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Abstract—The most challenging problem in the current
block-based statistical static timing analysis (SSTA) is how to
handle the max operation efficiently and accurately. Existing
SSTA techniques suffer from limited modeling capability by using
a linear delay model with Gaussian distribution, or have scala-
bility problems due to expensive operations involved to handle
non-Gaussian variation sources or nonlinear delays. To overcome
these limitations, we propose efficient algorithms to handle the
max operation in SSTA with both quadratic delay dependency and
non-Gaussian variation sources simultaneously. Based on such
algorithms, we develop an SSTA flow with quadratic delay model
and non-Gaussian variation sources. All the atomic operations,
max and add, are calculated efficiently via either closed-form
formulas or low dimension (at most 2-D) lookup tables. We prove
that the complexity of our algorithm is linear in both variation
sources and circuit sizes, hence our algorithm scales well for large
designs. Compared to Monte Carlo simulation for non-Gaussian
variation sources and nonlinear delay models, our approach pre-
dicts the mean, standard deviation and 95% percentile point with
less than 2% error, and the skewness with less than 10% error.

Index Terms—Process variation, statistical static timing analysis
(SSTA), timing.

I. INTRODUCTION

A S continuous CMOS technology scaling, process vari-
ation has become a potential show-stopper if not

appropriately handled [1]–[6]. Statistical static timing analysis
(SSTA) has thus become the frontier research topic in recent
years in combating such variation effects. There are two types
of SSTA methods, path-based SSTA [7]–[10] and block-based
SSTA [11]–[19]. The goal of SSTA is to parameterize timing
characteristics of the timing graph as a function of the un-
derlying sources of process parameters that are modeled as
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random variables. By performing SSTA, designers can obtain
the timing distribution (yield) and its sensitivity to various
process parameters. Such information is of tremendous value
for both timing sign-off and design optimization for robustness
and high profit margins.
The block-based SSTA is the most efficient SSTA method in

recent years. In block-based SSTA, there are two major atomic
operations, max and add. The add operation is simple, however,
the max operation is much more complex. How to perform the
max operation is the hardest problem in block-based SSTA. Al-
though many studies have been done on this in recent years,
the problem is far from being solved completely. For example,
[11] and [12] assumed that all variation sources are Gaussian
and independent of each other. Based on a linear delay model,
[12] proposed a linear-time algorithm for SSTA, in which both
atomic operations, max and add, can be performed efficiently
via the concept of tightness probability. Because all variation
sources are assumed to be Gaussian, so is the delay distribution
under the linear delay model.
Such a Gaussian assumption is, however, no longer toler-

able as more complicated or large-scale variation sources are
taken into account in the nanometer manufacturing regime.
For example, via resistance is known to be non-Gaussian with
asymmetric distribution [17]; and dopant concentration is more
suitably modeled as a Poisson distribution [16]. In addition,
the linear dependency of delay on the variation sources is also
not accurate, especially when variation becomes large [20].
For example, gate delay is inherently a nonlinear function of
channel length and Vth [13], [17], which are two common
sources of variation. Similarly, interconnect delay is also a
nonlinear function of interconnect geometries [13], [14], which
vary because of chemical-mechanical polishing. These com-
bined non-Gaussian and nonlinear variation effects invalidate
the linear delay model with Gaussian assumption in the existing
SSTA.
Recently, non-Gaussian variation sources were addressed in

[16], where independent component analysis (ICA) was used to
find a set of independent components (not necessary Gaussian)
to approximate the correlated non-Gaussian random variables.
To do this, however, a complicated moment matching algorithm
has to be used to make those atomic statistical operations fea-
sible. Reference [21] introduced a conditional linear approxima-
tion of the max operation and captured all types of correlation.
However, both of the above works are still based on a linear
delay model, which cannot capture the nonlinear dependency of
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delays on process parameters. To capture these nonlinear depen-
dency effects, [13] and [14] proposed to use a quadratic delay
model for SSTA. But to contain the complexity, they had to as-
sume that all variation sources must follow a Gaussian distribu-
tion, even though the delay itself may not be Gaussian. To
compute , [13] first developed closed form for-
mulas to compute the mean and variance of the quadratic form.
It then treats and as a Gaussian distribution to obtain
the tightness probability. There is, however, no justification on
why the tightness probability formula developed for Gaussian
distributions can be applied for non-Gaussian distributions. [14]
tried to re-construct through moment matching.
To obtain those moments, however, many expensive numerical
integration (2-D) operations have to be applied.
There are some existing studies [15], [17]–[19] trying to

