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Abstract—Modeling spatial variation is important for statis-
tical analysis. Most existing works model spatial variation as
spatially correlated random variables. We discuss process origins
of spatial variability, all of which indicate that spatial variation
comes from deterministic across-wafer variation, and purely ran-
dom spatial variation is not significant. We analytically study the
impact of across-wafer variation and show how it gives an appear-
ance of correlation. We have developed a new die-level variation
model considering deterministic across-wafer variation and de-
rived the range of conditions under which ignoring spatial varia-
tion altogether may be acceptable. Experimental results show that
for statistical timing and leakage analysis, our model is within 2%
and 5% error from exact simulation result, respectively, while
the error of the existing distance-based spatial variation model
is up to 6.5% and 17 %, respectively. Moreover, our new model
is also 6x faster than the spatial variation model for statistical
timing analysis and 7x faster for statistical leakage analysis.

Index Terms—Leakage analysis, spatial correlation, SSTA,
timing analysis, yield modeling.

1. INTRODUCTION
ITH THE CMOS technology scaling, process variation
has become a major concern for very large scale
integration design. Modeling and analyzing process variation
has attracted a lot of attention.

Several works focus on analyzing and modeling of process
variation [1]-[16]. The simplest method models process
variation as the sum of inter-die (global) variation and
independent within-die (local random) variation [4]. Later, it
was observed that within-die variation is spatially correlated
and the correlation depends on the distance between two
within-die locations. [1] model spatial variation as correlated
random variables, and principle component analysis is applied
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to perform statistical timing analysis. In this model, a chip
is divided into several grids and each grid has its own
spatial variation. The spatial variations of different grids
are correlated and the correlation coefficient depends on the
distance between two grids. [2] focuses on the extraction of
spatial correlation and it models the correlation coefficient
as a function of distance. Several more complex spatial
correlation models have been proposed in [17]-[26].

In contrast to the spatial correlation models, process
oriented modeling has concluded that within-die spatial
variation is caused by deterministic across wafer and
across-field variation while purely random within-die spatial
variation is not significant [27]-[29]. However, in practical
design flow, designers do not know the within-wafer location
or within-field location of each die; therefore, we need to
analyze the impact of across-wafer variation and across-field
variation on die-scale. Since silicon measurements cited in
this paper indicate that across-wafer variation is much more
significant than the across-field variation, we consider only
across-wafer variation in this paper, but the approach is easily
extended to account for across-field variations.

In this paper, we first analyze the impact of deterministic
across-wafer variation on spatial correlation. We observe that
when quadratic across-wafer variation model is used as in
[28], [30], and [31].

1) Different locations on the chip may have different mean
and variance. Such differences increase when the chip
size increases.

2) When chip size is small, the correlation coefficients for
a certain Euclidean distance are within a narrow range.
This explains why most existing works find that spatial
correlation is a function of distance.

3) Within-die spatial variation is NOT spatially correlated
when across-wafer systematic variation is removed.

4) Within-die spatial variation is NOT independent from
inter-die variation.

5) If chip size is small enough, the two-level inter-/within-
die decomposition of process variation is still very

accurate.
Based on our analysis, we propose three accurate and

efficient spatial variation models' considering across-wafer

IThe program and data of our proposed model can be downloaded at
http://nanocad.ee.ucla.edu/Main/Stat.
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variation. Experimental results show that our model is more
accurate and efficient compared to the distance-based spatial
variation model in [2]. Compared to the exact simulation, error
of our model for statistical timing analysis is within 2% and the
error for statistical leakage analysis is within 5%. On the other
hand, the error of the distance-based spatial correlation model
is up to 6.5% for statistical timing analysis and up to 17% for
statistical leakage analysis. Moreover, our model is 6x faster
than the distance-based spatial correlation model for statistical
timing analysis and 7x faster for statistical leakage analysis.

The rest of this paper is organized as follows. Section II
discusses the physical causes for across-wafer variation. Sec-
tion III analyzes the impact of across-wafer variation on die-
scale. Section IV discusses the case when the across-wafer
variation is not a perfect parabola. Section V introduces the
new variation models; the new models are applied to statistical
timing analysis in Section VI and statistical leakage analysis
in Section VII. Section VIII summarizes the advantages and
disadvantages of different variation models. Section IX further
discusses the case when the across-wafer variation is an
arbitrary function, and finally Section X concludes this paper.

II. PHYSICAL ORIGINS OF SPATIAL VARIATION

In silicon manufacturing, there are many steps that cause
non-uniformity in devices across the wafer. Interestingly, most
of these processes by the very nature of the equipment follow
a radially varying trend across the wafer. Most processes are
“center-fed” or “edge-fed” with the boundary conditions at the
edge of wafer being substantially different. Moreover, wafers
are often rotated to increase process uniformity across them
which further leads to radial behavior of non-uniformity. This
is further exacerbated by advent of single-wafer processing
for 300 mm wafers.

For example, overlay error includes errors in the position
and rotation of the wafer stage during exposure, wafer stage
vibration, and the distortion of the wafer with respect to the
exposure pattern [32]. Magnification and rotation components
of overlay error increase from center of the wafer outward.?
During chemical vapor deposition step, species depletion
and temperature non-uniformity on the wafer at lower
temperatures may cause thickness non-uniformity [33], [34].
Redeposition effect in physical vapor deposition [35] may
cause non-uniformity of etch rate. Moreover, center peak
shape of the RF electric field distribution [36] also leads to a
center peak shape of etch rate, and chamber wall conditions
[37] also cause etch rate non-uniformity. In real processes,
the wafers are rotated to improve uniformity. [35] and [37]
showed that the etch rate varies radially across the wafer:
the etch rate is high at the center of the wafer and decreases
toward the edges. Post-exposure bake (PEB) temperatures
are higher at the center of the wafer and decreases outwards
[38]. Similarly, other processes ranging from resist coat to
wafer deformation due to vacuum chuck holding it follow a
bowl-shaped trend across the wafer. All these processes cause
a systematic across-wafer variation in physical dimensions.

Across-wafer variation of gate length observed in several
recent silicon measurements [28], [30], [31], [39] validates

2Qverlay error can directly impact critical dimension in double patterning.

(a) (b)

Fig. 1. Ring oscillator frequency within a wafer. (a) Process 1. (b) Process 2.

our arguments. [40] also showed that ring oscillator frequency
and leakage current decrease from the center to the edge of the
wafer. Fig. 1 shows industrial data of ring oscillator frequency
for wafers from two different industrial processes. Process
1 is with 45nm technology and process 2 is with 65 nm
technology. From the figure, we see that for both processes,
ring oscillator frequency decreases from the center to the edge
of the wafer. Moreover, it has also been shown that there
is no spatial correlation for threshold voltage variation [27].
Therefore, the across wafer frequency and leakage variation is
mainly caused by gate length variation.

It has been shown that for process 1, the across-wafer fre-
quency variation can be approximated as a quadratic function
(a parabola) [40]. For process 2, the across-wafer variation is
not a perfect parabola as process 1. However, it follows a sys-
tematic trend that the ring oscillator frequency decreases from
the center to the edge of the wafer. Since the measurement
data for process 2 (more than 300 wafers) is much more than
process 1, in the rest of this paper, all of our simulation and
experiments are based on the measurement result of process 2.

Besides across-wafer variation, lithography-induced effects
such as lens aberrations can lead to systematic across-field
variation and across-die variation. Across-die variation can be
modeled as within-die deterministic mean shift and will not
cause within-die spatial correlation. Moreover, silicon mea-
surements cited in this paper indicate that across-wafer varia-
tion is much more significant (probably due to advancements
in resolution enhancement and lithographic equipment) than
across-field and across-die variation. Hence, for simplicity, we
consider only across-wafer variation in this paper.

III. ANALYSIS OF WAFER LEVEL VARIATION AND
SPATIAL CORRELATION
In this paper, a variation source V, such as Lz, is modeled

as
V=v+v.+v, (1)

where vy is the nominal value, v. is a systematic constant
offset, and v, is the uncertainty part of process variation. Since
both vy and v, are constant, we may combine them as one
constant term. The uncertainty term v, is modeled as
Vp = Vaw + Vi—d + Vag + Vgp + Uy 2)
vg—q comprises of inter-die random, inter-wafer, inter-lot vari-
ation, and fitting error’ of quadratic fitting of across wafer
variation; v, and v, are the across-field and across-die
variation, respectively. As discussed in Section II, we consider
3We assume that the fitting error is purely random, that is, it only introduces

inter-die variation without affecting within-die variation. We further discuss
the impact of fitting error in Section IV.
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Fig. 2. PDF of across-wafer variation coefficients. (a) PDf of a and b. (b)
PDF of ¢ and d.

only across-wafer variation and ignore these two types of
variations (v.s and v4g) in this paper; v, is the random noise;
Vaw 18 across-wafer variation, which is modeled as a quadratic
function as in [3], [28], [30], and [31]

Vaw(Xw, Yw) = axi + byi +Cxy + dyw 3
where a, b, ¢, and d are coefficients obtained from fitting the
measurement data from industry process shown in Fig. 1(b),*
(xw, Yw) 1s across-wafer location. We obtain the coefficients of
the above across-wafer variation model by fitting the industrial
65 nm process measured ring oscillator delay with 348 wafers
from 23 lots. In this section, we assume that a, b, ¢, and d
are fixed for a process. In practice, these coefficients may vary
slightly from wafer-to-wafer or lot-to-lot. Fig. 2 illustrates the
probability density function (PDF) of the fitting coefficients
for 348 wafers. From the figure, we find that the coefficients
are distributed within 30% of the mean. The most accurate
way is to model them as random variables. However, this will
significantly increase the complexity of the variation model.
For simplicity, in this paper, we assume the coefficients to
be constant (using the mean value). Making such assumption
introduces some error of the model, we will further discuss
how to reduce the error in Section IV. In the rest of this
section, all simulations are based on this extracted model.

