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Abstract—The high complexity and time-varying workload of 

emerging multimedia applications poses a major challenge for 
dynamic voltage scaling (DVS) algorithms. While many DVS 
algorithms have been proposed for real-time applications, an 
efficient method for evaluating the optimality of such DVS 
algorithms for multimedia applications does not yet exist. In this 
paper, we propose the first offline linear programming (LP) 
method to determine the minimum energy consumption for 
processing multimedia tasks under stringent delay deadlines. 
Based on the obtained energy lower bound, we evaluate the 
optimality of various existing DVS algorithms. Furthermore, we 
extend the LP formulation in order to construct an online DVS 
algorithm for real-time multimedia processing based on robust 
sequential linear programming. Simulation results obtained by 
decoding a wide range of video sequences show that, on average, 
our online algorithm provides a scheduling solution which 
requires less than 0.3% more energy than the optimal lower 
bound with only 0.03% miss rate.  In comparison, a very recent 
algorithm consumes roughly 4% more energy than the optimal 
lower bound at the same miss rate. 
 

Index Terms—Dynamic voltage scaling, energy management, 
linear programming, multimedia communication, scheduling, 
system modeling. 
 

I. INTRODUCTION 

UE to the popularity of streaming multimedia 
applications on mobile and pervasive computing devices, 

computationally intensive multimedia applications must often 
be processed by energy-limited systems. Dynamic voltage 
scaling (DVS)-enabled processors are particularly attractive for 
such devices, since they can adapt their voltage level and 
associated clock frequency in real time to save energy while 
handling time-varying workloads and display deadlines  [1] [2]. 
In general, a DVS-enabled processor can conserve energy by 
reducing its voltage level; however, decreasing the voltage 
level will also slow the processor clock speed, thereby 
increasing the processing time, and hence the overall delay 
 [2] [3] [4]. DVS algorithms attempt to find a dynamic balance 
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between the operating level (i.e. power and frequency) of the 
processor, and the quality-of-service for multimedia 
applications in terms of meeting stringent delay deadlines.  

A. Existing Works 
A wide variety of DVS algorithms have been proposed for 

delay-sensitive applications  [5] -  [14]. Earlier DVS algorithms 
perform optimization over one or two tasks, considering either 
the worst case execution time (WCET), or the average case 
execution time (ACET)  [6] [9]. The performance of these 
approaches is limited because future tasks with imminent 
deadlines may require extremely high processing power to 
finish in time. Alternatively, a stochastic soft real-time 
scheduler was proposed to increase the voltage level adaptively, 
as long as the soft deadline is met in the worst case  [7]. 
However, this is based upon the assumption that all jobs follow 
the same complexity distribution, which is rarely the case for 
multimedia applications. Hence, setting periodic soft deadlines 
and using the same complexity model for all jobs can be 
suboptimal. 

Another category of DVS algorithms considers joint power 
scheduling based on multiple job deadlines. LaEDF  [5] 
attempts to process tasks at the lowest frequencies and tries to 
defer jobs such that the minimum amount of work is done while 
ensuring that all future deadlines will still be met. Some 
approaches employ feedback control or adaptive linear 
prediction to estimate the complexity of future jobs 
 [8] [10]- [12], which take advantage of temporal-correlations 
and patterns inherent in multimedia jobs. Some DVS 
approaches also employ application-based feedback to the 
operating system instead of expected statistical behavior  [29], 
and consider energy consumption for both microprocessor and 
memory devices  [32] or the whole system  [23] [34]. Scalable 
scheduling approaches also exist  [11] [28], where the number of 
tasks released for execution (and hence, the number of 
deadlines to consider) can be controlled by adjusting various 
parameters, such as the “aggressiveness” factor in  [11]. To 
improve the performance of application-aware DVS algorithms, 
in our prior work  [13], we proposed the construction of 
stochastic multimedia complexity models, where different 
video frames and sequence types are classified into different 
sets of complexity distributions. The parameters of the 
distributions can be transmitted in advance and used to 
analytically approximate the delay for processing each frame at 
different processor operating levels, thus enabling the system to 
adapt the processor voltage in real-time. In  [15], a technique 
combining intra- and inter-task voltage scheduling is proposed. 
However, the optimal voltage schedule solutions proposed are 
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only optimal statistically. 
In the existing works, online DVS algorithms are evaluated 

by experimental comparisons with other online algorithms. 
However, there has not been a low-complexity approach to 
determine how far these algorithms are from the optimal power 
scheduling scheme. A few studies have provided methods for 
computing the optimal offline scheduling problem, such as 
solving an integer linear program (ILP)  [21], or a dynamic 
programming problem  [12]. However, in these works, the 
complexity grows super-polynomially with the number of jobs 
considered. This intractability results from certain assumptions, 
such as the voltage switch overhead being significant compared 
to the complexity required for processing each job, and thus 
voltage switch should not be used within a job. However, this 
assumption is not necessary if the multimedia job complexities 
are very high compared to the switch overhead, which is 
usually the case for state-of-the-art video coders. 