handle both nonlinear and non-Gaussian effects simultane-
ously. However, [15] computes by regression
based on Monte Carlo simulation, which obviously is slow;
[17] computed the max operation through tightness proba-
bility while [19] applied moment matching to reconstruct
the max. However, to do so, both had to resort to expensive
multi-dimension numerical integration techniques. [17] re-
quires multi-dimension numerical integration to calculate the
tightness probability and the number of integration dimensions
depends on the number of non-Gaussian variation sources.
[19] applies two-dimensional numerical integration to obtain
the joint moments between variation sources and max. It is
more efficient than [15] and [17]. But 2-D numerical inte-
gration is still an expensive operation for block-based SSTA.
Hence scalability of such methods to handle a large number
of non-Gaussian variation sources is limited. [18] handled the
atomic operations by approximating the gate delay using a set
of orthogonal polynomials, which needs to be constructed for
different variation distributions.
In this work, we propose a novel method to handle the max

operation for quadratic delay model with non-Gaussian varia-
tion sources. Based on such model, we develop a nonlinear and
non-Gaussian SSTA technique . The major advan-
tages of this technique are multi-fold: 1) both nonlinear depen-
dency and non-Gaussian variation sources are handled simulta-
neously for timing analysis; 2) all statistical atomic operations,
max and add, are performed efficiently via either closed-form
formulas or low dimension (at most 2-D) lookup tables; 3) the
complexity of the algorithm is linear in both number
of variation sources and circuit sizes. Compared to Monte Carlo
simulation for non-Gaussian variation sources and nonlinear
delay models, our approach predicts the mean, standard devi-
ation and 95% percentile point with less than 2% error, and the
skewness with less than 10% error.
The rest of the paper is organized as follows. Section II

presents our nonlinear and non-Gaussian delay modeling and
the basic block-based SSTA flow. Section III discuss our
algorithm of the max operation with quadratic delay model
and non-Gaussian variation sources. Section IV simplifies the
method to handle linear delay model. We present experiments
in Section V, and concludes this paper in Section VI.

II. PRELIMINARIES AND MODELING

A. Quadratic Delay Modeling

In general, device or interconnect delays of a design are a
complicated nonlinear function of the underlying process pa-
rameters and it can be described as

(1)

where the process parameters (such as channel length and
threshold voltage) are modeled as a random variable . In
reality, the exact form of function is not known, and are
not necessarily Gaussian.
The simplest approximation is the first- and second-order

Taylor expansion as shown as follows:

(2)

(3)

where is the nominal value of ; and are the first- and
second-order sensitivities of to , respectively; and are
the sensitivity to the joint variation of and . (2) is called
the first-order canonical form, and is widely used for SSTA [11],
[12]; whereas (3) is called the quadratic delay model, and has
been studied in [13]–[15], [20]. But Gaussian assumptions limit
their modeling capability and prevent them from reflecting the
reality.
Therefore, we propose a different quadratic model as follows:

(4)

where represents global sources of variation, and repre-
sents purely independent random variation which is modeled as
a Gaussian random variable. Unlike previous work, we allow
to follow arbitrary random distributions. We refer to the delay
model (4) as general canonical form in this paper.

B. Block-Based SSTA Framework

To compute the arrival time and required arrival time in a
block-based SSTA framework, four atomic operations are suffi-
cient, i.e., addition, subtraction, maximum, and minimum. Be-
cause of the symmetry between addition and subtraction (simi-
larly maximum and minimum) operations, in the following, we
will only discuss operations on addition and maximum. Given

and in the form of (4)

(5)

(6)

we want to compute the and
in the following form:

(7)

(8)
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The add operation is straight forward. The coefficients of
can be computed by adding the correspondent coefficients of
and

(9)

(10)

The max operation is much complexer than the add operation,
and we will discussed this in detail in Section III.

III. MAX FOR QUADRATIC DELAY MODEL

The max operation is the hardest operation for block-based
SSTA. In this section, we propose a novel technique to effi-
ciently compute the max of two general canonical forms, i.e.,

. Without loss of the generality, in the fol-
lowing of this paper, we assume that . We first
compute the mean and variance of , if ,
then . Otherwise, we compute the skewness of and

. After that, we approximate the joint PDF of
and ’s with Fourier Series and compute the joint moments
between and ’s. Finally, we compute the joint moments
between and ’s and reconstruct the canonical form of

. In the following, we discuss our approach in details.

