the
higher energy consumption which results from a large
conservativeness.

Fig. 11. Miss rate versus granularity/conservativeness.

The impact of parameters on miss rate is shown Fig. 11. We
find that for conservativeness larger than 2, most granularities
lead to a zero miss rate. When the conservativeness is small,
granularities of 4 and 8 jobs have a lower miss rate. This
phenomenon is again the result of the GOP structure used in our
experiment.

To indentify the default parameters of SLP/r, we find from
Fig. 10 that for granularity of 4 - 6 jobs and conservativeness
1.5, we can get the minimal energy consumption (marked by
arrows). In Fig. 11, among these parameter settings, a
granularity of 4 jobs and conservativeness 1.5 has a miss rate
very close to zero. Therefore, for the decoder used, we
determined that the combination of a 4 job granularity and
conservativeness 1.5 is the approximate optimal parameter
setting, and can be used as default parameters. The analysis is
as following: for a small granularity, increasing the
conservativeness will lead to lower miss rate but it will be too
aggressive using a large conservativeness for each of them.
Hence, a larger granularity will balance the conservativeness
and miss rate better. However, too large of a granularity will
lead to inaccurate predictions and lagged adjustments. Hence,
there exists an approximate optimal combination of granularity
and miss rate: 4 jobs for granularity and 1.5 for
conservativeness, as shown from our experiment. It is
important to note that the energy and miss rate do not change
dramatically around the aforementioned setting. Therefore, it is
a robust setting. This setting can be used in practice because we
have considered decoding of different video types in our
experiment.

D. Runtime
For a granularity of 4 jobs and conservativeness of 1.5, the

total runtime of SLP/r for the combined 512s long video
sequence is 18s, which indicates that the runtime overhead of
the online scheduling algorithm is approximately 3.5% of the
video decoding workload, which is acceptable. While the
runtime existing laEDF and queuing base algorithms are less
than 0.1%, we expect the relative runtime overhead of SLP/r to
decrease in the future with more careful implementation. The
associated energy overhead of scheduling will also decrease
relatively to the more computationally intensive applications
such as higher resolution video decoding.

 10

VII. CONCLUSIONS

In this paper, we have analyzed the optimality of online DVS
algorithms by formulating the optimal off-line DVS as a linear
program. We show that at a zero miss rate, existing works
consume 4% more energy than the optimal solution. We have
also developed an effective online DVS algorithm using robust
sequential linear programming, which significantly
outperforms existing online DVS solutions and is merely
0.3% away from the optimal. Though existing work is close to
optimal, we further reduce the gap between online algorithms
and optimal solution from 4% to 0.3%.

To further improve the performance of these DVS solutions,
we plan to develop solutions which can more precisely predict
complexity of future jobs by exploiting the video sequence
characteristics and the corresponding coding parameters used
by state-of-the-art multimedia coding algorithms. In this way,
we can reduce the runtime overhead of SLP/r by reducing the
frequency of solving the rLP problem. Also, we plan to build a
lookup table for scheduling solutions based on offline training
to further reduce the runtime. Finally, we will apply our
proposed formulation and algorithms to other real-time
delay-sensitive applications with time-varying workloads.

REFERENCES
[1] L. Benini, and G. De Micheli. Dynamic power management: design

techniques and CAD tools. Kluwer Academic Publishers, Norwell, MA,
1997.

[2] D. Marculescu. On the use of microarchitecture-driven dynamic voltage
scaling. Proceedings of the Workshop on Complexity-Effective Design,
2000.

[3] J. Lorch, and A. Smith. PACE: a new approach to dynamic voltage
scaling. IEEE Trans. on Computers, vol. 53, no. 7, pp. 856-869, Jul. 2004.

[4] T. Ishihara, and H. Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. Proceedings of International Symposium on
Low-Power Electronics and Design. Monterey, 1998.

[5] P. Pillai, and K. Shin. Real-time dynamic voltage scaling for low-power
embedded operating systems. Proceedings of the 18th ACM symposium
on Operating Systems, 2001.

[6] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. GRACE:
cross-layer adaptation for multimedia quality and battery energy. IEEE
Transactions on Mobile Computing, vol.5, no.7, pp. 799-815, Jul. 2006.

[7] W. Yuan, and K. Nahrstedt. Energy-efficient soft real-time CPU
scheduling for mobile multimedia systems. Proceedings of the 19th ACM
Symposium on Operating System Principles, 2003.

[8] Y. Zhu, and F. Mueller. Feedback EDF scheduling exploiting dynamic
voltage scaling. Proceedings of the 11th international conference on
Computer Architecture, 2004.

