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Abstract—This paper presents a parallel and incremental solver
for stochastic capacitance extraction. The random geometrical
variation is described by stochastic geometrical moments, which
lead to a densely augmented system equation. To efficiently extract
the capacitance and solve the system equation, a parallel fast-mul-
tipole-method (FMM) is developed in the framework of stochastic
geometrical moments. This can efficiently estimate the stochastic
potential interaction and its matrix-vector product (MVP) with
charge. Moreover, a generalized minimal residual (GMRES)
method with incremental update is developed to calculate both
the nominal value and the variance. Our overall extraction flow
is called piCAP. A number of experiments show that piCAP
efficiently handles a large-scale on-chip capacitance extraction
with variations. Specifically, a parallel MVP in piCAP is up to
faster than a serial MVP, and an incremental GMRES in piCAP
is up to faster than non-incremental GMRES methods.

Index Terms—Capacitance extraction, fast multipole method,
process variation.

I. INTRODUCTION

A S IC designs are approaching processes below 45 nm,
there exist large uncertainties from chemical mechanical

polishing (CMP), etching, and lithography [1]–[7]. As a result,
the fabricated interconnect and dielectric can show a signifi-
cant difference from the nominal shape. The value of an ex-
tracted capacitance thereby can differ from the nominal value
by a large margin, which may further lead to significant vari-
ability for the timing analysis. For example, as shown in [1], the
variation of interconnect can cause as much as 25% variation in
the clock skew. Therefore, accurately extracting the capacitance
with consideration of the stochastic process variation becomes
a necessity.
To avoid discretizing the entire space, the boundary element

method (BEM) is used to evaluate capacitance by discretizing
the surface into panels on the boundary of the conductor and the
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dielectric [8]–[11]. Though this results in a discretized system
with a small dimension, the discretized system under BEM is
dense. FastCap [8] solves such a dense system by a generalized
minimal residual (GMRES) method. Instead of performing the
expensive LU decomposition, the GMRES iteratively reaches
the solutionwith the use of thematrix-vectormultiplication. The
computational cost of the matrix-vector-product (MVP) can be
reduced by either a fast-multipole-method (FMM) [8], a low-
rank approximation [9], and a hierarchical-tree decomposition
[10]. As a result, the complexity of the fast full-chip extractions
generally comes from two parts: the evaluation of MVP and the
preconditioned GMRES iteration.
A few recent works [3]–[5] discuss interconnect extraction

considering process variation. The variation is represented by
the stochastic orthogonal polynomial (SOP) [12], [13] when cal-
culating a variational capacitance. Since the interconnect length
and cross-area are at different scales, the variational capacitance
extraction is quite different between the on-chip [4], [5] and the
off-chip [3]. The on-chip interconnect variation from the geo-
metrical parameters, such as width length of one panel and dis-
tance between two panels, is more dominant [4], [5] than the
rough surface effect seen from the off-chip package trace. How-
ever, it is unknown how to leverage the stochastic process vari-
ation into the MVP by FMM [3]–[5]. Similar to deal with the
stochastic analog mismatch for transistors [14], a cost-efficient
full-chip extraction needs to explore an explicit relation between
the stochastic variation and the geometrical parameter such that
the electrical property can show an explicit dependence on geo-
metrical parameters. Moreover, the expansion by SOP with dif-
ferent collocation schemes [12], [13], [4], [5] always results in
an augmented and dense system equation. This significantly in-
creases the complexity when dealing with a large-scale problem.
The according GMRES thereby needs to be designed in an in-
cremental fashion to consider the update from the process vari-
ation. As a result, a scalable extraction algorithm similar to
[8]–[10] is required to consider the process variation with the
new MVP and GMRES developed accordingly as well.
To address the aforementioned challenges, this paper con-

tributes as follows. First, to reveal an explicit dependence on
geometrical parameters, the potential interaction is represented
by a number of geometrical moments. As such, the process vari-
ation can be further included by expanding the geometrical mo-
ments with use of stochastic orthogonal polynomials, called sto-
chastic geometrical moments in this paper. Next, with the use
of the stochastic geometric moment, the process variation can
be incorporated into a modified FMM algorithm that evaluates