Combining (2) and (3), we have

Vp(Xw, Yw) = ava + byi + Xy + dyy + Vg_g + U, @)
In the rest of this section, we will analyze spatial variation
based on the above model. Table I summarizes the
mathematical notations used in this section. In the rest
of this paper, we assume that inter-die random variation v,_g4
and within-die random variation v, are Gaussian random
variables with zero mean (the nonzero mean can be lumped
in to systematic offset v.).>

A. Variation of Mean and Variance with Location

Equation (4) provides a wafer level variation model, how-
ever, in real design, only die level variation model can be
applied, i.e., for a die, whose center lies on (x., y.) wafer
coordinates, we want to know the variation of location (x, y)
[assuming the coordinate of the center of the die to be (0, 0)].
In order to obtain the die level variation, we have to obtain
the across-wafer coordinate from the die location in the wafer
(x¢, y.) and within-die location (x, y). In this paper, we assume
that the chip coordinate aligns with the chip edges and the

4Since we look on the wafer mean as wafer to wafer random variation and
the systematic offset is lumped in to constant term v, there is no constant
term in the quadratic across-wafer variation model (lumped to wafer to wafer
variation and systematic offset).

5We assume inter-lot random, inter-wafer random, and inter-die random
variation to be independent zero mean Gaussian random variables. Therefore,
v4_q is also a zero mean Gaussian random variable.

TABLE I
NOTATIONS
Symbols Description Units
Across-wafer variation symbols
\4 Variation source 1
Ve Constant systematic offset 1
vo Nominal value 1
vp(x, y) Variation of within-die location (x, y) 1
Vaf Across-wafer variation (quadratic function) 1
Vi—d Inter-die random variation (zero mean Gaussian) 1
vy Within-die random variation (zero mean Gaussian) 1
n{%ﬂ] Variance of vg_q 1
o Variance of vy 1
a, b Across-wafer variation coefficients mm~2
c,.d Across-wafer variation coefficients mm~!
Inter-die/spatial/within-die variation symbols
vg Inter-die variation 1
Vs Within-die spatial variation 1
vy Within-die random variation 1
Size/location symbols
rw ‘Wafer radius mm
Iy, ly) x and y dimension die size mm
(Xw, Yw) Within-wafer location mm
(X, ye) Location of the center of the die in the wafer mm
(x,y) Within-die location mm
2] Angle between the die and wafer coordinates 1
o,y Within-die location in wafer coordinate mm
X =xcosw+ysinw, y = ycosw — xsinw
(l;,l;) I =lycosw+1ysinw, 1;. ycosw — Iy sinw mm
"y | X=X afb+c/@Vab), Y =y /b]a+d/(2/ab) mm
@) I = l.JaJb + c/(2/ab), Iy =1\,v/bja+ d/(2\/ab) mm
Tdp Fap = \/bx"2 +ay"2 1
Tdo rio = \/X"2+Y"2 mm
8 Euclidean distance between (x']’, y’]’ ) and (x’z', yé’ ) mm
" = A/1"2: /44172, /4 mm
Other symbols
ko ko = ri(a+b)/4 — c%/4a — d*4b 1
K ky = rb@® +b3)/16 — rhab/24 + 3 _ s 1
ko ky = ki /(abr2) mm?
o o= x']’x'z' + y’l’y'z’ mm?
B B=02/(abr) mm?
50 50 = cos” w(al? + blf)/lz +sin® w(bl2 +al?)/12 1
51 51 =50 +2/4a+d%/4b ’ 1

Note. Unit 1 means a no unit. In this paper, we assume that variation is normalized with

respect to the nominal value, hence variation has no unit.
wafer coordinate aligns with the major and minor axises of
the across-wafer variation parabola.® Notice that in practice,
the wafer coordinate and chip coordinate might not be aligned,
as shown in Fig. 3, where w is the angle between wafer co-
ordinate and chip coordinate. We may convert die location
(x, y) to wafer coordinate (x’, y’) by rotating coordinates, as
shown in Table I. In this case, the within wafer location of
within-die location (x, y) is calculated as

xw=xc+x/ y2=yt+y/-
Then, variation of location (x, y) is calculated as
vp(x, ¥) = aee + 2 + b(ye +y)* + )
c(xe+X)+dye+ YY)+ v4_q+v,.

In real design flow, the die location in the wafer (x., y.)
is not known to designers. We can convert the wafer-level
systematic variation model to a die-level model by noting that
dies are always distributed evenly in the wafer. Therefore,
we may model (x., y.) as random variables which are evenly
distributed in the circle centering at (0,0) with radius r,
(radius of the wafer). For simplicity, we convert rectangular
coordinate to polar coordinate

X =pcosH y=psinf (6)

SIf we force the wafer coordinate and chip coordinate to be aligned, there
will be a crossing term in the across-wafer variation model in (4), which
makes the problem more complicated.
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Fig. 3.

Wafer coordinate and chip coordinate.

where p and 6 are independent random variables. p is with
triangle distribution ranging from 0 to r,, 6 is with uniform
distribution ranging from 0 to 27
PDFy(p)=2p/r;,  0<p<ry @
PDFy(0) =1/2m 0<6<2m

With PDF, we can also obtain the first few order moments
and joint moments of x. and y.. Since (x., y.) are distributed
in a symmetric area, joint moment E[x”y"] = O when either
m or n is odd number. Therefore, we only need to consider
the even order moments and joint moments

Elx]1= Ely;1=ry/4 ®)
Elx/]1= E[y{1="r}/8
E[x}yZ]=r,/24.

The detailed derivation of the above equations is in
Appendix A. In this case, the variation at location (x, ),
v,(x, y), is expressed as a function of four random variables
X¢s Yes Vd—d> and v,. Then, the mean of v, (x, y) is calculated as

U’vp(xv y) = E[an(xc +)C,, Ye t y/)] + Elvg—ql + E[v,]. (9)

As discussed above, v;_4 and v, are zero mean, v, (x, y)
is quadratic function of x. and y,., therefore, E[v,,(x, y)] can
be obtained from the moments and joint moments of x,. and
Y. as shown in (8)

o, (X, ¥) = ko + 1, (10)
where ry4, and ko are defined in Table I. In a way similar to
mean calculation, we may also calculate variance of v,(x, y)

o, (x,y) =k + 0] +abrry, (11)
where k; and r4, are defined in Table 1.

The detailed derivation of (10) and (11) is in Appendix B.
From (10) and (11), it is interesting to note that different
within-die locations may have different means and variances.’
The location (xg, yo) having the smallest mean and variance
is given by letting x” =0 and y”" =0

xX"'=0 = xy=-—ccosw/2a—dsinw/2b
y'=0 = yj=dcosw/2b— csinw/2a.

The locations farther away from (xo, yo) will have larger
mean and variance. Fig. 4 illustrates the mean and variance
for different ry4, (or r4;) obtained from our proposed model
as shown in (5). From the figure, we find that the mean
and variance differ for different on chip locations, but the

7Such difference is caused by the chip-level nonlinearity of the across-wafer
variation function [we assume quadratic function as in (3)]. If the the across-
wafer variation function is linear at chip level, for example, a piecewise linear
function with piece size larger than chip size, the mean and variance will be
the same for all locations of a die.

-3
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Fig. 4. (a) p change for different rgy,. (b) o? change for different r .

difference is very small. Especially for mean, the difference
is less than 1%. Therefore, in the real measurement data,
the location dependence of mean and variance is not obvious
because a very small noise will overwhelm the difference.

B. Appearance of Spatial Correlation

Besides mean and variance, we are also interested in
the covariance between two locations (xi, y;) and (x2, y2).
Similar to the calculation of mean and variance, covariance
is calculated as

Cov =k +abrla.