[9] K. Choi, K. Dantu, W. Cheng, and M. Pedram. Frame-based dynamic
voltage and frequency scaling for a MPEG decoder. Proceedings of
ICCAD, 2002.

[10] Y. Zhu, and F. Mueller. DVSleak: combining leakage reduction and
voltage scaling in feedback EDF scheduling. Proceedings of LCTES,
2007.

[11] A. Maxiaguine, S. Chakraborty, and L. Thiele. DVS for
buffer-constrained architectures with predictable QoS-energy tradeoffs.
Proceedings of the 3rd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2005.

[12] E. Akyol, and M. van der Schaar. Complexity model based proactive
dynamic voltage scaling for video decoding systems. IEEE Trans.
Multimedia, vol. 9, no. 7, pp. 1475-1492, Nov. 2007.

[13] B. Foo, and M. van der Schaar. A queuing theoretic approach to processor
power adaptation for video decoding systems. IEEE Trans. Signal
Process, vol. 56, no. 1, pp. 378-392, Jan. 2008.

[14] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware
scheduling for periodic real-time tasks. IEEE Trans. Comput., vol. 53, no.
5, pp. 584-600, May 2004.

[15] C. Xian, Y.-H. Lu, and Z. Li. Dynamic voltage scaling for multitasking
real-time systems with uncertain execution time. IEEE Trans. On
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 8,
pp. 1467-1478, Aug. 2008.

[16] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. Proceedings of DAC, 2004.

[17] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic
voltage scaling and adaptive body biasing for low power microprocessors
under dynamic workloads. Proceedings of ICCAD, 2002.

[18] C. Kim, and K. Roy. Dynamic VTH Scaling Scheme for Active Leakage
Power Reduction. Proceedings of Design, Automation, and Test in
Europe, 2002.

[19] L. Yan, J. Luo, and N. K. Jha. Joint dynamic voltage scaling and adaptive
body biasing for heterogeneous distributed real-time embedded systems.
IEEE Trans. On Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 7, pp. 1030-1041, July 2005.

[20] S. Hong, S. Yoo, B. Bin, K-M. Choi, S-K. Eo, and T. Kim. Dynamic
voltage scaling of supply and body bias exploiting software runtime
distribution. Proceedings of Design, Automation, and Test in Europe,
2008.

[21] S. Zhang, and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. Proceedings of ICCAD, 2007.

[22] R. Jayaseelan, and T. Mitra. Temperature aware task sequencing and
voltage scaling. Proceedings of ICCAD, 2008.

[23] S. Zhang, and K. Chatha. System-level thermal aware design of
applications with uncertain execution time. Proceedings of ICCAD, 2008.

[24] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls. An all-digital
phase-locked loop with 50-cycle lock time suitable for high-performance
microprocessors. IEEE Journal of Solid-State Circuits, vol. 30, no. 4, pp.
412 – 422, Apr. 1995.

[25] A. Adas. Traffic Models in Broadband Networks. IEEE Communications
Magazine, vol. 35, no. 7, pp. 82-89, July 1997.

[26] M. van der Schaar and Y. Andreopoulos. Rate-distortion-complexity
modeling for network and receiver aware adaptation. IEEE Trans.
Multimedia, vol. 7, no. 3, pp. 471-479, June 2005.

[27] Z. Cao, B. Foo, L. He, and M. van der Schaar. Optimality and
improvement of dynamic voltage scaling algorithms for multimedia
applications. Proceedings of DAC, 2008.

[28] J. Pouwelse, K. Langendoen, and H. Sips. Application-directed voltage
scaling. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol.
11, no. 5, pp. 812-826, Oct. 2003.

[29] D. Biermann, E.G. Sirer, and R. Manohar. A rate matching-based
approach to dynamic voltage scaling. Proceedings of the First Watson
Conference on the Interaction between Architecture, Circuits, and
Compilers, October 2004.

[30] A. Schrijver. Theory of linear and integer programming. John Wiley and
Sons, 1986.

[31] S. Boyd, and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2003.

[32] Y. Cho, and N. Chang. Energy-Aware Clock-Frequency Assignment in
Microprocessors and Memory Devices for Dynamic Voltage Scaling.
IEEE Trans. On Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 6, pp. 1030-1040, June. 2007.

[33] D. Ma. Automatic Substrate Switching Circuit for On-Chip Adaptive
Power-Supply System. IEEE Trans. On Circuits and Systems II, vol. 54,
no. 7, pp. 641-645, July 2007.

[34] X. Zhong, and C. Xu. System-wide energy minimization for real-time
tasks: lower bound and approximation. Proceedings of ICCAD, 2006