1063-8210/$26.00 © 2011 IEEE
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the MVP in parallel. Finally, an incremental GMRES method
is introduced to update the preconditioner with different vari-
ations. Such a parallel and incremental full chip capacitance
extraction considering the stochastic variation is called piCAP.
Parallel and incremental analysis are the two effective tech-
niques in reducing computational cost. Experiments show that
our method with stochastic polynomial expansion is hundreds
of times faster than the Monte-Carlo based method while main-
taining a similar accuracy. Moreover, the parallel MVP in our
method is up to faster than the serial method, and the incre-
mental GMRES in our method is up to faster than non-in-
cremental GMRES methods.
The rest of this paper is organized in the following manner.

We first review the background of the capacitance extraction
and fast multipole method (FMM) in Section II. We introduce
the concept of the stochastic geometrical moment in Section III,
and illustrate a parallel FMM method based on the stochastic
geometrical moment in Section IV. We further propose a novel
incremental GMRES method in Section V and present experi-
ment results in Section VI. Finally, this paper is concluded in
Section VII.

II. BACKGROUND

A. BEM

The BEM, used in most fast capacitance extractions [8]–[10],
starts with an integral equation

(1)

where is the potential at the observer metal, is the
surface-charge density at the source metal, is an incremental
area at the surface of the source metal, and the source is on
.
By discretizing the metal surface into panels sufficiently

such that the charge-density is uniform at each panel, a linear
system equation can be obtained by the point-collocation [8]

(2)

where is an matrix of potential coefficients (or poten-
tial interactions), is an vector of panel charges, and is an
vector of panel potentials. By probing iteratively with one

volt at each panel in the form of , the solved
vector is one column of the capacitance matrix.
Note that each entry in the potential matrix represents

the potential observed at the observer panel due to the charge
at the source panel

(3)

When panel and panel are well-separated by definition,
can be well approximated by [4], [5],

[8]–[10].
The resulting potential coefficient matrix is usually dense

in the BEMmethod. As such, directly solving (2) would be com-
putationally expensive. FastCap [8] applies an iterative GMRES

method [15] to solve (2). Instead of performing an expensive LU
decomposition of the dense , GMRES first forms a precondi-
tioner such that has a smaller condition number than
, which can accelerate the convergence of iterative solvers

[16]. Take the left preconditioning as an example

Then, using either multipole-expansion [8], low-rank approx-
imation [9] or the hierarchical-tree method [10] to efficiently
evaluate the MVP for ( is the solution for th
iteration), the GMRES method minimizes below residue error
iteratively until converged

Clearly, GMRES requires a well-designed preconditioner and
a fast MVP. In fact, FMM is able to accelerate the evaluation of
MVP with time complexity where is the number of
variables. We will introduce FMM first as what follows.

B. FMM

The FMMwas initially proposed to speed up the evaluation of
long-ranged particle forces in the N-body problem [17], [18]. It
can also be applied to the iterative solvers by accelerating calcu-
lation ofMVP [8]. Let’s take the capacitance extraction problem
as an example to introduce the operations in the FMM. In gen-
eral, the FMM discretizes the conductor surface into panels and
forms a cube with a finite height containing a number of panels.
Then, it builds a hierarchical oct-tree of cubes and evaluates the
potential interaction at different levels.
Specifically, the FMM first assigns all panels to leaf cells/

cubes, and computes the multipole expansions for all panels in
each leaf cell. Then, FMM calculates the multipole expansion of
each parent cell using the expansions of its children cells (called
M2M operations in Upward Pass). Next, the local field expan-
sions of the parent cells can be obtained by adding multipole ex-
pansions of well-separated parent cells at the same levels (called
M2L operations). After that, FMM descends the tree structure
to calculate the local field expansion of each panel based on
the local expansion of its parent cell (called L2L in Downward
Pass). All these operations are illustrated within Fig. 1.
In order to further speed up the evaluation of MVP, our sto-

chastic extraction has a parallel evaluation with variations,
which is discussed in Section IV, and an incremental precondi-
tioner, which is discussed in Section V. Both of these features
depend on how an explicit dependence between the stochastic
process variation and the geometric parameters can be found,
which will be discussed in Section III.