Furthermore, leakage current in CMOS circuits today 
contributes a significant portion to total power consumption. 
Leakage current is expected to increase five-fold with each 
generation  [16]. Hence, leakage power in DVS problems has 
been studied intensively  [16] -  [19]. When technologies such as 
power gating are used to reduce leakage power, the zero power 
and frequency of sleeping mode should be considered in a DVS 
algorithm and it is possible that the power-frequency function 
for processors could be non-convex. In this case, existing works 
 [6] [8] [13] [17] that attempt to minimize idle periods under the 
assumption of a convex power-frequency function will be no 
longer effective. Hence, adaptive DVS algorithms and efficient 
analysis of optimality for both convex and non-convex 
power-frequency functions are needed. 

B. Contributions of This Paper 
The contributions of this paper are as follows: first, we 

analyze the optimality of DVS algorithms by deriving a lower 
bound for energy consumption, subject to processing all jobs 
before their delay deadlines (i.e. zero miss rate). We propose a 
linear programming (LP) DVS solution to obtain the optimal 
offline scheduling solution for both convex and non-convex 
power-frequency functions. Unlike the integer programming 
formulation presented in  [21] for temperature-aware DVS 
scheduling, we take advantage of the fact that the delay 
overhead of voltage switch is negligible compared to the high 
multimedia job complexities. Based on the workload traces 
collected during execution time, we solve the offline LP 
problem to obtain the lower energy bound for DVS algorithms. 
A thorough investigation of video decoding results (where 
many video sequences are decoded at many different bit rates) 
shows that, under the same zero miss rate, laEDF  [5] consumes 
approximately 15% more energy than the optimal solution, and 
our prior queuing based algorithm in  [13] consumes 
approximately 4% more than the optimal solution. 

Second, based on the proposed LP formulation and accurate 
multimedia complexity modeling, we propose an online robust 
sequential linear programming approach to DVS, namely SLP/r, 
which outperforms existing DVS solutions. Experimental 
results from real-time video decoding (where workloads are 

highly time-varying) indicate that SLP/r consumes less than 
0.3% more energy than the optimal DVS solution while 
dropping only 0.03% of decoding jobs. While the a very recent 
algorithm (the queuing-based algorithm 2 in  [13] by coauthor 
of this paper) consumes roughly 4% more energy than the 
optimal at the same miss rate, our online approach has 
significantly reduced the gap between online algorithms and 
optimal solution from 4% to 0.3%. Also of note, the SLP/r 
algorithm has only a small overhead, since the time complexity 
of SLP/r mainly depends on the efficiency of the LP solver. The 
relative complexity of SLP/r will scale down when supporting 
increasingly computational applications (e.g. higher resolution 
multimedia decoding) in the future. 

While we have used video decoding as an example in this 
paper for motivation and experiment, both the offline LP and 
online SLP/r approaches are applicable to the DVS problem 
concerning other delay-sensitive real-time applications with 
time-varying workloads, such as data mining and stream 
processing applications. 

This paper extends our previous study in  [27]. We extend the 
online algorithm SLP/r to support adjustable granularities of 
running sequential linear programming. Also, by studying and 
optimizing over the granularity and conservativeness of SLP/r, 
we further reduce the energy consumption gap between online 
algorithms and optimal solution by 3× (from 1% to 0.3%). 

The rest of this paper is organized as follows: section II 
provides background on multimedia complexity and power 
modeling. Section III formally states the real-time DVS 
problem. Sections  IV and  V introduce the optimal offline LP 
solution and the online SLP/r algorithm, respectively. Section 
VI presents experimental results to validate our work. Section 
VII concludes our work.  

II. BACKGROUND AND MODELING 

A. Multimedia Complexity 
State-of-the-art video coders (H.264, SVC etc.) often encode 

adjacent frames jointly in order to exploit the temporal 
correlation existing in the video and thereby reduce video 
transmission bit-rate. However, this leads to complicated 
group-of-pictures (GOP) structures, where particular video 
frames require the reconstruction of reference frames in order 
to be decoded, and other video frames require few or no such 
reference frame for their decoding. This results in significant 
workload variations between adjacent decoding jobs (Fig. 1). 
Moreover, the workload variations will also depend on the 
different characteristics exhibited by video sequences (e.g. 
different motion and texture characteristics etc.)  [12] [13]. 

In this work, to mitigate the detrimental effects of highly 
time-varying workloads on DVS algorithms, we adopt the 
application-aware model for the video coding complexity 
described in  [13] for the proposed online algorithm. In our prior 
work  [13], we showed that complexity statistics of decoding 
jobs can be decomposed into the sum of complexity metrics 
that follow simple, well-known distributions, such as Poisson 
distribution for entropy decoding. Hence, we can approximate 
each metric by i.i.d. random complexities, which sum up to 
approximate a Gaussian distribution by the central limit 
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theorem of probability. Hence, for experiments in our work, we 
assume that the complexity of jobs follows Gaussian 
distribution. However, our algorithms are applicable to other 
media complexity models (e.g., the ones used in  [12]) or media 
compression tasks. 
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Fig.  1. Comparison of various decoding jobs for video sequences Stefan and 
Coastguard. 

In our work, a job class is defined as a particular frame type 
in a GOP. For example, we may consider four job classes for a 
GOP structure in a 3 temporal level MCTF wavelet video coder, 
where each job involves decoding 2 video frames. Similarly, 
job classes can be determined for MPEG and H.264 coders 
based on I, B, and different P-frame types. To model the 
complexity within each class of jobs, offline training of 
decoding is used to obtain workload distributions of each job 
class in different video sequences, as shown in Fig. 2 for the 
MCTF wavelet coder. These distributions enable us to collect 
important information about the decoding complexity of each 
job class, such as the mean and standard deviation. Then, this 
metadata information can be sent by the encoder/server ahead 
of jobs with low transmission overhead whenever the sequence 
characteristics or coder parameters change  [25]. Such 
information can be used by the proposed online DVS algorithm 
to achieve the tradeoff between energy consumption and 
quality-of-service.  

