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Performance failure has become a significant threat to the reliability and robustness of analogue circuit-
s. In this paper, we first develop an efficient non-Monte-Carlo (NMC) transient mismatch analysis, where
transient response is represented by stochastic orthogonal polynomial (SOP) expansion under PVT varia-
tions and probabilistic distribution of transient response is solved. We further define performance yield and
derive stochastic sensitivity for yield within the framework of SOP, and finally develop a gradient-based
multi-objective optimization to improve yield while satisfying other performance constraints. Extensive ex-
periments show that compared to Monte Carlo based yield estimation, our NMC method achieves up to 700X
speedup and maintains 98% accuracy. Furthermore, multi-objective optimization not only improves yield by
up to 95.3% with performance constraints, it also provides better efficiency than other existing methods.
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1. INTRODUCTION

A robust design beyond 90nm is challenging due to PVT (Process, Voltage and Temper-
ature) variations [Cox et al. 1985; Pelgrom et al. 1989; Lampaert et al. 1995; McAn-
drew et al. 1997; Schenkel et al. 2001; Drennan and McAndrew 2003; Biagetti et al.
2004; Vrudhula et al. 2006; Kim et al. 2007; Pileggi et al. 2008; Nassif and Nowka
2010; Liu et al. 2010; Gong et al. 2011; Wang et al. 2009; Gong et al. 2010a; Gong
et al. 2010b; Gong et al. 2009]. The sources of process variation can come from etch-
ing, lithography, polishing, and stress, etc. For example, the proximity effect caused by

This work was partially supported by grants: (a) UC Discovery Grant program and UCLA; (b) NRF2010NRF-
POC001-001 (Singapore); (c) MOE ACRF Tier-1 (Singapore).
Author’s address: Fang Gong and Lei He, Electrical Engineering Department, University of California, Los
Angeles, CA, 90095. Hao Yu, Electrical and Electronic Engineering, Nanyang Technological University, Sin-
gapore. Xuexin Liu and Sheldon X.D. Tan, Electrical Engineering Department, University of California
Riverside, CA, 92521. Junyan Ren, School of Microelectronics, Fudan University, Shanghai, China.
Some initial results of this paper are published at ASPDAC’10[Yu et al. 2010].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:2 Fang Gong et al.

stress from shallow-trench-isolation regions affect the stress in the channel of nearby
transistors and therefore affect carrier mobility and threshold voltage. Process varia-
tion (or mismatch) significantly threatens not only the timing closure of digital circuits
but also the functionality of analog circuits.

To ensure the robustness in terms of a high yield-rate, in addition to performance,
a fast engine for yield estimation and optimization is needed to verify designs beyond
90nm. Note that there are two types of variations: systematic global variation, and s-
tochastic local variation. The stochastic variation such as analog mismatch is the most
difficult one. One either performs Monte Carlo [Swidzinski and Chang 2000] and its
variants (e.g. Quasi Monte Carlo[Niederreiter 1992], Latin hypercube sampling (LHS)
[Jaffari and Anis 2009b][Jaffari and Anis 2011], and Importance Sampling [Jaffari and
Anis 2009a]) with thousand times of Monte-Carlo (MC) runs consuming engineering
resources, or uses pessimistic process corners provided from the foundry. Since corners
are usually pessimistic for yield estimation and Monte-Carlo is too painful for veri-
fication, the stochastic engine with a non-Monte-Carlo (NMC) approach is currently
required for yield estimation and optimization.

To this end, the development of fast variation (mismatch) analysis to estimate yield
is the first priority. Many NMC methods [Oehm and Schumacher 1993; Biagetti et al.
2004; Kim et al. 2007] have been developed recently for stochastic variation (mismatch)
analysis. [Oehm and Schumacher 1993] first calculated dc sensitivities with respec-
t to small device-parameter perturbations and scaled them as desired mismatches.
[Kim et al. 2007] extended [Oehm and Schumacher 1993] by modeling dc mismatch
as ac noise source. The speed of these equivalent mismatch simulations is hundred
times faster than the Monte-Carlo simulations but accuracy remains a concern. SiS-
MA [Biagetti et al. 2004] studied mismatch within the framework of the stochastic
differential-algebra-equation (SDAE). The stochastic variational source is mapped in-
to a noise current source introduced at dc, and the SDAE is solved similarly to deal
with the transient noise [Demir et al. 1994] by analyzing the correlation. However,
as [Biagetti et al. 2004] introduced random variables into the DAE, it is unknown
whether the derivative of SDAE is still continuous. Moreover, SiSMA only included
stochastic current source during dc based on the assumption that magnitude of the
stochastic mismatch is much smaller than the nominal case. This may not hold to ac-
curately describe the mismatch during a transient simulation. Therefore, a fast yet
accurate transient mismatch analysis is still needed.

In this paper, we develops a fast NMC mismatch analysis by introducing the noise
current sources along the linearized transient trajectory to model the PVT variations.
By further representing the noise current source by the stochastic orthogonal polyno-
mials (SOPs) [Xiu and Karniadakis 2002; Vrudhula et al. 2006], one can efficiently
calculate the stochastic variation (mismatch) and its variance in only one transient
simulation. This can result in a huge speedup with a similar accuracy when compared
to the MC method. In addition, one needs to improve or optimize the yield by tun-
ing parameters at nominal conditions to ensure a robust design. An efficient approach
is to derive a gradient-based optimization method using the stochastic sensitivity of
yield with respect to design parameters. Unfortunately, it is unknown how to calculate
the stochastic sensitivity in the framework of the SOPs [Xiu and Karniadakis 2002;
Vrudhula et al. 2006].

Our paper is the first to discuss the stochastic sensitivity analysis under SOP, which
can be effectively deployed in any gradient-based optimization such as the sequential
linear or quadratic programming. Moreover, it is necessary, even imperative, to opti-
mize the objective function while satisfying other performance constraints (i.e. power
consumption, area and etc.) [Sawaragi et al. 1985; Deb 2002]. To do so, we formulate a
stochastic optimization problem and develop a multi-objective optimization algorithm,
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which can tune the design parameters along their gradient directions to reach a more
robust design automatically.