III. STOCHASTIC GEOMETRICAL MOMENT

With FMM, the complexity of MVP evaluation can be re-
duced to during the GMRES iteration. Since the spatial
decomposition in FMM is geometrically dependent, it is helpful
to express using geometrical moments with an explicit geom-
etry-dependence. As a result, this can lead to an efficient recur-
sive update (M2M, M2L, L2L) of on the oct-tree. The geom-
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Fig. 1. Multipole operations within the FMM algorithm.

etry-dependence is also one key property to preserve in pres-
ence of the stochastic variation. In this section, we first derive
the geometrical moment and then expand it by stochastic or-
thogonal polynomials to calculate the potential interaction with
variations.

A. Geometrical Moment

In this paper, we focus on local random variations, or sto-
chastic variations. Without loss of generality, two primary ge-
ometrical parameters with stochastic variation are considered
for illustration purpose: panel-distance and panel-width .
Due to the local random variation, the width of the discretized
panel, as well as the distance between panels, may show random
deviations from the nominal value. With expansions in Carte-
sian coordinates, we can relate the potential interaction with the
geometry parameter through geometrical moments (GMs) that
can be extended to consider stochastic variations.
Let the center of an observer-cube be and the center of a

source-cube be . We assume that the distance between the th
source-panel and is a vector

with , and the distance between and is a vector

with .
In Cartesian coordinates , when the observer is

outside the source region , a multipole expansion (ME)
[19], [20] can be defined as

(4)

by expanding around , where

(5)

Note that are the coordinate components of vector in
Cartesian coordinates. The same is true for and . is the
Laplace operator to take the spatial difference, is the Kro-
necker delta function, and and are
rank- tensors with components.
Assume that there is a spatial shift at the source-cubic center
for example, change one child’s center to its parent’s center

by , where is a constant and is the panel width.
This leads to the following transformation for in (5):

(6)

Moreover, when the observer is inside the source region
, a local expansion (LE) under Cartesian coordinates is simply

achieved by exchanging and in (4)

(7)

Also, when there is a spatial shift of the observer-cubic center
, the shift of moments can be derived similarly to (6).
Clearly, both and their spatial shifts show an explicit

dependence on the panel-width and panel-distance . For this
reason, we call and geometrical moments. As such, we
can also express the potential coefficient

if
otherwise (8)

as a geometrical-dependence function via geometrical
moments.
Moreover, assuming that local random variations are de-

scribed by two random variables. for the panel-width , and
for the panel-distance , the stochastic forms of and

become

(9)

where and are the nominal values and as well as
define the perturbation range (% of nominal). Similarly, the sto-
chastic potential interaction becomes .
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B. SOP Expansion

By expanding the stochastic potential interaction
with stochastic orthogonal polynomials (SOPs), we can further
derive the stochastic geometric moments (SGMs) below.
Assuming that there is one random distribution related to

one stochastic geometric variation, its related stochastic orthog-
onal polynomial is . For example, for a Gaussian random
distribution, is a Hermite polynomial [12], [13]

(10)

As such, we can get the -th order expansion of a potential
coefficient matrix with Hermite polynomials by

(11)

Accordingly, the charge-density becomes

(12)

By applying an inner-product with

(13)

to minimize the residue, we can derive an augmented linear
system equation

(14)

The augmented is calculated by

(15)

Note that represents a tensor product, and

...
...

...

where is the inner product of Hermite poly-
nomials , and .
In addition, the augmented and become

...

...

By further defining

The augmented system equation illustrated in (14) will have an
explicit block-structure as shown below

...
...

...
...

...
(16)

We use as an example to illustrate the above general
expression. First, the potential coefficient matrix can be ex-
panded with the first two Hermite polynomials by

Then, the matrix becomes

and the newly augmented coefficient system can be written as

(17)

By solving , and , the Hermite polynomial expan-
sion of charge-density can be obtained. Especially, the mean and
the variance can be obtained from

Considering that the dimension of is further augmented, the
complexity to solve the augmented system in (16) would be ex-
pensive. To mitigate this problem, we present a parallel FMM to
reduce the cost of MVP evaluations in Section IV and an incre-
mental preconditioner to reduce the cost of GMRES evaluation
in Section V.