A. Moments of

From the definition of as discussed in the previous section,
the max operation can be rewritten as

(11)
According to (5) and (6), can be written as the following

form:

(12)

where , , and . In
order to compute the central moments of , we first rewrite
to the following form:

(13)

where

(14)

(15)

From the above equations, it is easy to compute the first three
moments of ’s

(16)

(17)

(18)

Because ’s are mutually independent random variables,
’s are independent random variables with zero mean. There-

fore, the first three central moments of are

(19)

(20)

(21)

With the central moments, the skewness of can be com-
puted as

(22)

After computing the mean and variation of , we can quickly
compute some trivial max operation.When is larger than the
- value, that is, , which means the probability

that is very high, we may let .
The range value can be set by the users, in the following of
this paper, we let .

B. Mean of the Max Operation

In order to reconstruct the canonical form of , we first
need to compute . When is a non-
Gaussian random variable, exact computation of is dif-
ficult in general. Therefore, we propose to use the following
two-step procedure to approximately compute . In the first
step, we approximate the non-Gaussian random variable as a
quadratic function of a standard Gaussian random variable
similar to [18] and [24], i.e.,

(23)

The coefficients , , and can be obtained by matching
and ’s mean, variance, and skewness simultaneously,

i.e.,

(24)

(25)

(26)

As shown in [24], solving the above equations, will be one
of the following values:

(27)

(28)

(29)

where , with .
The mean, variance, and skewness of can be computed from
(19), (20), and (22), respectively. It is proved in [24] that, when

there exists one and only one of the above three
values in the range . We will pick such value for
. When , we may let
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(30)

It is proved in [18] that the above equations gives which
matches the mean and variance of and has the skewness
closest to . With , , and can be computed as

(31)

(32)

After obtaining the coefficients , , and in the second
step, we approximate the exact mean of by the exact
mean of , i.e.,

(33)

where is the PDF of the standard normal distribution. In
the above equation, the integration range can be
computed in the following four different cases.
Case 1)

(34)

where

(35)

(36)

Case 2)

(37)

Case 3)

(38)

Case 4)

(39)

Knowing the integration range, we can compute
under such four cases

(40)

where is the cumulative density function (CDF) of the stan-
dard normal distribution. According to (41), we can compute

easily through analytical formulas.

C. Joint Moments Between and Variation Sources

In the previous section, we compute the mean of .
In order to reconstruct the canonical form of , we also need
to know the joint moments between and the variation sources
’s. Because and ’s are correlated non-Gaussian random

variables, the computation of the joint moments between them is
complex. In this section, we will introduce a new method based
on Fourier Series expansion to solve such problem.
In order to compute the joint moments, we first approximate

the joint PDF of and the th variation sources ,
by its first th order 2-D Fourier Series within the range

(41)

where and , with , and
. are the Fourier coefficients and they can be

computed as

(42)

Considering that both and are within the range, i.e.,
when or
, (43) can be further simplified as

(43)

where

(44)

(45)

(46)

(47)

(48)

Because all ’s are independent, so are all ’s, ,
, and . Then can be further simplified as

(49)

As , , , and ’s can be written as a general
form as
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TABLE I
EXPERIMENT SETTING TO VERIFY

(50)

with and being two constant values, in the following, we
discuss how to compute in its general form. By defini-
tion

(51)

where is PDF of , whose range is given by
. For arbitrary , we can build a 2-D table indexed

by and to compute (51).
To validate our computation of JPDF of and , we com-

pare our computed JPDF with Monte Carlo simulated JPDF.
One of the examples is shown in Table I with four sources of
random variables (i.e., for 1, 2, 3, 4) that all follow a
uniform distribution. In the experiment, we compute the JPDF
of and . The order of Fourier series to approximate JPDF
is four .
With the Fourier Series approximation discussed above, we

can compute the first two joint moments between and . By
definition, the joint moments can be computed as

(52)

(53)

Replacing the joint PDF with its Fourier Series ap-
proximation, we have

(54)

(55)

where , , and can be computed as

(56)

(57)

(58)

From the above discussion, we see that the joint moments
between and ’s can be computed by close form formulas.
Moreover, the joint moments between and random
variation sources, , can be
computed in the same way.