Experiments show that fast mismatch analysis can achieve up to 700X speedup and
maintain 98% accuracy when compared with Monte Carlo based methods; meanwhile,
our multi-objective optimization can not only improve the yield rate up to 95.3% and
satisfy other performance constraints, but also provide better efficiency than other
existing methods.

In Section II, the NMC mismatch analysis is first developed as the foundation to
calculate the yield. In Section III, the parametric yield is defined and the according
yield problem formulation is presented. Section IV shows how to apply the fast NMC
mismatch analysis to calculate the yield. Section V shows how to further obtain the
yield and leverage the according stochastic sensitivity to optimize yield rate. In Sec-
tion VI, the validity and efficiency of the proposed method is demonstrated by three
different circuits: an operational amplifier, a schmitt trigger, and a SRAM-cell. The
paper concludes in Section VII.

2. BACKGROUND

2.1. Stochastic Orthogonal Polynomial

We will first introduce stochastic orthogonal polynomial (SoP)[Vrudhula et al. 2006]
or polynomial chaos in this section, which has been applied to the nanometer scale
integrated circuit analysis [Xiu and Karniadakis 2002] in past a few years. Based on
the Askey scheme, any stochastic random variable can be represented by stochastic or-
thogonal polynomials (SoPs), and the random variable with different probability dis-
tribution type is associated with different type of SoP.

For example, for white noise current source with random variable ψ, the Gaussian
distribution of f(ψ) can be spanned by Hermite polynomials Φ(ψ) = [1, ψ, ψ2 − 1, · · · ]T
as follows

f(ψ) = α0Φ0 + α1Φ1 + α2Φ2 + · · · =
n∑

i=0

αiΦi. (1)

Note that SoPs satisfy the following orthogonal property under so-called point-
collocation:

〈Φi(ψ),Φj(ψ)〉 =
〈
Φ2

i (ψ)
〉 · δij (2)

where δij is the Kronecker delta and 〈∗, ∗〉 denotes an inner product.
As such, when the SoP representation is available, the mean and variance of f(ψ)

can be obtained from one-time calculation using collocation (up to the second order
expansion) by:

E(f(ψ)) = α0

V ar(f(ψ)) = α1
2 + 2α2

2 . (3)

In this paper, we show how to apply the SoP technique for the non-Monte-Carlo mis-
match analysis and yield estimation.

2.2. Stochastic Mismatch Analysis

We further review the existing works of mismatch analysis [Pelgrom et al. 1989; M-
cAndrew et al. 1997; Drennan and McAndrew 2003; Biagetti et al. 2004]. Notice that
we focus on the stochastic variation, or referred as local mismatch in this paper. We
illustrate the stochastic mismatch analysis using the CMOS transistors, but a similar
approach can be extended to other types of transistors by the so-called propagation of
variance (POV) method[McAndrew et al. 1997; Drennan and McAndrew 2003].
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The mismatch of one MOS transistor is usually modeled by Pelgrom’s model [Pel-
grom et al. 1989], which relates the local mismatch variance of one electrical parame-
ter with geometrical parameters by

σ =
κβ√
W · L (4)

where κβ is the additional fitting parameter.
To consider the local mismatch during circuit simulation without running Monte-

Carlo, SiSMA [Biagetti et al. 2004] models the random local mismatch of a MOS tran-
sistor by a stochastic noise current source ζ, coupled with the nominal drain current
ID in parallel. ζ can be expressed by

ζ = IβDtm(W,L)γ(x, y). (5)

Here, the IβD is determined by the operating region of MOS transistors; tm(W,L) con-
siders the geometry of the device active area

tm(W,L) = 1 +
κβ√
W · L ; (6)

and γ(x, y) refers to the sources of all the variations that depend on the device posi-
tion, which can include the spatial correlation [Biagetti et al. 2004]. Here, γ(x, y) = 1
because all parameters are decoupled after the principal component analysis (PCA).

Note that the random variable in the stochastic current source can be expanded by
the stochastic orthonormal polynomial (SOPs) [Xiu and Karniadakis 2002; Vrudhula
et al. 2006]. For example, let’s use the channel length L of one MOS transistor as the
variation source. Assuming the variation of L is small, one can expand tm(W,L) around
its nominal value W(0) and L(0) with Taylor expansion by

tm(W,L) = 1 + κβ√
WL

= 1 + κβ√
W(0)

[
1√
L(0)

− 1

2
√
(L(0))

3

(
L− L(0)

)]

= 1 + κβ√
W(0)

[
1√
L(0)

− 1

2
√
(L(0))

3
ξ

] . (7)

Here, ξ is the random variable for the variation of the channel length L. One can de-
scribe ξ by the stochastic orthogonal polynomials (SOPs). Based on the Askey scheme
[Xiu and Karniadakis 2002], a Gaussian distribution of ξ can be expanded using Her-
mite polynomials Φi (i = 0, ..., n) by

ξ =

n∑
i=0

g′iΦi (8)

where g′i is the SOP expansion coefficient.
As such, one can summarize the expression of the stochastic current source ζ as

ζ = IβD

⎡
⎣1 + κβ√

W (0)

⎛
⎝ 1√

L(0)

− 1

2
√
L3
(0)

n∑
i=1

g′iΦi

⎞
⎠
⎤
⎦

=
n∑

i=0

giΦi, (9)
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where gi is the new expression of the expanded coefficients but with geometry-
dependence. Knowing the expression of ζ for one parameter variation source, multiple
process parameters pi (i = 1, · · · ,m) can be considered by a vector of stochastic current
source 
ζ(t).

On the other hand, any integrated circuit is composed of passive and active devices
described by a number of terminal-branch equations. According to KCL’s law, one can
obtain a differential-algebraic equation (DAE) as below

d

dt
q(
x(t)) + f(
x(t), t) +B · 
u(t) = 0. (10)

Here, x(t) is vector of state variables consisting of node voltages and branch currents.
q(x(t), t) contains active components such as charges and fluxes. Also, f(x(t), t) de-
scribes passive components, and 
u(t) denotes input sources. B describes how to connect
sources into the circuit which is determined by circuit topology.