IV. PARALLEL FMM WITH SGM

Although the parallel fast multipole method has been dis-
cussed before such as [21], the extension to deal with stochastic
variation for capacitance extraction needs to be addressed in
the content of SGMs. In the following, we illustrate the parallel
FMM considering the process variation.
The first step of a parallel FMM evaluation is to hierarchi-

cally subdivide space in order to from the clusters of panels.
This is accomplished by using a tree-structure to represent each
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subdivision. We assume that there are panels at the finest
(or bottom) level. Providing depth , we build an oct-tree with

by assigning panels in one cube. In other
words, there are cubes at the bottom level. A parallel FMM
further distributes a number of cubes into different processors
to evaluate . In the following steps, the stochastic is
evaluated in two passes: an upward pass for multipole-expan-
sions (MEs) and a downward pass for local-expansions (LEs),
both of which are further illustrated with details below.

A. Upward Pass

The upward-pass accumulates the multipole-expanded near-
field interaction starting from the bottom level . For each
child cube (leaf) without variation (nominal contribution to )
at the bottom level, it first evaluates the stochastic geometrical
moment with (4) for all panels in that cube. If each panel expe-
riences a variation or , it calculates

by adding perturbation or to consider different
variation sources, and then evaluates the stochastic geometric
moments with (9).
After building the MEs for each panel, it transverses to the

upper level to consider the contribution from parents. The mo-
ment of a parent cube can be efficiently updated by summing
the moments of its eight children via a M2M operation. Based
on (6), the M2M translates the children’s into their parents.
The M2M operations at different parents are performed in

parallel since there is no data-dependence. Each processor
builds its own panels’ stochastic geometric moments while
ignoring the existence of other processors.

B. Downward Pass

The potential evaluation for the observer is managed during
a downward pass. At th level , two cubes are said to be
adjacent if they have at least one common vertex. Two cubes are
said to be well separated if they are not adjacent at level but
their parent cubes are adjacent at level . Otherwise, they are
said to be far from each other. The list of all the well-separated
cubes from one cube at level is called the interaction list of
that cube.
From the top level , interactions from the cubes on

the interaction list to one cube are calculated by a M2L opera-
tion at one level (M2L operation at top level). Assuming that a
source-parent center is changed to an observer-parent’s center
, this leads to a LE (7) using the ME (4) when exchanging the
and . As such, the M2L operation translates the source’s
into the observer’s for a number of source-parents on the in-
teraction list of one observer-parent at the same level. Due to the
use of the interaction list, the M2L operations have the data-de-
pendence that introduces overhead for a parallel evaluation.
After the M2L operation, interactions are further recursively

distributed down to the children from their parents by a L2L op-
eration (converse of the upward pass). Assume that the parent’s
center is changed to the child’s center by a constant .
Identical to the M2M update by (6), a L2L operation updates
by for all children’s s. In this stage, all proces-
sors can perform the same M2L operation at the same time on
different data. This perfectly employs the parallelism.

Fig. 2. Prefetch operation in M2L.

Finally, the FMM sums the L2L results for all leaves at the
bottom level and tabulates the computed products

. By summing up the products in order, the
FMM returns the product in (16) for the next GMRES
iteration.

C. Data Sharing and Communication

The total runtime complexity for the parallel FMM
using stochastic geometrical moments can be estimated by

, where is the total
number of panels and is the number of used processors. The

implies communication or synchronization overhead.
Therefore, it is desired to minimize the overhead of data sharing
and communication.
We notice that data dependency mainly comes from the inter-

action list during M2L operations. In this operation, a local cube
needs to know theMEmoments from cubes in its interaction list.
To design a task distribution with small latency between com-
putation and communication, our implementation uses a com-
plement interaction list and prefetch operation.
As shown in Fig. 2, the complement interaction list (or de-

pendency list) for the cube under calculation records cubes that
require its ME moments to be listed within the shaded area. As
such, it first anticipates which ME moments will be needed by
other dependent cubes (such as Cube shown in
Fig. 2) and distributes the required ME moments prior to the
computation. From the point of view of these dependent cubes,
they can “prefetch” the required ME moments. Therefore, the
communication overhead can be significantly reduced.