D. Reconstruction of the Canonical Form

With mean of and the joint moments between
and ’s computed in the previous section, it is easy

to compute the mean of and the joint moments between
and ’s

(59)

(60)

(61)

(62)

(63)

Because we want to reconstruct in the second-order
canonical form, as shown in (8), by applying the moment
matching technique similar to [14], we have

(64)

(65)

(66)
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TABLE II
EXPERIMENT SETTING. THE VALUE IS THE NORMALIZED WITH RESPECT TO THE NOMINAL VALUE

With the joint moments computed in (59)–(61), the constant
term and the sensitivity coefficients ’s and ’s can be
obtained by solving the linear equations above

(67)

(68)

(69)

Because the random term in comes from the random
terms in and , we assume that .
Because the random variation sources , , and are
Gaussian random variables, by applying the moment matching
technique similar to (67), we have

(70)

(71)

(72)

where and are computed in (63) and
(64), respectively.

E. Computational Complexity Analysis

For each max operation, we need to compute joint moments
between ’s and , where is the total number of vari-
ation sources. For each variation source, we need to compute

Fourier coefficients for the joint PDF approximation,
where is the maximum order of Fourier Series. Therefore,
the total computational complexity of one step max operation
is . Usually, larger provides more accurate approxi-
mation. Our experiment shows that provides very accu-
rate approximation for the joint PDF. For the add operation, it
is easy to see that the computational complexity is . The
total number of max and add operations for block-based SSTA
is linear to the circuit size.
Moreover, in our original algorithm for [25],

the computational complexity for one step max operation is
. In this paper, we have improved the algorithm and

reduced the complexity to . The experimental results
in Section V show that the improved is much faster
than our original algorithm in [25]. In addition, because that our
method assumes arbitrary distribution for variation sources, the
distribution of variation sources does not affect the efficiency of
our method, no matter the variation sources are with Gaussian
distribution or not.

IV. MAX OPERATION FOR LINEAR DELAY MODEL

In the previous sections, we introduce the SSTA for nonlinear
delay model. In practice, when the variation scale is small, the

circuit delay can be approximated as a linear function of varia-
tion sources

(73)

where , , , , and are defined in the similar way as the
second-order delay model in (4). The difference is that there are
no second-order terms. Hence the atomic operations of the linear
delay model are simpler than those of quadratic delay model.
For the linear delay model, we can compute the mean of

in the similar way as in (40) and (59). For the joint moments,
we can also apply the Fourier Series approximation method as
shown in Section III-C. The only difference is that when com-
puting the Fourier coefficients, s in (50) is in the form of

. Hence , where is the Fourier
transformation of . can be precomputed and stored
in a 1-D lookup table. Such computation is simpler than the
second order delay model. After computing the joint moments,
we can reconstruct the linear form of in the same way as the
second-order delay model as shown in Section III-D. Moreover,
it is easy to find that the computational complexity of the SSTA
for linear delay model is the same as that for second-order delay
model.

V. EXPERIMENTAL RESULT

We have implemented our SSTA algorithm in C for both
second-order delay model and linear delay model
(Lin-SSTA). In our experiment, we assume that the maximum
order of Fourier Series approximation for both delay
models. For comparison, we also define two comparison cases:
1) our implementation of the linear SSTA for Gaussian variation
sources in [12], which we refer to as Lin-Gau and 2) 100 000-
sample Monte-Carlo simulation (MC). We apply all the above
methods to the ISCAS89 suite of benchmarks in TSMC 65-nm
technology.
In our experiment, we consider two types of variation

sources and . For each type of variation sources,
inter-die, intra-die spatial, and intra-die random variations
are considered. We modeled the spatial variation using the
grid-based model in [26]. The number of grids (the number
of spatial variation sources) is determined by the circuit size,
larger circuit will have more variation sources. We also assume
that the value of the inter-die, intra-die spatial, and intra-die
random variation are 10%, 10%, and 5% of the nominal value,
respectively. In the following, We perform the experiments for
two variation setting: 1) both and are with skew-normal
distribution [27] and 2) is with normal distribution and
is with Poisson distribution. The experimental setting is shown
in Table II.
In Section II, we have verified the accuracy of quadratic fit-

ting of gate delay. In this section, we further verify the accuracy
of Monte Carlo simulation with quadratic delay fitting. Because
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TABLE III
COMPARISON BETWEEN SPICE SIMULATION, MONTE CARLO SIMULATION AND