Similar to [Biagetti et al. 2004], one can add 
ζ(t), representing the mismatch, to the
right-hand-side (rhs) of the Differential Algebraic Equation (DAE)

dq(
x(t))

dt
+ f(
x(t)) +B · 
u(t) = T · 
ζ(t), (11)

which describes the circuit and system under stochastic variations. Note that T is the
topology matrix describing how to connect 
ζ(t) into the circuit and one can have

T · 
ζ(t) =
m∑
i=1

Tpiζpi (12)

for multiple parameters. For example, ζpi is the mismatch current source for i-th pa-
rameter variation, which can be expanded using SOP shown in (9).

3. PROBLEM FORMULATION

In this section, we formulate the yield optimization problem based on the important
observation: the parameter vector 
p can change the performance metric fm (i.e. delay,
output swing and etc), and further lead to circuit failure as well as yield loss. Noted
that the parametric yield Y (
p) is defined as the percentage of manufactured circuits
that can satisfy the performance constraints.

We can consider one output voltage that discharges from high to low as an example.
Under process variation, the variable parameters in 
p can deviate from their nominal
values and lead to transient variation (mismatch) waveform shown in Fig.(1).

The performance constraint h(
p) in this case can be defined as

h(
p) = fm(tmax)− fmthreshold
≤ 0. (13)

This means that those discharge curves below vthreshold at tmax belong to successful
samples. In addition, one can plot the distribution of output voltages at tmax shown in
Fig.(2). It is clear that samples located at the left of the performance constraint are
successful ones, while those at the right are failures.

As such, parametric yield can be defined as:

Y (
p) =

∫
S

pdf(fm(
p; t))dS (14)

where S is the successful region and pdf(fm(
p; t)) is the probability density function
(PDF) of the performance metric fm(
p; t) of interest.
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In order to further increase the yield rate, one can tune the nominal values of vari-
able parameters in order to enable more parameters satisfy the given performance
constraints. Also, it is practical to consider multiple constraints (e.g. power consump-
tion, area, bandwidth and etc.) which yields the stochastic multi-objective optimization
problem as detailed below:

maximize Y (
p)
minimize Pc(
p)

subject to

Y (
p) ≥ Ȳ
Pc(
p) ≤ P̄c

F(
p) ≤ Fmax


pmin ≤ 
p0 ≤ 
pmax

Here, Y (
p) is the parametric yield associated with the parameter vector 
p and Pc(
p)
is the power consumption. F(
p) denotes other performance metrics (such as area A
and etc.), which define the feasible design-space. Moreover, Ȳ and P̄c are the minimum
yield-rate and maximum power consumption (or targeted values) that can be accepted,
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respectively. Notice that the lower bound (Ȳ ) and the upper bound (P̄c) are used for
final verification.

Specifically, when the optimization is converged, the yield rate and power consump-
tion under the optimal design point will be checked with Ȳ and P̄c, and unsatisfied
results will be rejected. Meanwhile, other constraints defined by F(
p) should be satis-
fied.

Moreover, 
p is a vector of the process parameters with variations, and can be ex-
pressed as 
p = 
p0 + δ
p, where δ
p depends on 
p0 and needs to be updated for every
feasible 
p0. Also, 
p0 is a vector of the nominal values assigned in the design stage, and
δ
p consists of parameter variations with zero-mean Gaussian distributions. In addi-
tion, all nominal values of process parameters 
p0 are assumed to be limited within the
feasible parameter space (
pmin, 
pmax) and can be tuned for better yield rate.

One effective solution for this optimization is the gradient-based approach, which
requires the calculation of the sensitivity in the stochastic domain. As discussed later,
this paper develops a stochastic sensitivity analysis, which can be embedded into one
sequential linear programming (SLP) to solve this optimization problem efficiently.

4. FAST NMC MISMATCH ANALYSIS

In this section, one NMC transient mismatch analysis is developed. Instead of per-
forming the expensive Monte-Carlo or the correlation analysis, the perturbed SDAE
(18) with the random variable ξ is solved through an expansion of the stochastic or-
thogonal polynomials (SOP) [Xiu and Karniadakis 2002; Vrudhula et al. 2006].

4.1. Transient Mismatch by Trajectory Perturbation

For illustration purpose, we can denote the d
dtq(
x(t)) + f(
x(t), t) + Bu(t) as f(x, ẋ, t),

because all terms are functions of time t, state variable x(t) and its derivatives ẋ(t). As
such, equation (10) can be rewritten as:

f(x, ẋ, t) = 0. (15)

Assuming that the impact of the local mismatch is small, (11) can be solved by treat-
ing the rhs-term for mismatch as a perturbation to the nominal trajectory x(0)(t) of
the circuit. Here, x(0)(t) are the nominal values or solution of the nonlinear circuit
equation

f(x(0), ẋ(0), t) = F in(x
(0), ξ). (16)

Where in(x
(0), ξ) is the vector of mismatch current sources that can model the process

variations. And F describes how to connect sources into the circuit which is determined
by circuit topology.

With a first-order Taylor expansion of f(x, ẋ, t), it leads to

f(x(0), ẋ(0), t) +
∂f(x, ẋ, t)

∂x

∣∣∣∣
x=x(0),ẋ=ẋ(0)

(x− x(0)) +
∂f(x, ẋ, t)

∂ẋ

∣∣∣∣
x=x(0),ẋ=ẋ(0)

(ẋ − ẋ0))

= F in(x
(0), ξ). (17)

Or

G(x(0), ẋ(0))xm + C(x(0), ẋ(0))ẋm = F in(x
(0), ξ), (18)
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where

G(x(0), ẋ(0)) =
∂q(x, ẋ, t)

∂x
|x=x(0),ẋ=ẋ(0)=

∂q(x(t))

∂x

∣∣∣∣
x=x(0),ẋ=ẋ(0)

C(x(0), ẋ(0)) =
∂f(x, ẋ, t)

∂ẋ
|x=x(0),ẋ=ẋ(0)=

∂f(x(t))

∂x

∣∣∣∣
x=x(0),ẋ=ẋ(0)

(19)

are the linearized conductive and capacitive components stamped by the companion
models in SPICE, and xm = x − x(0) is the first-order perturbed mismatch response.
Recall that x(0)(t) and ẋ(0)(t) are a number of time-dependent biasing points along the
transient trajectory.