 
Fig.  2. The workload distribution within one class of decoding jobs. 

Finally, note that the complexity of each video decoding job 
is on the order of a billion cycles. Hence, overheads associated 
with voltage switches, which are on the order of less than one 
hundred clock cycles  [24], are negligible compared to the 
processing complexity of multimedia tasks. On the other hand, 
the number of voltage switches is the number of voltage levels 
adopted within the job (we can integrate the time allocations of 
each voltage level into one if more than one time allocation of a 
voltage level is scheduled). The largest number of voltage 

switches occurs for the job within which we utilize all different 
voltage levels. Hence, the number of voltage switches within a 
job is no more than the total number of voltage levels. Based on 
these observations, we assume that the voltage switch overhead 
can be ignored. 

B. Dynamic and Leakage Power 
In general, a processor consumes both dynamic and leakage 

power for a given Vdd level, and consumes no power when the 
Vdd level is zero, i.e. in the power gating or sleep mode. To 
evaluate our proposed algorithms, we adopt the power model 
proposed in  [17] and used in  [16] [21] for real-time applications. 
However, the algorithms proposed in this paper can apply to 
any power model, regardless of whether the power-frequency 
function is convex or not. The dynamic power is: 

 2
d ddP CV F=  (1) 

where C is the effective switching capacitance, Vdd is the supply 
voltage and F is the clock frequency. We choose the leakage 
power model from  [17], which includes the subthreshold and 
the reverse bias leakage power. For a given supply voltage Vdd, 
the leakage power Ps and subthreshold leakage current Isub are:  

 ( )s g dd sub bs jP L V I V I= +  (2) 

 4 5
3

dd bsK V K V
subI K e e=  (3) 

where Lg is the number of devices in the circuit, Ij is the reverse 
bias junction current, Vbs is the body bias voltage, K3, K4 and K5 
are constant fitting parameters. The clock frequency F and 
threshold voltage Vth are:  

 ( ) ( )a
dd th dF V V L K= −  (4)

 1 1 2th th dd bsV V KV K V= − −  (5)
where Ld is the logic depth of the path, a, K1, K2 and Vth1 are 
technology constants. We adopt the constants for 70nm 
technology node from  [16] in our experiment, shown in Table I. 

TABLE I 
70NM TECHNOLOGY CONSTANTS 

Const Value Const Value Const Value 
K1 0.063 K 5.26 x10-12 C 0.43x10-9 
K2 0.153 Vth1 0.244 Ij 4.8x10-10 
K3 5.38x10-7 Vbs -0.7 Ld 37 
K4 1.83 A 1.5 Lg 4x106 
K5 4.19     

C. Assumptions and Clarifications 
In this paper, the DVS problem we are solving has certain 

attributes which must be considered: we consider a known 
workload for the offline problem and an uncertain workload for 
the online problem; we consider both inter- and intra-job 
scheduling, where we allow voltage switch to occur within a 
job as well as between jobs; similar to most DVS-enabled 
processors, the configurable voltage levels are discrete.  

Furthermore, we assume that power is constant if the voltage 
and frequency level are set; this assumption is also adopted in 
many existing works  [5] -  [15]. Also, we assume that compared 
with multimedia decoding jobs, the voltage switch overhead is 
small enough to be ignored. For the offline problem, we assume 
that the complexity and arrival time for each decoding job are 
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known. This information can be obtained from the trace of the 
video decoding. For the online problem, we assume that the 
mean and standard deviation of complexities are obtained by 
off-line training and are transmitted to the decoder before 
decoding of these jobs start  [13]. 

III. PROBLEM STATEMENT  

For the DVS problem, we are given a sequence of decoding 
jobs. Each job has a given complexity (workload in unit of 
clock cycles), arrival time and display deadline. Because we are 
performing real-time media transmission and decoding, the 
arrival time can be influenced by the time-varying network 
characteristics  [26]. Also, a voltage/frequency configurable 
system can switch the frequency of its processor by 
dynamically adapting its voltage level. Hence, we have a set of 
active operating levels with frequencies and corresponding 
powers (sum of leakage power and dynamic power). 
Furthermore, if power gating is enabled, we have an additional 
operating level for the sleep mode. The goal of a DVS 
algorithm is to find a scheduling solution to minimize the total 
energy consumption. The DVS problem is formalized below: 

Problem Formulation 1 
Given M decoding jobs with their associated complexities, 

arrival times and display deadlines, plus K voltage levels with 
the associated clock frequencies and power, the DVS problem 
is to find the voltage scheduling solution to minimize the 
energy consumption for the entire sequence of jobs under the 
following constraints:  the decoder can only start a job after it 
arrives from the network and the decoder needs to finish each 
job before its deadline. 