Knowing the variance and covariance calculated above, we
may obtain the correlation coefficient as

I3 + 2kaor + a2

(12)
(k2 + 18)2 + (réal + rﬁaZ)(kz + 18) + rﬁalrczhﬁ

p:

where «, 8, and k; are defined in Table I. The detailed deriva-
tion of covariance and correlation coefficient is in Appendix C.
From (12), we obtain the upper bound and lower bound of the
correlation coefficient for a certain Euclidean distance

8%k, + 82/3/2 +2Bky + B2
(k2 + B2 +2r"2 (ko + B) + 1%

oot 82(ky—r"2, /2 + 82 /4) + B(B + 2ky + 2172 ) + 174
p=r= (ky + B)? + 82(ko + B)/2 + 84/ 16

P=pu=

where &, I, l;f, and r;, are defined in Table I. From the upper
bound and lower bound, we may also calculate the range of
correlation coefficient

ou—p1 < \/4r”fn/(r”3n +ky + ).

The derivation of the upper bound, lower bound, and range of
correlation coefficient is in Appendix D. Notice that usually
the wafer size is much larger than the die size, that is k; >>r”,%1,
therefore, p,—p; < 1, that is, the range of correlation coef-
ficient for a certain distance is very narrow. Moreover, from
the above equation, we also find that when the variances of
the inter-die random and within-die random variation increase,
the range decreases. This explains why most existing works
[2], [17] find that spatial correlation is a function of distance.

Fig. 5(a) illustrates the exact data for 40 locations, the upper
bound and the lower bound obtained from our proposed model
as shown in (5). From the figure, we find that the range of p
for a certain distance is very narrow. Although the correlation
coefficient is within a narrow range, covariance is not, as
shown in Fig. 5(b). This is because of the differences of
variance across the die.
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Fig. 6. Correlation coefficient for within-die spatial variation after inter-die
variation is removed.

Fig. 68 shows the correlation coefficient for within-die
variation after subtracting the mean variation of the die
(mainly caused by across wafer variation). In the figure, the
correlation coefficients are obtained from our proposed model
as shown in (5).

We observe that the within-die spatial variation is almost
NOT spatially correlated, as empirically observed in [28], [30],
and [31]. This further validates that the spatial variation is
caused by systematic across-wafer variation.

C. Dependence Between Inter-Die and Within-Die Variation

In most existing variation models, process variation is
decomposed into inter-die, within-die spatial, and within-die
random variation

(13)
where v, is the inter-die variation, v, is the within-die spatial
variation, and v; is the within-die variation. Usually, v, is
modeled as the variation of the chip mean, vy is the residual
of across-wafer variation after subtracting the inter-die com-
ponents, and v; is the pure random local variation. v, vy, and
vy are assumed to be independent.

With the variation model in (5), we may also calculate the
inter-die, within-die spatial, and within die random variation.
Within-die random variation is the local random variation v; =
v,. Inter-die and spatial variation is induced by the die-to-
die variation, and across-wafer variation. Inter die variation is
calculated as the variation of the chip mean

1
vy = E // s v,(x, y)dxdy

Ivl<ly/2

Vp = Vg + U+

= axf + byf +cxe +dye + Vg_gq + So

where s is defined in Table I. Within-die spatial variation
is calculated as the residual of across-wafer variation after

8In the figure, the correlation coefficient can be a negative number when
distance is large. This is because after subtracting the mean, when the within-
die variation of one corner increases, the within-die variation of the opposite
corner must decrease. That means, the within-die variations of opposite
corners are negative correlated. Moreover even when two locations are very
closed, if they lie on the opposite side of the center, their correlation is still
near zero.

Var scale

10 40 50

] 20 30
Die location Chip skze (mm)

Fig. 7. Approximating across-wafer variation. Note: we assume square chips
and chip size means edge length in mm. (a) Piecewise constant. (b) SNR
versus chip size.

subtracting the chip mean

vg(x, y) = Up(xa y) — Vg — Uy

= r?,“ +2ax'x. +2by'y. — s (14)

where s, is defined in Table 1. The derivation of the above
equation is shown in Appendix E. From the above equations,
we find that both inter-die and within-die spatial variations are
functions of random variables x. and y.. Hence, we may not
decompose process variation into independent inter-die and
within-die spatial variation.

D. When Can Spatial Variation Be Ignored?

In this section, we analyze the accuracy of the simple
two-level inter-/within-die variation model for different chip
sizes. If we only consider inter-/within-die variation, we may
lump the across-wafer variation into inter-die variation, that
is, approximate the across-wafer variation as a piecewise
constant function, as shown in Fig. 7(a). To evaluate the
impact of the approximation error, we may treat such
approximation error as noise and the process variation as
signal; and then evaluate the signal-to-noise ratio. In order
to do this, we calculate the mean square approximation error
and the total variance of variation. The signal-to-noise ratio
when ignoring the spatial variation is given as

6abrt +6(c + d)r2 + o3, + 0%

SNR =02
7 abr2 (2 + 1) +2(c + d)L 1,

total

/MSE ~

It can be seen that MSE depends on chip size. When chip
size is small, MSE is small. This is because we approximate
the across-wafer variation as a piecewise constant function
with small steps, hence such approximation is accurate.
Fig. 7(b) illustrates the SNR for different die sizes. It can be
seen that the SNR decreases when die size increases as
expected. We also observe that when chip size (I, and [,) is
smaller than 1 cm, the SNR is up to 100. That means, two-level
inter-/within-die variation model is accurate.

IV. GENERAL ACROSS-WAFER VARIATION MODEL

In the previous section, we assumed that the across-wafer
variation is a quadratic function as shown in (5). In practice,
across-wafer variation may not be an exact parabola. More-
over, the across-wafer variation will be slightly different for
different wafers. Therefore, there will be some fitting residual
after subtracting the across-wafer parabola

V(Xy, Yw) = vp(xwv Yu) + Ve(Xuy, V) (15)
where v, is the quadratic across-wafer variation model as
shown in (5) and v, is fitting residual. In the previous section,
we assume that the fitting residual is lumped into inter-die
random variation. However, the fitting residual contains not
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Fig. 8. Ring oscillator frequency within a wafer. (a) Original delay variation.
(b) Residual after subtracting (5). (c) Residual after subtracting (16).

only inter-die random variation but a systematic trend of
within-die variation. Fig. 8(a) illustrates the original delay
variation across the wafer, and Fig. 8(b) illustrates the fitting
residual of a wafer delay variation after subtracting the
quadratic across-wafer variation function. From the figure, we
find that after removing the quadratic across-wafer variation,
the scale of process variation reduces dramatically. From
the die point of view, such residual will also introduce
some spatial correlation. Fig. 9(a) illustrates the correlation
coefficients for different distances of the fitting residual. We
find that the correlation coefficient is still high (>0.4) the
fitting residual, but the correlation coefficients are no longer
within a narrow band for a given distance. From Fig. 8(b), we
also find the the spatial frequencies of the fitting residual are
low. Therefore, from the die point of view, the fitting residual
can be approximated by the first-order Taylor expansion
Ve, ¥) = V(e + X', Yo + ) R 0(xe, Ye) + 5:x’ + 5y
Sy = 0Ve(Xy, yw)/axw|xw =Xe Yw=DYc
Sy = (X, Yu)/OYwlXw = Xc Yu = Ye (16)

where v,(x’, ¥') is the fitting residual at die location (x', y').
In the above model, the term v.(x., y.) is the same for the
whole chip, but different from chip to chip. We may lump it
into die-to-die variation. Since the impact of fitting residual on
different chips is different, s, and s, vary from chip to chip.
In this case, we may model s, and s, as random variables.
Fig. 10 illustrates the distribution of s, and s, obtained from
measurement data of process 2. In order to obtain samples of
sy and sy, we remove the quadratic wafer-level spatial pattern
for each wafer, and then fit linear model in (16) for each die.
From the figure, we find that both s, and s, follow Gaussian
distribution. Moreover, the correlation between s, and s, is
very weak (p < 0.1). Therefore, in this paper, we assume that
sy and s, are uncorrelated Gaussian random variables.

Notice that when we model the fitting residual as a linear
within-die variation trend, two more random variables s,
and s, are introduced. This makes the variation model more
complicated. When the across-wafer variation is with a perfect
parabola and the fitting residual is not significant, we may just
lump the fitting residual in to inter-die and random variation.

In addition, we also observe that after subtracting the model
of fitting residual in (16), the remaining variation is almost
uncorrelated, as illustrated in Figs. 8(c) and 9(b).
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Fig. 9. (a) Correlation coefficient after subtracting (5). (b) Correlation coef-
ficient after subtracting (16).
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Fig. 10. (a) PDF of s,. (b) PDF of s,.
Combining (16) and (5), we obtain a general die-level
across-wafer variation model

vp(x, y) = alx. + X +b(ye + )+ c(xe +x)

+d(ye + Y) + 85X +5yY +v4_g +mp(x,y).  (17)

V. MODELING SPATIAL VARIABILITY

As discussed in Section I, spatial variation largely comes
from the deterministic across-wafer variation. Hence, mod-
eling the within-die variation as spatial-correlated random
variables is not accurate as discussed in Section III.