With a perturbation analysis, the parameter variations can be considered as a per-
turbation to the nominal transient trajectory (x = x(0), ; ẋ = ẋ(0)) of the SDAE in (11).
This leads to a linearized SDAE

G(0) · x̂+ C(0)
˙̂x = T · ζ(t)

G(0) =
∂f(x, ẋ, t)

∂x
, C(0) =

∂f(x, ẋ, t)

∂ẋ
(20)

where x̂(t) = x − x(0) is the state variable for the stochastic mismatch. When the
perturbation is large, the high-order expansion can be performed and the derivation
below still holds. However, we focus on small variations, and assume G(0) and C(0) are
both constant at each time-step which only depend on nominal values of parameters.

4.2. NMC by SOP Expansion

Next, we can introduce the SOP to transient mismatch analysis so that the mean and
variance of transient mismatch can be computed with only one-time simulation. Note
that different distributions types are associated with different orthogonal polynomial-
s. In this paper, we assume that the random variables for the local mismatch follow
Gaussian distributions and thus Hermite polynomial functions can be used for their
SOP expansions [Xiu and Karniadakis 2002; Vrudhula et al. 2006]. For example, Her-
mite polynomial functions with one variable ξ can be shown as:

Φ(ξ) = [Φ1(ξ),Φ2(ξ),Φ3(ξ), ..., ]
T = [1, ξ, ξ2 − 1, ..., ]T (21)

is used to construct the expansion basis to calculate the mean and the variance of
xm(t). Note that variable ξ follows the standard Gaussian distribution N(0, 1).

The stochastic state variable xm(t) is first expanded by

xm(t) =
∑
i

αi(t)Φi(ξ). (22)

Note that for different random processes, many other orthogonal polynomials can be
selected as well, based on a so-called Askey scheme [Xiu and Karniadakis 2002].

Then, when applying the inner-product of the residue error

Δ(ξ) = G(x(0), ẋ(0))
∑
i

αi(t)Φi(ξ) + C(x(0), ẋ(0))
∑
i

α̇i(t)Φi(ξ)

− Fn(x(0))
∑
l

gβ(pl)ξl

by the orthogonal basis Φj(ξ), it results in

< Δ(ξ),Φj(ξ) >=

∫
ξ

Δ(ξ)Φj(ξ)W (ξ)dξ = 0. (23)
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Here, W (ξ) is the probability distribution of the random variable ξ. We assumed a
Gaussian distribution of W (ξ) for all parameters in this paper.

Without the loss of generality, for one random variable ξ of one geometrical parame-
ter p, it is easy to verify that (23) leads to

α0 = 0, α2 = 0

G(x(0), ẋ(0))α1(t) + C(x(0), ẋ(0))α̇1(t) = Fn(x(0))gβ(p), (24)

with a second-order expansion of xm(ξ). The according standard-deviation is thereby
given by

V ar < xm(ξ) >= α2
1V ar(ξ) + α2

2V ar(ξ
2 − 1) = α2

1.

The first-order SOP coefficient α1(t) in (24) can be solved by a Backward-Euler inte-
gration

(Gk +
1

h
Ck)α1(tk) =

1

h
Ckα1(tk − h) + F ik, (25)

where

Gk = G(x
(0)
k , ẋ

(0)
k ), Ci = C(x

(0)
k , ẋ

(0)
k ), ik = n(xk)

∑
l

gβ(pl)

are Jacobians and the mismatch current-source at the k-th time-instant along the nom-
inal trajectory x(0).

Expanding ζ(t) (
∑
i

giΦi) and x̂(t) (
∑
i

αi(t)Φi) by Hermite polynomials, one can have

G(0) ·
∑
i

αi(t)Φi + C(0) ·
∑
i

α̇i(t)Φi = T ·
∑
i

giΦi, (26)

Where gi and αi are the coefficients of SoP expansion of stochastic current sources and
state variables, respectively.

By further taking the inner-product with Φj for the collocation at the two sides, one
can have

G(0) · αi(t) + C(0) · α̇i(t) = T · gi(t). (27)

The above equation can be solved with a Backward-Euler method(
Gk

(0) +
1

h
Ck

(0)

)
αi(tk) =

1

h
Ck

(0)αi(tk − h) + T · gi(tk). (28)

As a result, one can obtain the mean μx̂(t) = α0(t) and the variance (σx̂(t))
2 = α1(t)

2

for the stochastic transient variation at the time-step tk.

4.3. One CMOS Transistor Example

For illustration purpose, one CMOS transistor is presented as an example to show
the NMC mismatch analysis. The variable channel length Leff is considered as an
independent variation source and the variation of Leff can be mapped into a noise
current source as:

ζ = IβDtm(W,L)γ(x, y) = IβD

⎛
⎝1 +

κβ√
W(0)

⎡
⎣ 1√

L(0)

− 1

2

√(
L(0)

)3 ξ
⎤
⎦
⎞
⎠ γ(x, y). (29)

where the tm(W,L) can be expanded with first-order Taylor expansion as shown in
equation (7) and ξ is a Gaussian random variable for the variation of channel length
Leff . Also, γ(x, y) = 1 because ξ is assumed to be an independent variable.
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As such, the DAE system with noise current sources ζ becomes:

G(x(0), ẋ(0))xm + C(x(0), ẋ(0))ẋm = ζ(ξ). (30)

Moreover, the variables in above equation can be expanded with Hermite polynomi-
als Φi (i = 0, ..., n) as:

G(x(0), ẋ(0))
∑

i αi(t)Φi(ξ) + C(x(0), ẋ(0))
∑

i α̇i(t)Φi(ξ) =

IβD

(
1 + κβ√

W(0)

[
1√
L(0)

− 1

2
√
(L(0))

3

n∑
i=0

g′iΦi

])
.