To write DVS problem in formulas, let C = {C1,…,CM} , T = 
{T1,…,TM}, and D = {D1,…,DM} be the complexity, arrival 
time and display deadline of each job, respectively. Let F = 
{F0,…,Fk},and P = {P0,…,Pk} (F0 and P0 for sleeping mode) be 
the associated clock frequencies and powers for each voltage 
level, respectively. The scheduling solution is S = {Ts, Vs, N}, 
where N is the number of voltage switches, Ts = {t0,…, tN, tN+1, 
t0=0} and Vs = {v0,…,vN} are the time (not including tN+1) and 
voltage level for each switch; tN+1 is the time all jobs are 
finished.  

Then, the DVS problem is: 

 ( )1
0

min  
N

i i vi
i

E t t P+
=

= −∑  (6) 

Subject to             

1 1 1
0

( ) ( ( )) ( ),   0
n

n vj i i n
j

L t F t t U t for n N+ + +
=

≤ − ≤ ≤ ≤∑ i   (7) 

where equation (6) describes the total energy consumption, 
equation (7) describes the constraints: the decoder can only 
start decoding a job after it arrives, and each job should be 
finished before its display deadline. U(t) and L(t) are the upper 
and lower bound of cumulative decoding complexity at time t 
and will be defined precisely later in this section. 

When the precise complexity of each job is known, the 
constraints for the problem are given by deterministic Ci and Ti. 
When uncertainties exist in the workload and transmission time, 
Ci and Ti can be viewed as stochastic variables and DVS 

scheduling algorithms cannot guarantee that all jobs will be 
decoded before their deadlines. Hence, in the stochastic case, 
the hard deadline constraint can be replaced with the constraint 
of keeping the miss rate for jobs within a tolerable range. 

 
Fig.  3. DVS problem formulation in time-complexity space. 

We further illustrate the DVS problem in the 
time-complexity space, as shown in Fig. 3. Here, the x-axis is 
time and the y-axis is the cumulative complexity of jobs. Ti 
indicates arrival time and Di indicates deadline. Ci is the 
complexity of each job. The step function U(t) is the cumulative 
complexity of jobs based on their arrival times. It indicates the 
maximal computation that can by done by time t. Step function 
L(t) is the cumulative complexity of jobs based on their 
deadlines. It indicates the minimal computation that needs to be 
done by time t. So, U(t) depends on Ti and Ci while L(t) depends 
on Di and Ci. U(t) is not simply a shift of L(t) over time, since 
U(t) captures the transmission time of a job over a network. On 
the other hand, the display deadlines are deterministic and 
correspond to the video frame display times. The constraints 
are given by: 

1 0
1

( ) ( ),  ,  1 ,  0
k

j k k
j

U t C for T t T k M T−
=

= < ≤ ≤ ≤ =∑       (8) 

1

1 0 0
0

( ) ( ),  ,  1 , 0, 0
k

j k k
j

L t C for D t D k M C D
−

−
=

= ≤ < ≤ ≤ = =∑   (9) 

Since the decoder cannot start decoding a job before it is 
completely received from the network, and it must finish the 
job before its deadline, a valid DVS solution is a piecewise 
linear curve between U(t) and L(t). As shown in Fig. 3, the 
point connecting two segments indicates the time for a voltage 
switch while the slope of a segment indicates the clock 
frequency. We call this curve the cumulative computation curve, 
as described in (7). 

IV. OPTIMAL OFFLINE SOLUTION 

In this section, we show that the deadline-driven multimedia 
DVS problem can be mapped into a tractable LP problem. If we 
know the precise complexity and arrival time of each decoding 
job, we can obtain the optimal scheduling solution. 

We define a transition point as the time when a new job 
arrives (i.e. any Ti), or when a job deadline is reached (i.e. any 
Di). We also define an adaptation interval as the time period 
between two adjacent transition points. The adaptation 
intervals for sample U(t) and L(t) curves are marked in dotted 
lines in Fig. 4. We now prove an important theorem for DVS. 
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Fig.  4. Adaptation intervals. 

 
Fig.  5. Different voltage scheduling orderings. 

Primary Theorem: Within an adaptation interval where U(t) 
and L(t) are constant, a feasible voltage scheduling can be 
expressed as the time allocation of each voltage level. Another 
voltage scheduling with the same allocation will have the same 
cumulative computation and the same amount of energy 
consumed by the end of the adaptation interval. 

Proof: First, if the scheduling has more than one time 
allocation for a voltage level, we can integrate these allocations 
into one. The total energy consumption is the sum of each time 
allocation multiplied by the corresponding power, and the total 
computation consumption is the sum of each time allocation 
multiplied by the corresponding frequency. If the time 
allocation is fixed for all voltage levels, the energy 
consumption and cumulative computation are both fixed. 
Second, the cumulative computation curve will lie between U(t) 
and L(t). If U(t) and L(t) are constant, the order of voltage levels 
will not affect the performance. Fig. 5 presents an example for 
two different orders (2,0,1,3,4) and (0,1,2,3,4) (the numbers 
refer to the slopes) with the same time allocation.                   

The primary theorem is the key idea to map the DVS 
problem to a tractable LP problem. Rather than finding the 
precise times for voltage switches, which would create an 
intractable integer linear programming (ILP) problem as in  [21], 
we instead solve for the percentage of time for each voltage 
level within an adaptation interval. The LP problem is 
formulated as following. 