TABLE IV
ERROR PERCENTAGE OF MEAN, STANDARD DEVIATION, SKEWNESS, AND 95% PERCENTILE POINT FOR VARIATION SETTING (1). NOTE: THE ERROR PERCENTAGE
OF MEAN, STANDARD DEVIATION, AND 95% PERCENTILE POINT IS COMPUTED AS , AND THE ERROR PERCENTAGE

OF SKEWNESS IS COMPUTED AS

TABLE V
ERROR PERCENTAGE OF MEAN, STANDARD DEVIATION, SKEWNESS, AND 95% PERCENTILE POINT FOR VARIATION SETTING (2)

Fig. 1. Test circuits. (a) Circuit 1. (b) Circuit 2.

it is very time consuming to perform Monte Carlo SPICE simu-
lation on big benchmarks, we construct two small test circuits as
shown in Fig. 1. Table V compares themean, standard deviation,
and skewness for the 10 000-sample SPICE Monte Carlo simu-
lation, 10 000-Monte Carlo simulation with quadratic delay fit-
ting, and under variation setting (1). From the table,
we see that the result of Monte Carlo simulation with quadratic
delay fitting is very close to the SPICEMonte Carlo simulation.
In the rest of this section, wewill use theMonte Carlo simulation
with quadratic delay fitting as the golden case for comparison.
Fig. 2 illustrates the PDF comparison for circuit s15850 under

variation setting (1). From the figure, we find that compared to
the Monte-Carlo simulation, is the most accurate, the
next is Lin-SSTA. Both of our SSTA methods are more accu-
rate than Lin-Gau. Such result is reasonable because
captures the both nonlinear and linear effects while Lin-SSTA
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Fig. 2. PDF comparison for circuit s15850.

captures only linear effect. Lin-Gau is for Gaussian variation
sources only, and therefore it does not work well under non-
Gaussian variation sources.
Table V compares the run time in second , and the error

percentage of mean , standard deviation , skewness ,
and 95% percentile point (95%) under variation setting (1). In
the table, the error percentage of mean, standard deviation and
95% percentile point is computed as

, and the error percentage of skewness is
computed as . Moreover, the av-
erage error in the table is average of the absolute value. From
the table, we see that for the error of mean, standard
deviation and 95% percentile point is within 2%, and the error of
skewness is within 8%. The Lin-SSTA results similar mean de-
viation error. Compared to , the error of standard de-
viation and 95% percentile point is a little bit higher, but the
error of skewness is much larger. This is because Lin-SSTA ig-
nores all nonlinear effects which significantly affect the skew-
ness. The error of Lin-Gau is larger than both of our SSTA
methods, especially for skewness. This is because Lin-Gau is for
Gaussian variation sources and cannot capture the skewness of
the non-Gaussian variation sources. Moreover, we also find that
the run time of all SSTA methods are linear to the circuit size.
The run time of our methods is larger than that of Lin-Gau, but
it is still acceptable and is significantly shorter than that of the
Monte-Carlo simulation. In the table, we also compare the run
time of our algorithm in this paper to that of our original method
[25]. We see the approach in this paper is about 5 faster than
our original method. Because the basic algorithms of this paper
and our original method in [25] are the same, the approach in
this paper provides the same accuracy as our original method.
Table V illustrates the results under variation setting (2). It

can be found that our methods are still very accurate under such
variation setting. For the , the error of mean, standard
deviation, and 95% percentile point is within 2%, and the error
of skewness is within 10%. This shows that our approach works
well for different distributions.

VI. CONCLUSION

A novel method to handle the max operation has been
presented to handle both quadratic delay dependency and
non-Gaussian variation sources simultaneously. An SSTA flow,

, has been developed based on such max operation.
We have shown that all statistical atomic operations can be
performed efficiently via either closed-form formulas or low
dimension (at most 2-D) lookup table. It has been proved
that the complexity of is linear in both variation
sources and circuit sizes. Compared to Monte Carlo simulation
for non-Gaussian variations and nonlinear delay models, our
approach predicts the mean, standard deviation and 95% per-
centile point with less than 2% error, and the skewness with
less than 10% error.
In the future, we will extend our work to consider more gen-

eral delay models, such as non-polynomial delays and/or depen-
dency on variations’ cross terms. Moreover, in this paper, we
use deterministic slew rate model. We will also try to consider
statistical slew model in our future research.
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