(31)

Without the loss of generality, the first-order SoPs expansion (n = 1) can be consid-
ered. When applying inner-product with the orthogonal basis Φ i on both sides, we can
obtain:

α0 = 0, α2 = 0

G(x(0), ẋ(0))α1(t) + C(x(0), ẋ(0))α̇1(t) = −IβD(t) κβ√
W(0)

1

2
√
(L(0))

3
g′1.

Note that g1 is known because the variation of channel length is given. Thereby, the
first-order SOP coefficient α1 can be solved with a Backward-Euler integration as:

(Gk +
1

h
Ck)α1(tk) =

1

h
Ckα1(tk − h)− (IβD)k

κβ√
W(0)

1

2

√(
L(0)

)3 g′1. (32)

at the k-th time-step. Recall that Gk, Ck and (IβD)k are the nominal conductance (gds),
capacitance (cds) and channel current Id evaluated at tk. As such, the transient mis-
match voltage (xm = α1(t)Φ1(ξA)) of this transistor has a time-varying standard vari-
ance α1(t)

2, solved from the above perturbation equation.
More importantly, for large-scale problems with a large number of transistors (e.g.

Operational Amplifier and Schmidt Trigger in the experiment), we can simultaneously
solve the transient mismatch vector by adding all noise current sources into the DAE
system with equation (11).

5. STOCHASTIC YIELD ESTIMATION AND OPTIMIZATION

In this section, we will discuss how to estimate the parametric yield and further op-
timize it by tuning parameters automatically. We will first show how to estimate the
parametric yield with the stochastic variation (mismatch) (μfm;t, σfm;t) obtained from
the above NMC mismatch analysis.

5.1. Fast Yield Calculation

First, we construct the performance distribution at one time-step tk by (μfm(tk),
σfm(tk)), shown as the solid curve from μ− 3σ to μ+ 3σ in Figure(3). Then, the perfor-
mance constraint is given as

h(
p; tk) = fm(
p; tk)− fmthreshold
≤ 0. (33)

With the constraints, the boundary separating success region from failure region can
be plotted as the straight line h(
p; tk) = 0 in following figure.

As a result, the performance fm(tk) located at the left of h(
p; tk) = 0 (shown as the
shaded region) can satisfy the constraint in (33) and thus belong to the successful
region Ŝ. Hence, the parametric yield can be estimated with the area ratio by

Y (
p) =
Ŝ

Sfm

. (34)
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Fig. 3. Parametric yield estimation based on SOP based stochastic variation analysis

When denoting the entire region area Sfm = 1, Y (
p) becomes Ŝ and is determined by
the integration below

Y (
p) =

∫
Ŝ

pdf(fm(
p; tk))dS =

∫
Ŝ

pdf(μfm , σfm)dS (35)

where pdf(fm) is the probability-distribution-function (PDF) of the performance merit
of interest, characterized by μfm and σfm at the time-step tk.

5.2. Stochastic Sensitivity Analysis

In order to improve the yield rate, most optimization engines need sensitivity informa-
tion to identify and further tune those critical parameters. However, with the emerging
process variations beyond 90nm, traditional sensitivity analysis becomes inefficien-
t: either use the worst-case scenario or conduct Monte Carlo simulations [Lampaert
et al. 1995; Schenkel et al. 2001; Liu et al. 2010]. Therefore, an efficient NMC-based
stochastic sensitivity analysis is needed for this purpose.

With all parameter variations calculated from the fast mismatch analysis in Section
4, one can further explore the impact or contribution from the parameter variation
σξpi to the performance variation σξfm . This can be utilized to perform optimization
procedure for better performance merits. In this section, we develop an approach to
evaluate the sensitivity of transient variation (mismatch) with respect to each param-
eter variation.

We start from the definition of stochastic sensitivity. Expressing the relationship be-
tween the performance metric variation ξfm . From now on, we note ξfm(t) = fm(
ξp; t))
for illustration purpose and assume the random parameter vector 
ξp (∈ R

m). As such,
the stochastic sensitivity can be defined by

spi(t) =
∂fm(
ξp; t)

∂ξpi

, i = 1, · · · ,m (36)

where spi(t) is the derivative of the performance variation ξfm with respect to the i-
th random parameter variable ξpi at one time-instant t. Depending on the problem
or circuit under study, the performance fm can be output voltage, period and power,
etc.; and the parameter can be transistor width, length and oxide thickness, etc. Such
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a so-called stochastic sensitivity can be also understood based on the propagation of
variance (POV) relationship [McAndrew et al. 1997; Drennan and McAndrew 2003]
below

σ2
ξfm

=
∑
i

(
∂fm(
ξp; t)

∂ξpi

)2

σ2
ξpi
. (37)

Here, σ2
ξpi

is the parameter variance and σ2
ξfm

is the performance variance.
Note that the performance variation ξfm is mainly determined by α1[Xiu and Kar-

niadakis 2002] in (28) at time-step tk as derived in Section 4.3, while α2 has little
impact on the performance variation. As such, one can truncate the SoP expansions
to the first order for the calculation of mean and variance, and experiments show that
the first order expansion can provide adequate accuracy. Therefore, α1 is the dominant
moment for ξfm while α2 can be truncated to simplify calculation. Therefore, we have
the following:

α1(tk) = c1 + c0T · g(tk), (38)

where

c0 =

(
Gk

(0) +
1

h
Ck

(0)

)−1

,

c1 = c0 ·
(
1

h
Ck

(0)α1(tk − h)

)
.

As such, one can further calculate the stochastic sensitivity ∂fm(
ξp; t)
/
∂ξpi using

spi(tk) =
∂fm(
ξp; t)

∂ξpi

= (c0Tpi)×
∂g(tk)

∂pi
(39)

which can be utilized in any gradient-based optimization to improve the yield-rate.

5.3. Multi-Objective Optimization

Next, we make use of sensitivities spi to improve parametric yield. Meanwhile, since
power is also a primary design concern, we treat power consumption reduction as an
extra objective and solve a multi-objective optimization problem defined in Section 3.
Note that other performance merits can be treated as objectives of optimization in a
similar way. As such, by tuning nominal process parameters along gradient directions,
we enable more parameters containing process variations to satisfy the performance
constraints. This is a importance feature for a robust design. In this section, we demon-
strate this requirement by a sequential linear programming (SLP).