Problem Formulation 2  
The offline DVS problem is: 

 1
1 0

min  ( ( ))
N K

ij j i i
i j

E A P I I −
= =

= −∑∑ i i   (10) 

Subject to 

0
0 1,   0   1

K

ij ij
j

A for j K and A
=

≤ ≤ ≤ ≤ =∑  (11) 

1
1 0

( ) ( ( )) ( ),   1
n K

n j ij i i n
i j

L I F A I I U I for n L−
= =

≤ − ≤ ≤ ≤∑∑ i i    (12) 

Here, we label the transition points as an ordered set I = 
{I0,…,IL}, where I0=0 and IL = Tend, i.e. we have a total of L 
adaptation intervals. For these L intervals, we have voltage 
level allocation vectors given by A = {A1,…,AL}, where Ai = 
{Ai0,…,AiK} and Aij is the percentage of voltage level j in 
adaptation interval Ii to Ii+1. Then, the unknown is the voltage 
level allocation vectors given by A. The constraint in (12) is that 
the valid DVS solution should be between U(t) and L(t) defined 
in (6) and (7). 

 
Fig. 6. Scheduling solution. 

One can easily prove that the problem defined in (10) to (12) 
is a linear programming problem  [30]. Hence, with this 
formulation, solving the LP problem leads to the optimal 
solution for the offline DVS problem. Once the optimal time 
allocation in each adaptation interval is obtained, we schedule 
the voltage from lowest to highest. We show an example with 3 
voltage levels (including power gating) in Fig. 6. For the first 
adaptation interval, voltage level 0, 1, 2 occupy 50%, 25%, 
25% of time respectively, for the second, the third and fourth 
intervals, the time allocation is (0%, 100%, 0%), (66%, 34%, 
0%) and (75%, 25%, 0%). As shown in the figure, we start from 
the lowest voltage level with non-zero time allocation and we 
skip the unused voltage levels. 

Note that this formulation is pervasive: the operating 
voltages can be of any discrete values, and there is no 
requirement for the power-frequency model. Furthermore, this 
formulation is also applicable to other delay-sensitive DVS 
problems for real-time applications. 

The offline approach can be used to determine the 
operational lower bound for energy consumption, as well as 
whether the utilized online DVS algorithm operates close to the 
optimal scheme. In the next section, we will discuss an online 
adaptation of the proposed algorithm. 

V. EFFECTIVE ONLINE ALGORITHM 

For online multimedia applications, where jobs are received 
over a network, we often do not know the precise complexity 
and arrival times of each decoding job. Nevertheless, the idea 
of mapping DVS into a linear programming problem in section 
IV can still be used for online DVS. We solve the stochastic 
online DVS problem by sequentially solving a robust linear 
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program (rLP). We label our algorithm SLP/r. 
There are three stages in each round of SLP/r: prediction, 

solving rLP and commitment. For prediction, we predict the 
stochastic complexity of decoding jobs in a future time window 
by using the linear combination of the mean and standard 
deviation of jobs. As discussed in section II.A, this information 
can be transmitted to the decoder before decoding start. Then 
we solve an rLP problem to obtain the scheduling solution for 
the predicted decoding jobs in the window. Finally, we commit 
one or more jobs based on the scheduling solution obtained 
from solving rLP. The committed number of jobs is defined as 
the granularity of rLP. It is smaller than the number of jobs 
predicted in prediction stages. After commitment, we move the 
window forward, predict the complexity in the new window, 
and repeat the rLP based on new statistics. 

A. Consideration of Stochastic Complexity 
The prediction of future decoding job complexities in the 

sliding window is crucial to our online solution. Using only the 
mean of each job class for prediction may lead to a high miss 
rate. To reduce the probability of misses, we incorporate the 
standard deviation of each job class with the mean to estimate 
the bounded “worst case” complexity in a probabilistic manner. 
In SLP/r, we adopt the linear combination of the mean and 
standard deviation for each job class to explicitly adjust U(t) 
and L(t), and hence, to determine the miss rate probability. The 
adjustments are based on a conservativeness α. Note that for 
jobs far into the future of a prediction window, the cumulative 
standard deviation over jobs may be large. Therefore, a scaled 
coefficient α (possibly 0, such that only the mean is considered) 
can be used to guarantee feasibility of rLP. This does not 
necessarily increase the miss rate, because we only commit the 
imminent jobs and not all predicted jobs in commit stage. 

Problem Formulation 3: 
The rLP problem for a given prediction window is: 

1 0
min  ( )

W K

ij j
i j

E A P ϕ
= =

=∑∑ i i   (13) 

Subject to 

0
0 1,   0   1

K

ij ij
j

A for j K and A
=

≤ ≤ ≤ ≤ =∑  (14)

         
1 0

( ) ( ) ( ),   1
n K

n j ij n
i j

L I F A U I for n Wϕ
= =

≤ ≤ ≤ ≤∑∑ i i             (15)

where ϕ the display interval, and W is the prediction window 
size. Adaptation intervals I, U(t) and L(t) are defined as the 
following: 

0{ ,..., },W iI I I I i ϕ= = i  (16)

i
0 1

1
( ) ( ),   ,  1

k

W j k k
j

U t C for I t I k W+ −
=

= < ≤ ≤ ≤∑ (17)