In this section, we introduce three new spatial variation
models considering across-wafer variation:

1) slope augmented across-wafer variation model (SAAW);

2) quadratic across-wafer variation model (QAW);

3) location dependent across-wafer variation model
(LDAW).

In the rest of this section, we will discuss these models in
detail.

A. Slope Augmented Across-Wafer Model

Equation (17) calculates the variation for a given location
(x,y). In the equation, the die locations within the wafer
(x¢, yo) are modeled as random variables and their PDF is
shown in (6) and (7). Equation (17) provides a new spatial
variation model. We refer to the new model as slope aug-
mented across-wafer variation model (SAAW).

Notice that in SAAW model, there are only six random
variables, inter-die random variation v,;_4, within-die random
variation v,, die location within the wafer x, and y., and
slope of fitting residual s, and s,. However, for the traditional
distance-based spatial variation model, the number of spatial
variation sources depends on the number of grids. Larger chip
needs more variables. Therefore, our new model not only
models the across-wafer variation accurately but also is more
efficient than the traditional spatial correlation model.



394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

B. Quadratic Across-Wafer Model

In our original variation model in [41], we model the across-
wafer variation as a quadratic function, as shown in (5),
without modeling the fitting residual. In this case, there are
only four random variables, x., Y., vs_q4, and v,. We refer to
this model as quadratic across-wafer variation model (QAW).
Since QAW does not consider fitting residual, it is not as
accurate as SAAW. As discussed in Section IV, when the
across-wafer variation is a perfect parabola, the fitting residual
is not significant,” we may just lump the fitting residual into
inter-die random variation and simplify SAAW to QAW.

C. Location Dependent Across-Wafer Model

As discussed in Section III-D, when die size is small
enough, applying the two-level inter-/within-die variation
model does not introduce much error. However, inter-/within-
die variation model still does not consider the mean and
variance difference at different locations of a chip, as discussed
in Section III-A. To further improve the accuracy of inter-
/within-die variation model, we may account for this

(18)

where v/, is inter-die variation including inter-lot random,
inter-wafer random, inter-die random, and across-wafer varia-
tion, v/.(x, y) is within die variation including within-die ran-
dom variation and residual of across-wafer variation, Mo, (x,y)
and 0,,(x, y) are mean and variance difference at different
locations of a chip, which can be calculated from (10) and (11).
We refer to the above model as location dependent across-
wafer variation model (LDAW). LDAW is a further simplifi-
cation of QAW, it lumps the across-wafer variation into inter-
die and within-die variation. Inter-die variation is modeled as
chip mean as discussed in Section III-C, and the residual is
lumped into within-die variation. In this paper, we assume that
V), is zero mean Gaussian random variable. The variance of
v, is obtained from measurement. We also assume v/.(x, y) to
have a standard normal distribution. In this case, the within-die
variation, avp(x, Y)V,.(x,y), is a zero mean Gaussian random
variable whose variance is 03’) (x, y), which is determined by
within-die location. Moreover, in this model, the mean of
v(x, ¥) is y,(x, y) which is also location dependent. Notice
that in 18, Hu, (x, ¥) and avp(x, y) are deterministic value for a
certain within-die location (x, y). Therefore, LDAW model has
only two random variables v/, and v, which is the same as two
level inter-/within-die model. Hence compared to inter-/within-
die model, LDAW has similar efficiency but higher accuracy
because LDAW considers mean and variance difference across
the chip while inter-/within-die model does not.

v(x, y) A vy + iy, (X, ) + 0y, (X, YIUL(X, Y)

VI. APPLICATION TO STATISTICAL TIMING ANALYSIS
In this section, we apply our across-wafer variation model
to statistical static timing analysis.

A. Delay Model
In statistical timing analysis, people usually approximate

cell delay as linear function of variation sources
D=Dy+ A, VT (19)

9For example, process 1 as discussed in Section IL

where Dy is the nominal cell delay, A; = (a4, ds2, ... , Ag)
is the vector of linear sensitivity coefficients, and V = (Vi,
V2, ..., V,) is the vector of variation sources. For SAAW and
QAW, since each variation source is a quadratic function of
random variables, as shown in (17) and (5), the gate delay is
a second-order function of random variables

D = py(RV)

where p;(-) is a ith order polynomial function and RV = (rvy,
rva, ..., rv,) is the vector of random variables (such as x.
and y.). In this case, the quadratic SSTA flow in [42] can
be applied to estimate chip delay variation. For LDAW, each
variation source is a linear function of random variables, as
shown in (18), then the cell delay is also a linear function of
random variables
D = pi(RV).

In this case, the linear SSTA flow in [42] can be applied to
estimate chip delay variation.

To model cell delay more accurately, a quadratic cell delay
model [42] can be used

D =Dy+ AV + VB VT (20)

where B = (by;;) is matrix of second-order sensitivity coef-
ficients. In this case, for LDAW, the cell delay is a quadratic
function of random variables. Therefore, quadratic SSTA can
be applied to estimate chip delay. However, for SAAW and
QAW, since each variation source is a quadratic function
of random variables, the cell delay becomes a fourth-order
function of random variables

D = p4(RV).

Handling such high order delay variation function is
complicated. In this case, the moment matching technique in
[42] is applied to approximate the fourth-order function to a
quadratic function by matching the first two order moments
and joint moments

P2(RV)
E[p2(RV)] =
Elrvi - p2(RV)] =
E[rv; - p2(RV)] = E[rv} - ps(RV)]
E[rvirvj - po(RV)] = E[rvirvj - pa(RV)].

With the above approximation, quadratic SSTA can be
applied. Notice that moment matching approximation is
performed only once for all cells and does not increase the
run time of SSTA.

Moreover, it was shown in [42] that ignoring crossing terms
of quadratic cell delay function (semi-quadratic delay model)
significantly improves the run time of SSTA without affecting
accuracy too much. Therefore, to improve efficiency, we may

ignore the crossing terms when we perform quadratic SSTA
(semi-quadratic SSTA).

2

P4(RV)
[p4(RV)]
Elrv; - p4(RV)]

B. Experimental Result

We have implemented the non-linear SSTA in [42] with
different spatial variation model in C++. In order to verify
the efficiency and accuracy, three comparison cases are de-
fined: 1) Monte-Carlo simulation with the exact deterministic



CHENG et al.: PHYSICALLY JUSTIFIABLE DIE-LEVEL MODELING OF SPATIAL VARIATION IN VIEW OF SYSTEMATIC ACROSS WAFER VARIABILITY 395
TABLE II
DELAY PERCENTAGE ERROR FOR DIFFERENT VARIATION MODELS
Benchmark| Delay Exact SAAW Quad SAAW S-Quad QAW Quad QAW S-Quad LDAW* SPC* w*

Model| © | o |95%|| n | o [95%| T n| o |95%| T n| o |95%| T n| o |95%| T n| o |95%| T n| o |95%| T " o |95% | T

c1908 | Quad [17.6[2.27(24.5((—0.4|—0.9|—1.0{146||—0.9|—1.7|—1.7| 27 |[—0.8|—1.9|—2.3| 54 ||—1.3|—2.5[—3.2| 19 |[—2.1|=7.5|—-6.9] 9 ||—1.5|—4.2|—3.8[1450||—2.6|—10.2( —8.9 | 8
Lin | - | = | — ||—0.8—1.5|—1.4150(|—1.4|—1.8|]—2.0| 26 ||—0.9|—3.6|—3.1| 53 ||—1.2|-3.4|—3.9| 18 ||—2.6|]—7.5[-8.1| 10 |[—2.1|—4.4|—4.0| 135 ||—3.0{—11.5|—10.3| 10

¢3540 | Quad [25.7(3.43(34.5((+0.4|+0.9|+0.7|212||—0.4|—1.3|—1.1| 36 |[+0.4|—1.8|—1.2| 76 ||—0.9]—2.1|—1.9| 25 |[+0.4(—5.8|—4.6| 13 ||—1.2|—4.8|—4.0[4210|[—1.4| =7.3| —6.5| 12
Lin | - | = | — ||—0.6—1.2{—1.2]209{|—1.1|—1.9]—1.6| 35 ||—0.9|—3.6|—3.1| 77 ||—1.2|-5.1|—3.9| 27 ||—1.8|—6.5|—6.0| 9 ||—2.0|—6.5|—5.7| 202 [|-2.9| —9.3| —8.8 | 10

¢7552 | Quad [48.9(6.47|64.7((—0.6|+0.3|+0.2|435||—0.8|]—0.2(—0.9| 67 |[—0.8|—1.6|—1.4|115||—1.6|]—1.5|—1.7| 48 |[—2.7|—3.6|—4.0| 20 ||—1.0]—2.3|—2.9|8182|(-2.1| —6.7 | —6.5 | 22
Lin | - | = | = ||—0.6/—0.5{—0.6430(|—1.5|—1.4|—1.6{101||—1.1|—1.3|—1.4{109|[—1.9|—2.2|—2.8| 79 ||—3.3|—4.6|—4.9| 16 ||—3.3|-3.5|—4.3| 433 ||-3.9| —8.9| —8.2| 15

Note. The 11, o, and 95-percentile point for exact simulation is in ns. Run time (T) is in ms. *for LDAW, SPC, and IW, linear SSTA is applied when assuming linear cell delay model.

across-wafer variation model,'® which is the golden case for
comparison; 2) distance-based spatial correlation model from
[2], which is referred to as spatial correlation model (SPC);
and 3) two-level inter-/within die variation model, which is
referred to as inter-/within-die variation model (IW).