At the beginning of each optimization iteration, the nonlinear objective functions
Y (
p) and Pc(
p) can be approximated by linearization

Y (
p) = Y (
p(0)) +∇pY (
ξp(0)
)T (
p− 
p(0)) (40)

Pc(
p) = Pc(
p(0)) +∇pPc(
ξp(0)
)T (
p− 
p(0)),

where p(0) represents the nominal design parameters while 
p contains the process vari-
ations of these parameters. Note that (31) is a first-order Taylor expansion of para-
metric yield Y (
p) defined in (35) and power consumption Pc(
p), around the nominal
parameter region 
p(0). Thus, ∇pY (
ξp(0)

) is a vector consisting of ∂Y (
ξp)/∂ξpi . The same
is true for power consumption ∇pPc(
ξp(0)

). Therefore, the nonlinear objective functions
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can be transformed into a series of linear optimization sub-problems. The optimization
terminates when the convergence criterion is achieved.

As such, the stochastic multi-objective yield optimization problem in Section 3 can
be re-formulated as

maximize Y (
p) = Y (
p(0)) +∇pY (
ξp(0)
)T (
p− 
p(0))

minimize Pc(
p) = Pc(
p(0)) +∇pPc(
ξp(0)
)T (
p− 
p(0))

subject to

Y (
p) ≥ Ȳ
Pc(
p) ≤ P̄c

F(
p) ≤ Fmax


pmin ≤ 
p ≤ 
pmax

where δ
p = 
p − 
p0 is the step size. Within each iteration, the sensitivity vector
∇pY (
ξp(0)

), ∇pPc(
ξp(0)
) and δ
p should be updated.

However, the stochastic sensitivity analysis in Section 5 can only calculate
∂F (
ξp; t)

/
∂ξpi rather than ∂Y (
ξp)

/
∂ξpi . To obtain ∂Y (
ξp)

/
∂ξpi , we start from (35) with

the following derivation

∂Y (
ξp)

∂ξpi

=

∫
Ŝ

∂pdf(F (
ξp; t))

∂ξpi

dS (41)

=

∫
Ŝ

∂pdf(F )

∂F
· ∂F (


ξp; t)

∂ξpi

dS.

As a result, ∂Y (
ξp)/∂ξpi can be obtained with ∂F (
ξp; t)
/
∂ξpi calculated from the s-

tochastic sensitivity analysis. Note that the PDF of the performance variation and the
integral region Ŝ are both given from the yield estimation in (35).

We illustrate our optimization procedure for yield objective function Y (
p) through
Fig.(4). With the parametric yield estimation using the NMC mismatch analysis, the
distribution of performance fm for nominal parameters 
p0 can be plotted as a solid
curve, which has a mean-value μfm(p0). With the performance constraint h(
p; t) ≤ 0 in
(33), the shaded area located at the left of the constraint-line is the desired successful
region.

One yield optimization procedure needs to move the performance distribution to left
side so that the shaded area can be maximized. Therefore, the problem here is how to
change the process parameters 
p in order to move the performance distribution for an
enhanced yield rate.

Moreover, power consumption can be estimated by

Pc(
p) = −[V dd · īV dd], (42)

where V dd is the power supply voltage source and īV dd is the average value of current
through the voltage source. The power consumption optimization can be explained as
shown in Fig.(5). The initial design generates the current iV dd denoted as the black
curve and leads to high power consumption Pc.

According to (42), Pc can be reduced by lowering the average value of iV dd. To do
so, we move the minimum point on the current trajectory close to zero and obtain the
optimal design with minimum Pc as the red curve shown in Fig.(5). As such, the power
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Fig. 5. Power Consumption Optimization

optimization requires us to change 
p in order to move the minimum point of iV dd close
to zero for smaller power consumption. To solve this problem, the parametric yield-
rate Y (
p0) is first calculated from (35) and the performance distribution is constructed
accordingly, similar to the one in Fig.(4). Then, the targeted yield-rate Ȳ is used to
compare with Y (
p0) by

ΔY (
p0) = Ȳ − Y (
p0). (43)

Next, the NMC stochastic sensitivity analysis is performed to find ∂F (
ξp; t)
/
∂ξpi and

thus ∂Y (
ξp)/∂ξpi in the (42). As a result, with the first-order Taylor expansion in SLP
(41), one can determine the parameter incremental δ
pyield = 
p − 
p(0) in order to reach
Y (
p) = Ȳ by

δ
pyield =
Ȳ − Y (
p(0))

∇pY (
p(0))
=

ΔY (
p(0))

∇pY (
p(0))
. (44)

On the other hand, we perform the same procedure to optimize the power consump-
tion. Similarly to (39), we calculate the sensitivity of power consumption w.r.t. process
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parameters at iV dd with a minimum current value:

∂Pc(
p)

∂pi
= −[Vdd · ∂iV dd

∂pi

∣∣∣∣
iV dd=Minimum

]. (45)

The according parameter increments can be computed as

δ
ppower =
P̄c − Pc(
p(0))

∇pPc(
p(0))
=

ΔPc(
p(0))

∇pPc(
p(0))
. (46)

In this way, the total changes to the process parameters are the weighted summation
below

δ
ptotal = λ1 · δ
pyield + λ2 · δ
ppower, (λ1, λ2 ∈ [0, 1]), (47)

where λ1 and λ2 are weights for yield and power consumption. Also, λ1 and λ2 can be
updated dynamically and weight λ should be larger for the performance merit that is
farther from the target value.

Therefore, one can update 
p with the new parameter 
p0 + δ
ptotal. Moreover, the N-
MC mismatch analysis is conducted to update the performance distribution, which is
denoted by a dashed-curve shown in Fig.(4). With the updated new parameters and
performance distribution, all performance constraints F(
p) ≤ Fmax are checked for vi-
olations. If they are still valid, 
p becomes the new design point and this procedure is
repeated again to enhance the yield-rate.