( ) max(0, ( ))L t U t θ ϕ= − i  (18)

where W0 is the current adaptation interval and i iC is the 
predicted stochastic complexity of job i. (17) and (18) show that 
U(t) and L(t) are the upper and lower bounds of the cumulative 
predicted complexity. Also, since we assume each job is 
released θ display intervals before the display deadline, U(t) is 

simply a time-shifted version of L(t). Please refer to the detailed 
description in section V.B and V.C. Specifically, we have: 

i
0 0 0W j W j j W jC vρ α+ + +≤ + i  (19)

max(0, ( 1)/ ),   1
j

R j R for j Wα α= − + ≤ ≤i (20)
where ρi and vi are the mean and variance of stochastic 
complexity of job i, α is the conservativeness and R is a 
constant. Equation (20) indicates that the coefficient of 
standard deviation decreases between α and 0 over time. Note 
that a tradeoff between miss rate and energy consumption can 
be achieved by tuning α. For example, increasing α will make 
the bounds tighter and leads to a lower miss rate at the cost of 
higher average energy consumption.  

One can show that the problem defined by equations (13) to 
(20) is an rLP problem  [31]. Once we get the schedule solution, 
we schedule the voltage in the order from lowest to highest 
voltage level, identical to the offline problem. Note that with 
stochastic complexity model, the proposed online algorithm 
applies to other real-time applications although we only use 
video decoding as an example. After committing one or more 
jobs, we need to adjust U(t) and L(t) dynamically. The idea will 
be discussed and demonstrated in section V.C. 

B. Extension to Unreliable Network 
For SLP/r, another challenge is that we need to cope with the 

time-varying network characteristics, since we do not know the 
exact arrival time of a job. We assume that a network buffer at 
the decoding side collects packets and dispatches jobs to the 
decoder according to the display frame rate. Then, we predict 
the time when each job is ready to be decoded is θ display 
intervals before the deadline. This indicates that the adaptation 
intervals are divided by the display deadlines of each job, and 
the number of adaptation intervals is M + θ, where M is the 
number of jobs. In this fashion, we can reduce the number of 
adaptation intervals from 2M to M + θ (hence the size of the 
rLP problem). In this case, the adaptation intervals I, U(t) and 
L(t)  are defined as (16) to (18). If a job arrives before the 
scheduling time (i.e. the real U(t) is higher than the complexity 
consumption line), we determine the voltages as guided by rLP. 
If a job arrives late due to insufficient network bandwidth, 
power gating can be used to shut down the processor until this 
new job arrives, based on which U(t) and L(t) are adjusted for 
the next rLP. 

C. Illustration of SLP/r 
We further illustrate SLP/r in the time-complexity space, as 

shown in Fig. 7. Fig. 7(a) shows the prediction stage. We 
predict the complexity of each job using the linear combination 
of mean and standard deviation (gray area). We predict the 
arrival time U(t) is ahead of L(t) by θ display intervals; then, U(t) 
is only a shift of L(t). Please note that while we show a 
prediction of 3 jobs here, in our implementation we often 
predict 8 or 16 jobs. We then solve an rLP for jobs in the 
window, as shown in Fig. 7(b); the dotted line perpendicular to 
the x-axis indicates the adaptation intervals and the dotted 
piecewise linear curve indicates the scheduling solution from 
solving rLP. The solid curve in the bottom indicates the existing 
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Fig. 7. Detailed illustration of SLP/r. 

The strategies for dealing with unreliable networks are 
shown in Fig. 7(c) and 7(d). Fig. 7(c) highlights the case when a 

job arrives late, while Fig. 7(d) highlights the case when a job 
arrives early. Here, the dotted step curve indicates U(t) for 
robust linear programming while the solid step curve indicates 
real U(t) (the same applies for Fig. 7(d)). In Fig. 7(c), the solid 
piecewise linear curve illustrates that we power gate over the 
delayed time period, and then commit a given number of jobs 
(the given number is the granularity of SLP/r). Because the unit 
of commitment is an adaptation interval, the granularity of rLP 
defines a lower bound on the number of jobs to be committed. 
If the decoder finishes decoding and has extra computation to 
be done in the last adaptation interval, we begin decoding the 
next job (and possibly more jobs if these jobs have arrived, and 
extra resources are available). As shown in Fig. 7(c), we also 
commit part of the second job because extra computation is 
done within the third adaptation interval. Fig. 7(d) indicates the 
case when  jobs arrive earlier. In this case, we commit two jobs 
plus part of the third job. This is because the first job cannot be 
finished within the first two adaptation intervals, and in the 
third adaptation interval the second job and part of the third job 
are finished. Note that though the granularity set for this 
example is one job, it’s possible to commit more jobs in each 
round of rLP, two and part of the third shown in this case. After 
commitment, we need to adjust the prediction for the third job 
in the next run of rLP, since part of the third job has been 
completed. As shown in Fig. 7(e), we reduce the predicted 
complexity of the third job as part of it has been finished. Also, 
we move the future window forward to start the next round, as 
indicated by the dotted rectangle. Then, we repeat this process 
until all jobs are finished. 

VI. SIMULATIONS AND RESULTS 

A. Experimental Setup    
In our experiments, we adopted the power and frequency 

model for the 70nm technology node in  [16] [17]. We 
considered discrete voltage levels Vdd between 0.6V and 1.0V 
with voltage step sizes of 0.1V. The clock frequencies and 
power for different Vdd levels are presented in Table II. 