We apply all the above methods to the ISCASS85 suite of
benchmarks in predictive technology model (PTM) 45 nm
technology [43]. We assume random placement for ISCAS85
circuits. Since process variation has smaller impact on
interconnect delay than on logic cell delay, we only consider
logic cell delay when calculate the full chip delay variation. In
the experiment, we consider the gate length variation obtained
from minimum square error fitting on the ring oscillator
delay from industrial 65 nm process (process 2 as discussed
in Section II) measurement from the model as shown in (17).
We obtain the across-wafer coefficients a, b, c, and d, fitting
residual residual coefficients s, and s,, standard deviation
of random inter-wafer, inter-die, and within-die variation
as percentage with respect to the nominal value. Then we
assume that the percentages of all the above coefficients to
nominal value are the same at 45 nm technology node and
65 nm technology node. To obtain across-wafer coefficients a,
b, c, and d, we apply quadratic function to fit the across-wafer
variation for each wafer to obtain the fitting coefficients for
each wafer, then use average coefficients of all wafers for
our experiment. To obtain fitting residual residual coefficients
sy and s,, we first get the slope of fitting residual s, and s,
for each chip, and then calculate the mean and variance of
sy and s, for all chips. In the experiment, we assume s, and
sy to be Gaussian random variables with mean and variance
obtained from the measurement data.

1) Full Chip Delay: In the experiment, we assume that
the chips size is 2cm x 2 cm and the wafer radius is 15 cm.
Since ISCAS85 benchmarks are very small, the impact of
spatial variation on delay is not significant within the circuit.
In order to show such impact, we assume the benchmarks
are stretched on a 2 cm x 2 cm chip. In our experiment, for
the SPC model, we divide the chip to 10 x 10 = 100 grids.
Table II illustrates the percentage error of mean (i), standard
deviation (o), and 95-percentile point (95%) and run time (T)
of different variation models. In the table, we also compare
the result of using quadratic cell delay model (Quad) and
linear cell delay model (Lin). We only use quadratic cell

10In the simulation, each wafer may have different across-wafer variation
which is obtained from measurement data of process 2. We have simulated
318 wafers correspondent to 318 measured wafers.

delay model for golden case simulation (exact), the error is
calculated as error of different variation models compared
to the golden case simulation. For SAAW and QAW, we also
compare the results of applying quadratic SSTA with crossing
terms (SAAW Quad and QAW Quad) and applying SSTA
without crossing terms (SAAW S-Quad and QAW S-Quad).
From the table, we have the following observations.

1) Compared to full quadratic SSTA, semi-quadratic SSTA
(SSTA without crossing terms) achieves up to 8x
speedup with less than 1% accuracy loss.

SAAW is more accurate than QAW. This is because the
fitting residual is significant for the measurement data,
QAW ignores fitting residual and hence introduces more
error.

The error of SAAW using semi-quadratic SSTA is
within 2% while the error of spatial correlation model
is up to 6.5%.

Compared to quadratic cell delay model, linear cell
delay has less than 2% accuracy loss. This is because
in our experiment, the cell delay variation is well
approximated by a linear function.

For linear cell delay model, SAAW achieves about 6x
speedup compared to SPC. This is because there are
100 grids in the spatial correlation model, resulting in
37 spatial random variables,!! while SAAW has only
six random variables.

LDAW and IW are very efficient. However, both models
have much larger error than others. This is because
both model ignore correlation. But LDAW is still more
accurate than /W without run time penalty.

2)

3)

4)

5)

6)

Since linear cell delay model and semi-quadratic SSTA are
accurate, we assume linear cell delay and apply semi-quadratic
SSTA for all experiments. Moreover, since SAAW is more
accurate than QAW with only a small run time overhead, we
do not consider the QAW model in the following experiments.

In our experiment, we only consider big chips. As discussed
in Section III-D, when the chip size is small, the impact
on across-wafer variation at die level is not significant. In
order to verify this, we perform delay estimation of ISCAS85
benchmarks stretching on different size chips. Table III shows
the percentage error for different models with different chip
size. From the table, we find that when chip size is small,
LDAW and IW is accurate. Considering that LDAW has similar

There are 100 correlated spatial random variables, we apply PCA to trun-
cate some insignificant principle components and there remains 37 significant
principle components.
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TABLE III
PERCENTAGE ERROR FOR ISCAS85 BENCHMARK STRETCHING ON A
CHIP WITH DIFFERENT CHIP SIZE

Bench-|Chip SAAW LDAW SPC w

mark [size | 0 | o |95%|| 1w | o |95%|| nw | o [95%|| n | o |95%]|| n | o [95%
c1908 | 10 |17.4|2.24|24.2||—1.2|—1.8|—1.9||-2.2|—5.5|—5.9||—1.7|-3.5|-3.3||—-2.5|—6.8|—7.1
6 |17.5[2.23|24.3||—1.1|—1.5|—-1.6||—2.2|—4.1|—4.2||—1.2|—2.6|—2.4||—-2.2|—4.5|—4.3
3 [17.62.22(24.4{|-0.9|—1.2|—1.1||—1.1{—1.8|—1.6|[—1.0|—1.5|—1.5||—1.9|—2.1|-2.5
¢3540| 10 |25.6|3.42|34.6||—1.0[—2.2|—1.6||—1.4|—6.2|—4.9||—1.8|—5.4—4.8||—2.2|—7.5|—6.9
6 [25.8|3.45|34.3||—0.8/—1.2|—1.0||—1.2|—3.8|—3.3||—1.5|—3.4|—3.0||—1.3|—4.2|—3.7
3 [25.8[3.44(34.4(|-0.5|—1.0|—1.0{|—1.1{—2.1|-2.0| [~ 1.0|—1.9]—1.9||—1.1|—2.2[-2.3
¢7552| 10 [48.9|6.47|64.7||—1.2[—1.1|—1.4||—2.8|—3.5|—3.7||—2.5|-2.2-2.7||—3.2|—5.6|—6.3
6 [48.9/6.47|64.7||—1.0|—1.1|—1.3||—1.4{—2.5|—2.3||—2.2|-2.1|—2.5||—-2.9|-3.1|-3.3
3 148.9(6.47(64.7(|—0.6|—0.9|—1.0||—1.0|—1.1|—1.2|[-0.9|—1.3|—1.4||—1.3|— 1.4|— 1.6

Exact

Note. We assume square chips and chip size means edge length in mm. The exact delay values
are in ns.

TABLE IV
DELAY PERCENTAGE ERROR AT DIFFERENT LOCATIONS IN A
2 cm x 2 cm CHIP

Benchmark | Location Exact LDAW w

n | o |95%|| n o |95% | n o |95%

¢3540 C 25.413.29|32.2|[+0.4 [ +0.3 [+0.3 || +1.1|+2.4 |+2.8
LL |24.8(3.22({31.9(|+0.8 |+0.6 | +0.3 || +3.5|+1.4|+1.9

LR [26.2|3.35|33.1||—0.7|+0.6 [—0.6||—1.9|—2.4|—1.8

UL |26.5|3.36|33.3||—0.2| +0.3|+0.3||—3.3|-3.0|—4.4

UR |27.1(3.41|34.1{|-0.3|-0.3|-0.6(|—6.1|—4.1|=5.2

c7552 C 48.216.37|60.2(| +0.8 | +0.3 | +0.2 || +1.0 | +0.9 | +0.9
LL |47.2|6.11(58.5(|+0.4|+0.3|+0.7 || +3.6 | +4.6 | +3.1

LR [49.4]6.51{62.3||—0.2|+0.3[+0.3|—0.8/—1.9/—3.0

UL |49.5(6.65|63.1{|—0.2|+0.1|+0.1|[—1.0|—4.0|—4.1

UR |[50.1(6.91(65.3(|—0.4|+0.3|+0.1 ||—1.0|-7.4|-7.4

Note. The exact delay values are in ns.