6. EXPERIMENTAL RESULTS

6.1. Algorithm Overview

For illustration purpose, we summarize the proposed algorithm in Algorithm(1). The
optimization procedure involves several optimization iterations; each of them contains
three major steps: stochastic yield estimation, stochastic sensitivity analysis, and s-
tochastic yield optimization. The optimal design point can be achieved by tuning nom-
inal parameters along their gradient directions.

ALGORITHM 1: Proposed Yield Optimization Algorithm
Input: Circuit topology, distribution of variable parameters pi (μpi , σpi ), and performance

constraints h(�p; t).
Output: The optimal design point (μoptimal

pi ).
/* Yield Optimization Loop */;
repeat

/* Step 1: Yield Estimation */
Use stochastic mismatch analysis to calculate the transient mismatch (μfm;t, σfm;t);
Build the distribution of fm;
Calculate the parametric yield Y (�p) with h(�p) using equation(14);

/* Step 2: Sensitivity Analysis */
Calculate the sensitivities of Y (�p) as si(t) = ∂Y (�ξp)/∂ξpi and that of Pc in (45);

/* Step 3: Yield Enhancement */
Move the nominal parameters μpi along tangent direction to improve Y (�p) and reduce Pc(�p);

until Yield Y (�p) cannot be maximized and Power Consumption Pc(�p) is satisfied.;
return the optimal design point (μoptimal

pi )
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6.2. Settings

We have implemented the proposed non-Monte-Carlo (NMC) algorithms for NMC mis-
match analysis, yield estimation, and optimization in a Matlab based circuit simulator.
All experiments are performed on a Linux server with a 2.4GHz Xeon processor and
4GB memory. In our experiment, we take the widths of MOSFETs as process variable
parameters for illustration.

We first use an Operational Amplifier (OPAM) to study the accuracy and efficien-
cy of our NMC mismatch analysis by comparing it against Monte Carlo simulations.
Then, a Schmitt Trigger is used to verify our proposed parametric yield estimation and
stochastic yield analysis. Finally, we demonstrate the efficiency of our yield optimiza-
tion method using a 6-transistor SRAM cell.

6.3. NMC Mismatch Analysis

The operational amplifier (OPAM) is shown in Fig.(6), which consists of eight MOS
transistors. We introduce the channel width variation (Gaussian distributions with
10% perturbation from their nominal values) to all MOSFETs. Notice that we consider
the matching design requirements for the input pair devices, such as the same nominal
width (Wp1 = Wp2, Wn3 = Wn4, Wp5 = Wp7 = Wp8) and the fixed width ratio
(Wn6 = kWn3).

Vss      -5V 

Is    

Mp8   
Mp5   Mp7   

Mp2   Mp1   

Mn3   Mn4   

Mn6   

Input+Input-

Output

Vdd     +5V 

Fig. 6. Schematic of Operational Amplifier

We first perform 1000 times MC simulations with a high confidence level to find the
variational trajectories at the output node. Then, we apply the developed NMC mis-
match analysis to OPAM and locate the 3σ boundaries (i.e. μ− 3σ, μ+3σ) of perturbed
trajectories with a one-time run of transient circuit simulation. The results are shown
in Fig.(7), where blue lines denotes the MC simulations and the two black lines are
results from our mismatch analysis. We observe that our approach can capture the
transient stochastic variation (mismatch) as accurately as Monte Carlo results.

We further compare the accuracy and efficiency between NMC mismatch analysis
and the Monte Carlo method in the Table(I). From this table, we can see that NM-
C mismatch analysis can not only achieve 2% accuracy of MC, but also gains 680X
speedup over Monte-Carlo method.

6.4. Stochastic Yield Estimation

We further use the Schmitt Trigger example shown in Fig.(8) to investigate the s-
tochastic yield estimation. Similarly, we assume the widths of all MOSFETs have 10%
variations from their nominal values and follow Gaussian distributions. Moreover, we
study the lower switching threshold VTL as the performance metric for the parametric
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Fig. 7. NMC mismatch analysis vs. Monte Carlo for Operational Amplifier Case

Table I. Comparison of Accuracy and Runtime

Operational Amplifier Example

Runtime (seconds) Proposed 1.33
Monte-Carlo 905.06

Mean value (μ) Proposed 0.35493
Unit: volt Monte-Carlo 0.34724

Std. value (σ) Proposed 0.57032
Unit: volt Monte-Carlo 0.56272

yield estimation, which can be perturbed due to MOSFET width variations. In other
words, the performance constraint can be defined as follows: when the input VTL is
1.8V and the output is initially set to V dd = 5V , the output VOUH should be greater
than 4.2V.

Vdd

VoutVin Vdd

GND

Mp1

Mp2

Mn1

Mn2

Mp3

Mn3

Fig. 8. Schematic of Schmitt Trigger

We first conduct 1000 times MC simulations and compare it with the result from
NMC stochastic variation analysis shown in Fig.(9(a)). Then, the output distribution
from the MC simulation at the time-step when input voltage equals to 1.8V is plotted
in Fig.(9(b)). In addition, the PDF estimation by our NMC mismatch analysis (defined
by mean μ and standard deviation σ) is compared with MC simulations in the same
figure. The two distributions coincide with each other very well so that this experiment
can validate the accuracy of proposed stochastic yield estimation.
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Fig. 9. Comparison of Schmitt Trigger example

Then, the yield rate can be calculated with one estimated PDF from our NMC mis-
match analysis efficiently. We list the mean (μ), standard deviation (σ), and yield es-
timation results from our approach and those by MC simulations in Table(II). With
the accurate estimation of output distribution, our method can calculate the yield rate
with 2.7% accuracy of MC as well as 756X speedup when compared to the MC method.

Table II. Comparison of Accuracy and Runtime

Schmitt Trigger Example

Runtime (seconds) Proposed 1.06
Monte-Carlo 801.84

Mean value (μ) Proposed 4.2043
Unit: volt Monte-Carlo 4.1993

Std. value (σ) Proposed 0.10487
Unit: volt Monte-Carlo 0.094346
Yield rate Proposed 0.48357

Monte-Carlo 0.47059

6.5. Stochastic Sensitivity Analysis

Furthermore, we apply the proposed stochastic sensitivity analysis to the Schmitt
Trigger example, which can find the contribution of each variation source to the out-
put variation. Note that we are interested in the lower switching threshold VTL, where
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input increases from zero and output decreases from V dd. As a illustration, the sensi-
tivity of output voltage variation ξoutput with respect to all MOSFET widths variations
ξpi at the time-step when input voltage equals to 1.8V are shown in Table(III). We can
observe that widths of Mp1, Mp2, and Mn3 transistors are more critical than other
MOSFETs.