We combined 10 video sequences with different 
characteristics into a long sequence, which was then decoded 
using a 4 temporal level MCTF coder1 . We measured the 
complexity of each decoding job in terms of clock cycles of real 
computers and used the measurement for offline scheduling. 
We pre-trained the stochastic model using the measurement for 
the proposed online algorithm SLP/r as in  [13].  

TABLE II 
FREQUENCY AND POWER FOR DIFFERENT VDD LEVELS 
Vdd (V) 0.6 0.7 0.8 0.9 1.0 

Frequency (GHz) 0.79 1.27 1.81 2.42 3.09 
Dynamic Power (10-5W) 0.12 0.27 0.50 0.84 1.33 
Leakage Power (10-5W) 0.21 0.29 0.40 0.54 0.72 

Total Power (10-5W) 0.33 0.56 0.90 1.38 2.05 

To simulate a real-time video decoding environment with 
sequences that have a frame rate of 30Hz, we fixed display 

 
1 We chose the MCTF coder since the workload variations are highly noticeable 
for the different sequences. Note that using a different coder would only lead to 
a different complexity trace for the decoding jobs, but would not affect the 
optimality of our offline algorithm. 
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deadlines for the application. We assumed that the frame 
arrivals from the network following the normal distribution as 
discussed in  [25] to simulate a wireless network, and we 
applied the same generated arrival times of jobs for all 
algorithms in our experiments. For all algorithms, we 
calculated the energy using the same power model considering 
the leakage power. Since the actual value of energy is not 
important for comparison between the three methods, we report 
the normalized energy, given by the energy consumption ratio 
of online schemes to the optimal solution. 

Furthermore, due to the stochastic nature of complexities and 
transmission delays, we present results based on a Monte Carlo 
simulation, where the Gaussian distribution of decoding 
complexities is from the trace of a real decoding system  [13]. 
We also modeled the transmission delay using a normal 
distribution  [25]. 

Two parameters need to be set by the user in SLP/r.  The first 
one is the conservativeness (α in Problem Formulation 3) 
which decides the trade-off between miss rate and energy. The 
second one is the granularity of SLP/r. It is the number of jobs 
to commit before shifting the future time window. It decides the 
tradeoff between runtime and quality of solution. Intuitively, a 
large conservativeness and a small granularity may lead to 
higher energy consumption, while a low conservativeness and a 
large granularity may lead to a high miss rate. Our experiment 
in the next sub-section will study different combinations of 
conservativeness and granularity to verify whether the above 
intuition is correct. 

B. Optimality Study 
In our experiment, we extended laEDF  [5] and the queuing 

based algorithms  [13] to use the leakage-aware power model. 
Also we extended these algorithms to consider sleep mode for a 
fair comparison. For queuing based algorithms 1 and 2 in  [13], 
we selected algorithm 2 for comparison as it outperforms 
algorithm 1 experimentally. We tuned the parameters to obtain 
different trade off points for energy and miss rate. For the 
queuing based algorithm, we tuned the delay sensitivity 
parameter ε, and for laEDF, we used different WCETs.  

The results are presented in Fig. 8. The energy achieved by 
the optimal offline LP solution (e.g. the lower bound) is 
normalized to 1. Note that based on our formulation, the 
optimal solution always has zero miss rate. The result shows 
that for a zero miss rate, laEDF consumes approximately 15% 
more than the optimal and queuing based algorithm 2 consumes 
approximately 4% more than the optimal. 

We also compared SLP/r with the optimal solution and 
existing algorithms. For this experiment, we set granularity as 1 
job, and we tuned the conservativeness α to obtain different 
trade off points for energy and miss rate. The sliding window 
size of SLP/r is set to 16 jobs (2 GOPs). From Fig. 8, one can 
see that SLP/r has only about 0.6% more energy consumption 
than the optimal solution while keeping the miss rate below 
0.1%. The queuing-based algorithm 2 consumes roughly 3.5% 
more energy than SLP/r under the same miss rate (0.1%), while 
laEDF consumes approximately 13% more than SLP/r. Though 
existing work in  [13] is very close to optimal, SLP/r further 

explores the potential of online DVS algorithms and 
significantly reduces the gap between online algorithms and 
optimal solution. Also, note that the comparison is based on the 
result from SLP/r with granularity of 1 job. However, we can 
achieve an even better solution by changing other parameter 
settings, shown in the following section.  

 
Fig. 8. Energy and miss rate. 

 
Fig. 9. Granularity versus solution quality. 

C. Optimizing SLP/r 
To study the impact of granularity on the decoding quality of 

the solution, we ran simulations for granularities from 1 job to 8 
jobs and compare the lowest energy points. In Fig. 9, the 
simulation results for granularities 1, 2, 4 and 6 jobs are plotted. 
We found that for a granularity of 4 jobs, we achieved 0.03% 
miss rate with 0.3% more energy compared to the optimal 
offline solution, which outperforms all other granularities. Also, 
the increase of normalized energy with an increasing miss rate 
for large granularities is an interesting phenomenon. This is 
because, for large granularities, when the conservativeness is 
low, the predicted complexity bounds may be looser than the 
actual bounds, especially for jobs far in the window. The 
scheduling solution from the loose bounds will adopt lower 
voltage level than needed. Hence, when jobs are committed, 
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computation complete before deadline may be less than needed, 
thus cause a missed job. Meanwhile, computation that needs to 
be complete will be more for the next immediate job in next 
round of SLP/r. In this way, the voltage levels adopt will be 
higher for the next immediate job in the window and lower for 
the jobs far in the window. Hence, the overall energy 
consumption will be higher. For small granularities such as 1 
job, the adjustment is faster. Hence, the energy consumption 
will not be higher. 