TABLE V
DELAY COMPARISON FOR ISCAS85 BENCHMARK IN 1 CM x 1 CM CHIP

Benchmark | Location Exact LDAW w

n | o |95%|| n o |95%|| n o |95%

c3540 C 25.4(3.26|31.9([+0.5 |+0.4 | +0.2 || +1.3|+1.6 | +1.9
LL [25.0(3.25(31.6(|+0.5|40.3|+0.3 || +2.4|+1.3|+2.4

LR [25.8/3.30{32.4||—0.4|—0.4|—0.4|—1.1|-0.9/—-0.8

UL |26.1|3.32|32.6||—0.4|+0.3|—0.2||—-2.0|—-1.5|—1.4

UR [26.2(3.34|33.0({|—0.3|—0.3|—-0.6(|—2.6|—1.8|—-2.2

c7552 C 48.6]6.38|60.4|| +0.2 [—0.1[—0.2|| +1.0| +0.5 | +0.6
LL |48.2(6.35(60.3(|—0.2|—0.2|+0.2 || +1.7 | +1.0 | +1.1

LR [48.9/6.42|60.4||+0.2 |—0.2(+0.2 ||-0.2|—-0.7|—0.5

UL |49.1/16.43|61.0/|—0.2|—-0.2|—-0.2||—0.9|+1.0 |—1.3

UR [49.2(16.45(61.2(|—0.3|-0.4|—-0.5(|—1.1|—1.4|—1.8

Note. The exact delay values are in ns.

run time but is more accurate (although when chip size is
small, the accuracy improvement is limited) compared to IW,
LDAW is always better than IW.

2) Delay of Blocks on Different Locations on a Chip: The
above experiment assumes that the benchmarks are stretched
on a chip. However, in real design, especially for big chips,
the design is separated into several blocks and each block only
occupies a small region on a chip. In this case, the critical path
is within a small region instead of spanning all over the chip.
As discussed in Section III-A, different chip locations may
have different mean and variance. Therefore, when a block
is place at different locations of a chip, its delay variation
may be different. In order to show such effect, we assume
that the ISCAS85 benchmark circuit is placed (no stretched)
in different locations of a chip: center (C), lower left corner

TABLE VI
DELAY COMPARISON FOR ISCAS85 BENCHMARK IN 6 MM x 6 MM CHIP
Benchmark | Location Exact LDAW w

n | o |95%]| n o |95%|| n o |95%

c3540 C 25.5|3.27|32.0|| +0.4 [ +0.2 [ +0.3 || +0.9 | +0.7 | +1.4
LL [25.1|13.25|31.7||+0.5|+0.3 | +0.3 || +2.4 | +1.3 | +2.4

LR [26.0|3.32{32.6||—0.4|—0.4|—04|—1.1|-0.9/—-0.8

UL |26.2|3.34|32.8(||—0.4|+0.3|—0.2||—-2.0|—1.5|—1.4

UR [26.3(3.35(33.1{|—0.3|—-0.3|—-0.6||—2.6|—1.8|—-2.2

c7552 C 48.416.37|60.1|[ +0.2 |—0.1|—0.2|[ +1.0 [ +0.5 | +0.6
LL [48.1|6.34|59.9(|—0.2|—0.2{+0.2 || +1.7 | +1.0 | +1.1

LR [49.0/6.43|60.7|| +0.2 |—0.2+0.2 ||—0.2|—0.7|—0.5

UL |49.3|16.46|61.3||—0.2|—0.2|—-0.2||—0.9|+1.0|—1.3

UR |49.4(6.48(61.5(—0.3|—0.4|-0.5||—1.1|—1.4|—1.8

Note. The exact delay values are in ns.

TABLE VII
DELAY COMPARISON FOR ISCAS85 BENCHMARK IN 3 MM x 3 MM CHIP
Benchmark | Location Exact LDAW w

nw | o |95%| n o |95%|| n o |95%

c3540 C 25.6|3.28|32.2|| +0.4 [ +0.2 [ +0.3 || +0.5 | +0.3 | +0.8
LL [25.4]3.26| 320 || +0.5[+0.6 [+0.3 || +1.2|+1.0 |+1.2

LR [25.8]3.31{32.4||—-0.2|—0.4|-0.6||—0.5|-0.7|—0.7

UL |25.9|3.22|32.5||-0.2|+0.3|—0.2||—-1.0|—1.1|—0.9

UR |26.0|3.31|32.7||—0.2|—0.2|—-0.3||—0.7|—0.8 |—1.1

c7552 C 48.616.38|60.3|[ +0.2 | —0.3[ +0.7 || +0.2 | +0.5 [ +1.1
LL [48.4]6.37|60.1||—0.2| 0.1 [+0.2|/+0.4|+0.3 |+0.7

LR |48.8(6.42|60.6|| +0.2 |—0.3|+0.3 ||—0.6|—0.9|—0.5

UL |48.9|6.43|60.9||—0.2|+0.2|—0.2||—0.4| +0.0 | —0.6

UR [49.2(16.45(61.2(|—0.2|—0.2|—-0.3||—0.7|—-0.8|—1.1

Note. The exact delay values are in ns.

(LL), lower right corner (LR), upper left corner (UL), and
upper right corner (UR), and then calculate the delay variation
with location. Since ISCAS85 benchmarks are very small, the
impact of spatial variation on delay is not significant within
the circuit. Therefore, in this experiment, we only compare
two models LDAW and ITW.'?

Table IV compares the percentage error of LDAW and IW
for ISCASS85 benchmarks placed on different locations of a
2 cm x 2 cm chip. From the table, we find that the error
of LDAW 1is within 1% error from the exact simulation and
the error of IW is up to 8%. This is because LDAW predicts
different mean and variance for different location correctly, as
discussed in Section V while /W can only give the same mean
and variance for all locations.

Tables V-VII show percentage error of LDAW and IW
for ISCAS85 benchmarks placed on different locations of a
Iemx1lcm, 6 mmx6 mm, and 3 mmx3 mm chip, respec-
tively. From the tables, we find that the error of /W becomes
smaller when chip size is small.

VII. APPLICATION TO STATISTICAL LEAKAGE ANALYSIS

Besides SSTA, we also apply our variation model to statis-
tical leakage power analysis. Usually, cell leakage power vari-
ation is modeled as exponential function of variation sources

Pioaie = Py - €Y 1)

2When the circuit is in a small region, SAAW and QAW will give similar
result as LDAW, and SPC will give similar result as IW.
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TABLE VIII
LEAKAGE ERROR PERCENTAGE FOR DIFFERENT MODELS IN 2 CM x 2 CM CHIP
Benchmark Exact SAAW QAW LDAW SPC w
% o |95% | un o |95%| T nw o |95%| T nw o 95% | T % o 95% | T " o 95% | T
cl1355 62.1[14.51925([+1.5[+3.3|+3.2(163|[+3.4|+6.5|+5.4| 9.8 || —5.5|—15.6|—16.9(2.5|[+5.3|+10.4|+12.2|123|[-7.9|—-19.6|—-20.9(2.7
c1908 95.6(20.3| 144 |[+0.9 |+4.4|+3.7 | 15.5||+2.3|+7.8|+6.3| 9.7 || —-6.5|—17.8 | —19.6 (2.6 || +5.7 | +14.8 | +14.3| 122|| -8.6 | —19.2|—-23.5|2.9
c2670 131 (22.9] 181 ||+1.4|+2.7 |+1.7|15.7 || +2.9|+8.5|+4.7| 9.5 ||-7.9|—16.9|—-22.0|2.8 || +6.8 | +12.2| +9.4 |122]|| -9.2 | -20.3|—-25.5|2.4
c3540 201 |37.4] 282 ||+1.5[+2.3|+1.8|15.4||+3.1|+5.8|+4.4|104||—5.6|—16.5|—-20.2|2.6||+4.9 |+11.2| +48.2 [ 123 | -8.3 | —18.2|—23.5|2.7
c7552 403 (73.2] 562 ||+1.6 |+2.7|+1.9 153 ||+3.7|+6.0|+5.0| 10.1 || =7.3|—12.6 | —16.9 [2.6||+7.1 |+13.8 | +10.7| 122 -9.2 | —20.3|—-24.5|2.5
Note. The exact values are in mW. Run time (7') is in s.
TABLE IX 3) Both LDAW and IW are not accurate. This is because
LEAKAGE ERROR FOR DIFFERENT VARIATION MODEL ON DIFFERENT both these models do not consider correlation and hence
SIZE CHIPS underestimate the leakage power variation.
Similar to the SSTA, for leakage variation analysis, we also
Bench- | Chip Exact SAAW LDAW SpC w f 1 k . . . dff . h . 1
mark | size | 70 | o [95%|| 2 | o 195%|| % | o 195%]| 12 | o 195%|] & | o [95% pertorm I€akage estimation 1n different size c 1ps: cm X
1355 | 10 |15.4]3.52[232][+12[+3.1]+3.0|[~4 710,611 2|[+48[+75[+92[[-5.4-123~138] 1cm, 6 mm x 6 mm, and 3 mm x 3mm. For the 1 cm x 1cm
6 [5.92[1.62|103||+1.0|+2.7|+29||-3.5| —7.5| -8.3 ||+2.7|+6.2|+6.7||-3.9| -8.1| 9.2 . .
3 [1.48]0.40|2.58|[+0.6|+1.8]+2.0||-1.8| =3.5| —3.7||+1.6|+2.9|+3.1||-2.0| =3.5 | —4.0 Chlp’. we assume that 225 copies of ISCAS8S benchmark
c1908 | 10 |23.9] 5.7 [36.1|[+1.0[+2.7|+29|[-a 2|~ 123 14.1[[+3.7[+8 5[+9.2|[-55-139151]  circuits are placed in a 15 x 15 array, for the 6 mm x 6 mm
6 [10.6]225|16.1||+0.9|+2.0(+2.1||-3.4[ —7.3| -8.2 ||+1.9|+5.6|+6.8||-3.5| =7.3| —9.0 : : s
3 [2.65]0.57|4.03||+1.0[+22]+22||-1.3| =3.5| —4.0]||+1.2|+2.9]+3.1||-1.9| 4.0 —4.4 chip, we assume 100 copies of ISCAS85 benchmark circuits
2670 | 10 [32.8]5.72]45.2|[+12|+2.8|+2.9|[-5.3|-11.1|-12.0|[+42|+82]+9.1|| 65123171 are placed in a 10 x 10 array, and for the 3mm x 3 mm
6 [14:6]2:55|20.1[[+1.0|+1.8+1.9]|-3.5) ~62| ~7.1 || +2.4|443|+60] 43 ~7.1| =83 chip we assume 25 copies of ISCAS benchmark circuits are
3 [3.65/0.65|5.03||+0.8|+1.4|+1.7||-1.9| =3.2| —3.7||+2.0|+3.6|+3.5||-2.2| —4.5| —5.1 .
G540 | 10 |505(937| 701 |[+1.2|+1.8|+21]|-3.9] —7.8|-10.3]|+29]+5.3]+6.2|| 50| —96|-145 Pplaced in a 5 x 5 array. Table IX shows the error percentage
6 [223|4.16|302||+1.01+141417||-2.3( 45| =55 ||+1.8|43.5|43.6||-34/ 6.1 | -85 | for different models for different size chips. From the table,
3 [5.58/1.05]7.55||+0.9|+12]+1.4||-1.2| =3.1| =3.0||+1.0|+1.4|+2.0||-1.4] —3.4| =3.9
532 | 10 | 102 18.5] 141 |[+1.4[+23[+2.4]|-4.6| =73 —0.9][+40[r62|+86]|-63| s2|-125] We find that the error of LDAW, SPC, and IW reduces when
6 [45.0]8.191626||+12|419|+1.9/|-3.0) 52| 73| | +27|+4.2[+5.1||-35| 60| 82|  chip size becomes smaller as expected.
3 [11.4]2.06]1.58(|+0.9|+0.7]+1.3||-1.2| —1.8| —2.0||+1.5|+1.6|+1.6||-2.3] —2.9| 3.4