Table III. Sensitivity of ξoutput with respect to each MOSFET
width variation ξpi

Parameter Mn1 width Mn2 width Mn3 width
Sensitivity 2.4083e-4 2.4083e-4 4.8069e-3

Parameter Mp1 width Mp2 width Mp3 width
Sensitivity 2.4692e-2 2.4692e-2 0

6.6. Stochastic Yield Optimization

To further validate the yield optimization method, we deploy a 6-T SRAM cell in
Fig.(10) and apply the proposed optimization method to improve the yield rate un-
der reading accessing failure. During the reading operation, both BL B and BL are
pre-charged to V dd, while Q B stores zero and Q stores one. When reading the SRAM
cell, BL B starts to discharge from V dd and produces a voltage difference ΔV between
itself and BL. The time it takes BL B to produce a large enough voltage difference
ΔVthreshold is called access time. If the access time is larger than the threshold value
at the time-step tthreshold, this leads to an access time failure. In our experiment, we
assume that tthreshold = 0.04ns and ΔVthreshold = 0.8662V .

Vdd  +5V

GND

Mn1   Mn3   

Mn4   Mn2   Mp5   Mp6   

WL=1

BL=1BL_B=1 Q_B=0 Q =1

Fig. 10. Schematic of SRAM 6-T Cell

In this example, all channel widths of MOSFETs are considered as the variable pa-
rameters which follow Gaussian distributions with 12% perturbation from nominal
values. As such, when the access time differs from the nominal value due to varia-
tions in channel width, access time failure occurs and thus yield loss may happen. In
order to relieve the issue, we first perform NMC mismatch analysis to find the volt-
age distribution of BL B at tthreshold, which is shown in Fig.(11). Also, 1000 times MC
simulations have been performed as a baseline for comparison which can provide the
variational transient waveforms of BL B in Fig.(12). The comparison can validate the
accuracy of our NMC mismatch analysis.
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Fig. 12. NMC mismatch analysis vs. MC

Then, the sensitivity analysis developed in this paper is used to find the ∂ξvBL B/∂ξpi

and ∂ξpower/∂ξpi where ξpi is the width variation of i-th MOS transistor and ξpower is
the variation of power supply voltage source. Results are shown in Table(IV). From
this table, we can see that only Mn1, Mn2, and Mp6 can have influence on the access
time and power variations in our experiment setup; also, we can see that their nominal
values can be tuned to reduce access time failure for better parametric yield rate and
to lower the power consumption simultaneously due to different gradient directions.

Table IV. Sensitivity of ξvBL B and ξpower with respect to each MOS-
FET width variation ξpi

Parameter Mn1 width Mn2 width Mp6 width
Sensitivity (ξvBL B ) 1.3922e-3 2.0787e-3 7.0941e-2
Sensitivity (ξpower ) 3.7888e-4 5.7816e-4 -5.8871e-4

Finally, we apply the multi-objective yield optimization to improve yield. For compar-
ison purpose, two other algorithms have been implemented: (1) baseline, the generic
gravity-directed method in [Soin and Spence 1980] which moves the nominal parame-
ters to the gravity of successful region, and (2) the single-objective optimization which
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only improves the yield. The results from all optimization methods are shown in Table
(V). From this table, it can be observed that all methods can improve the parametric
yield to be around or even more than 95% compared with the initial design. According
nominal values can be used as better initial design parameters. Meanwhile, the area
is smaller than the maximum acceptable area criterion A ≤ 1.2Ainitial.

However, optimal designs from baseline (gravity-directed) method and single-
objective optimization require 2.75X and 21% more power consumption when com-
pared with initial design, respectively. Proposed method can lead to optimal design
with only 7% more power requirement. Therefore, it can be demonstrated that pro-
posed multi-objective optimization can not only improve the yield rate but also sup-
press the power penalty simultaneously. Moreover, the proposed optimization proce-
dure only needs 6 iteration runs to achieve the shown results within 15.21 seconds.
Notice that the parametric yield Y (
p) can be further improved with a higher target
yield Ȳ at the cost of more optimization iterations.

Table V. Comparison of Different Yield Optimization Algorithms for SRAM Cell

Parameter First-cut Baseline Single-objective Multi-objective

Mn1 width (m) 1e-5 2.872e-5 2.7841e-5 3.577e-5
Mn2 width (m) 1e-5 2.3282e-5 2.2537e-5 2.7341e-5
Mp6 width (m) 3e-5 1.5308e-5 1.6296e-5 9.7585e-6

Power (W ) 1.0262e-005 3.0852e-5 1.2434e-5 1.0988e-5
Area (m2) 2.4e-11 2.81e-11 2.8e-11 2.88e-11

Yield 49.32% 94.23% 95.49% 95.31%
Runtime (seconds) 2.42 32.384 27.226 15.21

Iterations 1 12 10 6

7. CONCLUSION

In this paper, we have developed one fast non-Monte-Carlo (NMC) yield estimation
and optimization approach. It first models the PVT variation sources as stochastic
current sources, and expands them by stochastic orthogonal polynomials (SOPs). Then,
the probabilistic distribution of transient mismatch can be calculated from one-time
simulation and the yield rate can be computed under given performance constraints.
Moreover, we further derive the stochastic sensitivity of yield within the context of
SoPs, and develop a gradient-based multi-objective optimization which can efficiently
improve the yield rate and satisfy other performance constraints at the same time.
The extensive experiments on a number of circuits demonstrate that proposed method
can achieve up to 98% accuracy and 700X speedup when compared with Monte Carlo
simulations. Also, the optimization procedure can not only improve the yield rate up
to 95.3% and satisfy other performance constraints, but also provide the best efficiency
when compared with other existing methods.
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