To further study the impact of parameter settings, we applied 
different combinations of conservativeness (from 0 to 4) and 
granularities (from 1 job to 8 jobs). The corresponding results 
for energy and miss rate are presented in Fig. 10 and Fig. 11 
respectively. 

 
Fig. 10. Energy versus granularity/conservativeness. 

The impact of parameters on energy is shown Fig. 10. One 
can see that, for a fixed granularity, larger conservativeness 
usually leads to higher energy consumption. Also, for 
conservativeness less than 1, energy consumption increases 
while conservativeness decreases. This trend is more distinct 
for larger granularities. The interpretation is that a large 
conservativeness leads to a larger prediction of job complexity 
in the window. Thus, the corresponding schedule solution tends 
to adopt a higher voltage level, which leads to higher energy 
consumption. A very small conservativeness on the other hand 
leads to a less than needed computation done. Hence, if the next 
job carries a large workload, the processor needs to operate at a 
high voltage level to compensate for lost time. For larger 
granularity, this phenomenon is more significant because the 
feedback and adjustment are slower. Another interesting 
phenomenon is that energy vibration appears in the large 
conservativeness region. For a large conservativeness, 
granularities 4 and 8 jobs consume less energy than others. This 
is because of the specific GOP structure adopted in our 
experiment. Granularities of 4 and 8 jobs always have jobs that 
contain I frames (large workload) as the immediate next job in 
the future time window. Due to the large α of the immediate 
next job (see equation (19) and (20) for details), the prediction 
will be very conservative. Hence, the prediction will result in 
higher energy consumption and lower miss rate. This 
phenomenon is more distinct for conservativeness 4 due to the 
higher energy consumption which results from a large 
conservativeness. 

 
Fig. 11. Miss rate versus granularity/conservativeness. 

The impact of parameters on miss rate is shown Fig. 11. We 
find that for conservativeness larger than 2, most granularities 
lead to a zero miss rate. When the conservativeness is small, 
granularities of 4 and 8 jobs have a lower miss rate. This 
phenomenon is again the result of the GOP structure used in our 
experiment. 

To indentify the default parameters of SLP/r, we find from 
Fig. 10 that for granularity of 4 - 6 jobs and conservativeness 
1.5, we can get the minimal energy consumption (marked by 
arrows). In Fig. 11, among these parameter settings, a 
granularity of 4 jobs and conservativeness 1.5 has a miss rate 
very close to zero. Therefore, for the decoder used, we 
determined that the combination of a 4 job granularity and 
conservativeness 1.5 is the approximate optimal parameter 
setting, and can be used as default parameters. The analysis is 
as following: for a small granularity, increasing the 
conservativeness will lead to lower miss rate but it will be too 
aggressive using a large conservativeness for each of them. 
Hence, a larger granularity will balance the conservativeness 
and miss rate better. However, too large of a granularity will 
lead to inaccurate predictions and lagged adjustments. Hence, 
there exists an approximate optimal combination of granularity 
and miss rate: 4 jobs for granularity and 1.5 for 
conservativeness, as shown from our experiment. It is 
important to note that the energy and miss rate do not change 
dramatically around the aforementioned setting. Therefore, it is 
a robust setting. This setting can be used in practice because we 
have considered decoding of different video types in our 
experiment. 

D. Runtime 
For a granularity of 4 jobs and conservativeness of 1.5, the 

total runtime of SLP/r for the combined 512s long video 
sequence is 18s, which indicates that the runtime overhead of 
the online scheduling algorithm is approximately 3.5% of the 
video decoding workload, which is acceptable. While the 
runtime existing laEDF and queuing base algorithms are less 
than 0.1%, we expect the relative runtime overhead of SLP/r to 
decrease in the future with more careful implementation. The 
associated energy overhead of scheduling will also decrease 
relatively to the more computationally intensive applications 
such as higher resolution video decoding. 
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VII. CONCLUSIONS 

In this paper, we have analyzed the optimality of online DVS 
algorithms by formulating the optimal off-line DVS as a linear 
program. We show that at a zero miss rate, existing works 
consume 4% more energy than the optimal solution. We have 
also developed an effective online DVS algorithm using robust 
sequential linear programming, which significantly 
outperforms existing online DVS solutions and is merely 
0.3% away from the optimal. Though existing work is close to 
optimal, we further reduce the gap between online algorithms 
and optimal solution from 4% to 0.3%. 

To further improve the performance of these DVS solutions, 
we plan to develop solutions which can more precisely predict 
complexity of future jobs by exploiting the video sequence 
characteristics and the corresponding coding parameters used 
by state-of-the-art multimedia coding algorithms. In this way, 
we can reduce the runtime overhead of SLP/r by reducing the 
frequency of solving the rLP problem. Also, we plan to build a 
lookup table for scheduling solutions based on offline training 
to further reduce the runtime. Finally, we will apply our 
proposed formulation and algorithms to other real-time 
delay-sensitive applications with time-varying workloads. 
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