Note. Exact values are in mW.

where Py is the nominal leakage power and c¢;s are sensitivity
coefficients. The full chip leakage power is calculated as the
sum of leakage power of all cells

Pchip = E P jeak

ieCell

(22)

where Cell is the set of all cells in the chip and P;jeq is
leakage power of the ith cell. Since each variation source
is a quadratic function as in (17), the cell leakage power is
an exponential of a quadratic function of random variables.
Considering the random variables may be non-Gaussian, there
are no closed-form equations to calculate the full chip leak-
age power. Therefore, in this paper, we apply Monte-Carlo
simulation to obtain the full chip leakage power variation.

We have implemented leakage variation analysis with dif-

ferent models in MATLAB. In the experiment, we use the
same setting and comparison cases as the SSTA experiment in
Section VI. For each variation model, we use 100 000 sample
Monte-Carlo simulation to obtain the full chip leakage power
for all variation models. For the leakage analysis, we assume
that 900 copies of ISCAS benchmark circuits are placed in a
30 x 30 array on a 2 cmx2 cm chip. Table VIII compares the
leakage variation for ISCAS85 benchmarks. From the table,
we observe the following.

1) Error of SAAW is within 5% while error of SPC is up to
17%. Moreover, SAAW is 7x faster than SPC because
there are fewer random variables for SAAW.

2) SAAW is more accurate than QAW, but is about 50%
slower.

VIII. SUMMARY OF DIFFERENT MODELS

In the previous sections, we compared the accuracy and effi-
ciency of different models. Table X summarizes the advantages
and disadvantages of our proposed spatial variation models
(SAAW, QAW, and LDAW), and the traditional variation models
(SPC and IW). Our proposed across-wafer variation models
exactly model the across-wafer variation and the number of
random variables does not depend on chip size. Therefore they
are accurate and efficient. SAAW has six random variables
and it can be applied to any across-wafer variation models.
QAW has four random variables, hence it is more efficient than
SAAW. However, it can be applied only when the across-wafer
variation is a perfect parabola. LDAW is the most efficient,
ignores correlation and only works for small chips. Moreover,
SAAW and QAW need to know the across-wafer variation.
Therefore, one needs to track the die locations within the wafer
to build up the model.

On the other hand, the traditional variation models as well as
LDAW) only require measurement on a die without tracking
die locations. Therefore, they are somewhat easier to build.
However, such models are not accurate compared to our
proposed models. Moreover, for SPC, since the number of
random variables depends on number of grids, it is not as
efficient as our proposed models.

IX. ARBITRARY ACROSS-WAFER VARIATION FUNCTION

In this paper, we assume across-wafer variation to be a
parabola. In most cases, our proposed SAAW model is good
enough to model the across-wafer variation at die level.
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TABLE X
SUMMARY OF DIFFERENT VARIATION MODELS

Model Type | Advantages Disadvantages Models # of RVs Case to Apply
Across- Accurate Need die tracking | SAAW (17) 6 Large chip, non-parabola across-wafer variation
wafer Efficient to extract QAW (5) 4 Large chip, parabola across-wafer variation
models LDAW (18) 2 Small chip
Traditional Easy to Not SPC Depend on # of grids Large chip
models extract accurate w 2 Small chip

However, there are some special cases where the across wafer
variation is an arbitrary function as follows:

Up = f(xwv yw) + Vg—g + V.

In this case, the statistical characteristics such as mean,
variance, covariance, and correlation coefficient depend on
the function f. In most of the cases, we may not have the
closed form formulae to calculate the statistical characteristics.
However, we may still apply similar method as in Section III to
model the across-wafer location for a die as random variables

Vp(x, y) = f(Xe+X, Yo +Y) + Vg_g + V.

When we know the function f, either in closed form or
as a numerical lookup table, we may perform Monte-Carlo
simulation on the above formula for statistical analysis. In
this case, since there is no closed-form, we cannot perform
analytical statistical analysis, such as SSTA or statistical
leakage analysis.

X. CONCLUSION

In this paper, we analytically studied the impact of system-
atic across-wafer variation on within-die spatial variation. For
simplicity, we first assumed that across-wafer variation is a
quadratic function. We first observed that different locations
on a chip may have different means and variances and such
difference becomes more significant when chip size increases.
Second, we found that spatial correlation is visible only when
the across wafer systematic is not taken into account. When
it is taken into account, we showed that within die random
variability does not exhibit a strong or useful pattern of spatial
correlation. We exploited these observations in order to create
a much more accurate and efficient model for performance
variability prediction. Third, we found that the within-die
spatial variation is NOT independent of the inter-die variation.
However, when chip size is small enough, such dependence
is weak and the across-wafer variation can be lumped into
inter-die variation. In this case, the two level inter-/within-die
variation model is still accurate. We further considered the case
when the across-wafer variation is not with a perfect quadratic
function. Based on the above analysis, we proposed accurate
and efficient variation models for deterministic across wafer
variation. We further applied our new variation models to two
applications: statistical static timing analysis and statistical
leakage analysis. Experimental result showed that compared to
the distance-based spatial variation model, our new model re-
duces the error from 6.5% to 2% for statistical timing analysis

and reduces error from 17% to 5% for statistical leakage analy-
sis. Our model also improves the run time by 6 x for statistical
timing analysis and by 7x for statistical leakage analysis.

APPENDIX A
MOMENTS OF x, AND y,

1) 2nd and 4th Order Moments of x. and y.:

Tw 2
E[x*] = E[p*]E[cos® 6] = / 0% 2p/r2dp / cos>(9)/27d6
0 0
= (p*/2r2)|; - (0 + sin(B) cos(9)) 5™ /4m
=r, /4
Tw 2
= E[p*]E[cos* 0] = / ot 2p/r2dp / cos*(0)/27do
0 0

= (0°/3r2)|o - (126 + 8 5in(26) + sin(46))[5™ /647
=rt/8.

E [)c4

c

—

Since x. and y. are symmetric, we have

E[y}1= Elx]]1=r /4
E[y}] = E[x}]=r}/8. O

2) Joint Moment of x. and y.:

E[xfyf,] = E[p*|E[cos’ 0 sin® 6]

Ty 2
= / ot 2,0/r§}d,0/ cos’(6) sinz(é)/erdB
0 0

= (p°/3r2)|o - (40 — sin(46))[" /647
=ri/24. O
APPENDIX B
MEAN AND VARIANCE OF v p

We first express v, as

Vaw(Xe + X', ye +))
=a(x. + X'V +b(ye +y) + (e + X)) +d(ye + )
= a(x. + x"\/b/a)? + b(y. + ¥'\/a/b)* — c* J4a — d*/4b.
(23)
1) Mean of v,,: We first compute the mean of v, as follows,

notice that we only need to consider even order moments and
joint moments of x. and y, as discussed in Section III

Moy = Elvaw(xe + X', ye + )]
= Ela(x+x"\/b/ay+b(y. + y'\/a/b)’ | = [4a — d° /4b
= aE[x2] + bE[y*] + bx"* + ay"* — ¢* /4a — d*/4b
=ri(a+b)/4 —c?/da—d*/4b+bx"* +ay"* = ko + rjﬂ.
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Since we assume that v;_; and v, are with zero mean, mean
of v, is
2
Mo, = Haw + ha—a + Iy = ko + 17, O
2) Variance of v,: We first compute the variance of v,
2

U('IIU

= E[v;,(xc + X, ye + Y] — E*[van(xc + X, ye + ¥)]
= @’ E[x*] + 4abx"? E[x*] + B> E[y*] + 4aby"* E[y?]
+2abE[x2y?] — (aE[x*] + bE[y?])?

=t (@ +b*)/16 — riab/24 + abr’ (x"* +y').  (24)
Then the variance of v, is
02 =0’ +0’ +0?
Up Vaw Vd—d Uy
=7 (@ +b%)/16 — rtab/24 + o5, + 0 +abr’(xX"* +y'%)
=k +0 +abriri . U

APPENDIX C
COVARIANCE AND CORRELATION COEFfiCIENT BETWEEN
v,(x1, ¥1) AND v,(x2, ¥2)
1) Covariance Between vp(x1, y1) and vp(x2, y2): We fist
compute the covariance between v,,(x, y1) and vy, (x2, y2)
COVa = E[Vaw(Xc + X}, Ye + V1) - Vaw(Xe + %5, ye + ¥3)] —
E[an(xc +X/1, Ye + )/1)] : E[an(xc + )C/2, Ye + y/z)]
= @ E[x}] + 4abxy; E[x]] + b* E[y}] + 4abx; | E[y]]
+2abE[x*y?] — (aE[x*] + bE[y?])?
=t (@® +b*)/16 — r ab/24 + abr? (x]y5 + X5y)).
Since all devices on the same chip share the same inter-die
variation and within-die random variation is independent for
different devices, then the covariance between v,(x{, y;) and
vp(x2, ¥2) 1S
COV = COVyy + aj_ d
4.2 2 4 2 2.0 1 a
rp(a”+b°)/16 —r,ab/24 + o;_, + abr, (x| y, + x5 )
=k +abr’a. O
2) Correlation Coefficient v,(x1, y1) and vp(x2, y2):

B cov2 (k1+abrko)?

T o100 ol 02 (ky +<72+abr12“rdg1 )k +02+abr5)rd02)
_ (ky/(abr2) + a)?

“\ (k, [(abr?)+o? /(abrl)+r3 (ki /(abr?)+o2(abri)+r? ,)

(ky + a)?

- \/(k2 + 6+ rﬁgl)(kZ +p+ rﬁoZ)

B K2 + 2kt + o
(k2 + 13)2 + (rzzial + rL2102)(k2 + ,3) + ’%017502 .

APPENDIX D
UPPER BOUND AND LOWER BOUND OF p

1) Upper Bound of p:

K3 + 2kya +
o= 2 2 2 2 2
(ka + B) + (rgey + rgeo)ka + B) + 1y 4o
_ [y 2B B+ ket (x1Y5 — X3V() + (1 + Ta)B
(ky + B + (i + rao)ka + B) + rip1 T

(25)

In the above equation, p is represented in a form of
J1—2¢/n. To obtain the upper bound, we increase the
denominator 7 and reduce numerator ¢. Considering that

"o 1 IIN2
(xi)’2_ 2)’1) >0

rdal + rd<72 = x”2 + yﬁi + x”% + )’N%
> ((x] = x5+ (] — ¥9)H)/2
=68%/2

and
=2 <x"<ly —1/2<y' <1}

2 _ 2 72 12 2 _ 2
= rp=x 4y =Uy/A+l /A=y

m
//2 2 2

//4
Tao1Tdo2 =T

= T HTan S 2r

s

Replacing (x]y; — x5y{)* with 0 and (rdg1 +713,) with §%/2
in the numerator, and replacing (r3,, + r3,,) with 2r"2 and

2 2 //4
3517952 With ) in the denominator, we have

ps\/l—

2) Lower Bound of p: p is represented in a form of
~/T—2/n as shown in (25). Consider that {/n is between
0 and 1, increasing ¢ and n with the same value will increase
¢/n, then reduces p. Therefore, to obtain the lower bound, we
first add a non-negative value (r3,, —r2,,)*/4 to both numerator
and denominator

82ky + 82B/2 + 2Bk,y + B2

(ky + B2+ 2r"2 (ky + B) +1"4 " =

oo 1— 2k B+ B2+ 8ky + (x| y5 — x5y + (rﬁcl + rﬁal)ﬂ + (rﬁcfl — r501)2/4
B (k2 + B + (g + 73000 (k2 + B) + 131750y + (1 = 13,12 /4
—R0

1o 2ka B+ B2+ 8%ka + (X ¥y — X5y + (5, 12 DB+ (1,
(ka + )% + Gy + 1) (k2 + ) + (G +73,1)2 /4

_\/1 a2+ 8%k + (12, + 12, — 82/202 /4 +384/16 + (12, +r{,01)ﬂ

(k2 + B + (g +732) k2 + B) + (G +75,)/4

Considering that
2772 > e, > 82 = (2R = 822 > (1h 1o, — 82 /2)R

m =

Similar to the upper bound proof replacing (ra, +73,—
8%/2)* with (2r"2 — §%/2)* and (3, + r3,) with 2”2 in
the numerator, and replacing (r3,, + r3,,) with §>/2 in the

denominator, we have

- \/ |_ZaB+ B24+82ky+(2r72 — 82/2)2 /44384 /16 + 2r"2 B

(ky + B)*+8%(ky+B)/2 + 8*/16

_ \/ | Bl =2+ 8+ BB+ U+ 2 R) +

(ko + B2+ 82(ky + B)/2 + 8%/16

3) Range of p: To obtain the range of p, similar to the proof
of lower bound, we add a non-negative value 2r"2 (ko + B)/2 +
"4 —82(ky+ B)/2 — 8*/16 to both numerator and denominator
of the lower bound to obtain a looser lower bound
o =p;

[ B a/2=r" /2438216 — B/2) + BB+ 2k + 2073 + 207 + 273 (ko + )2
B (k + )2 + 212 (ky + B) + 14, ’

Then, the range of p can be calculated as

— o=V (pu = 12 = Vou — p)(u + p1) = \/ 02 — 0}

7 (k@ = 82/2) + B@rE — 87+ 364 /16+ 2774 — 8272 )2
Py — P = (ka+B+12)2

2Uar, + 4B + 504,
- 2)2
(ky+B+1"3)
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Since usually the wafer size is much larger than the die size,

that is ky > r"2,, then 2kor"% > r"# . Therefore, we have

2kar"2 +4Br'2 + 2kor? + 414
712 \2
(ko +B+71";)

Pu—pr =

172

4r m D
72 "
ky+B+r"2

APPENDIX E
COMPUTATION OF vy AND vy

1) Computation of vg:

1
Vg=— // v, (x, y)dxdy = ax? + byf +cxe+dy. +v4-g
lxly Ix|<lx/2

yi<ly/2

1
+lT // (2(ax. cos w — by, sin w)x + 2(ax. sin w + by. cos w)y
xty

Ix|<lx/2
Iyl<ly/2

+(a cos® w + b sin? w)x2 +(a sin? w + b cos’ a))x2

+2(a — b) cos w sin wxy + v,(x, ¥)) dxdy.

Since the integration region is symmetric, the integration of
odd order moments and joint moments of x and y is zero.
Moreover, notice that v,(x, y) is zero mean. Then, we have

Vg = ax2 + by? + cx. + dy, + vg_q + ((acos® w + bsin® w)I?
+(a sin®  + b cos’ a))li)/IZ = axf + byf +cxe+dy. +v4-g
+cos” w(aly + bl3) /12 + sin” w(bl; + al})/12
= axf + byf +cxe+dy. +Va—g + Sp. (|
2) Computation of vs:

Vs = Vg (X, Y)+Va—a—vg=alx. + X +b(ye + )+ c(xe +x)
+d(ye + YY) + va_g — (ax> + by? + cx. + dy. + va_a + 50)
=2ax'x. +2by' ye + ax’* + by* + cx' + dy — so
=2ax'x. +2by' y. + bx"* + ay"* — 5o — ¢*/4a — d*/4b
= rﬁﬂ +2ax'x. +2by'y. — s1. O
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