V. INCREMENTAL GMRES

The parallel FMMpresented in Section IV provides a fast ma-
trix-vector-product for the fast GMRES iteration. As discussed
in Sections II and III, another critical factor for a fast GMRES
is the construction of a good preconditioner. In this section, to
improve the convergence of GMRES iteration, we first present
a deflated power iteration to improve convergence during the
extraction. Then, we introduce an incremental precondition in
the framework of the deflated power iteration.

A. Deflated Power Iteration

The convergence of GMRES can be slow in the presence of
degenerated small eigen values of the potential matrix , such



1734 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2012

as the case for most extraction problems with fine meshes. Con-
structing a preconditioner to shift the eigen value distribution
(spectrum) of a preconditioned matrix can significantly
improve the convergence [22]. This is one of the so called de-
flated GMRES methods [23].
To avoid fully decomposing , an implicitly restarted

Arnoldi method by ARPACK1 can be applied to find its first
eigen values and its th-order Krylov subspace
composed by the first eigen vectors ,
where

(18)

Note that is a diagonal matrix composed of the first eigen
values

(19)

Then, an according spectrum preconditioner is formed

(20)

which leads to a shifted eigen-spectrum using

(21)

Note that is the shifting value that leads to a better conver-
gence. This method is called deflated power iteration. More-
over, as discussed below, the spectral preconditioner can be
easily updated in an incremental fashion.

B. Incremental Precondition

The essence of the deflated GMRES is to form a precondi-
tioner that shifts degenerated small eigen values. For a new
with updated , the distribution of the degenerated small eigen
values change accordingly. Therefore, given a preconditioner
for the nominal system with the potential matrix , it

would be expensive for another native Arnoldi iteration to form
a new preconditioner for a new with updated from

. Instead, we show that can be incrementally
updated as follows.
If there is a perturbation in , the perturbation of th

eigen vectors can be given by [24]

(22)

Note that is the subspace composed of

and is the perturbed spectrum

. As a result, can be obtained
similarly for eigen vectors.
Assume that the perturbed preconditioner is

(23)

1http://www.caam.rice.edu/software/ARPACK/

where

(24)

After expanding by and , the incremental change
in the preconditioner can be obtained by

(25)

where

(26)

(27)

Note that all the above inverse operations only deal with the
diagonal matrix and hence the computational cost is low.
Since there is only one Arnoldi iteration to construct a nom-

inal spectral preconditioner , it can only be efficiently updated
when changes. For example, is different when one alters
the perturbation range of panel-width or changes the varia-
tion type from panel-width to panel-distance . We call this
deflated GMRES method with the incremental precondition an
iGMRES method.
For our problem in (16), we first analyze an augmented nom-

inal system with

which are all block diagonal with blocks. Hence there is only
one preconditioning cost from the nominal block . In addi-
tion, the variation contributes to the perturbation matrix by

...
...

. . .
...

(28)

VI. EXPERIMENT RESULTS

Based on the proposed algorithm, we have developed a pro-
gram piCap using C on Linux network servers with Xeon
processors (2.4 GHz CPU and 2 GB memory). In this section,
we first validate the accuracy of stochastic geometrical moments
by comparing them with the Monte-Carlo integral. Then, we
study the parallel runtime scalability when evaluating the po-
tential interaction using MVP with charge. In addition, the in-
cremental GMRES preconditioner is verified when compared to
its non-incremental counterpart with total runtime.

A. Accuracy Validation

To validate the accuracy of SGM by first-order and second-
order expansions, we use two distant square panels. The nom-
inal center-to-center distance is , and nominal panel width
is .
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TABLE I
INCREMENTAL ANALYSIS VERSUS MONTE CARLO METHOD

1) Incremental Analysis: One possible concern is about the
accuracy of incremental analysis, which considers independent
variation sources separately and combines their contributions to
get the total variable capacitance. In order to validate this, we
first introduce panel width variation (Gaussian distribution with
perturbation range ), and calculate the variable capacitance
distribution. Then, panel distance variation is added and the
same procedure is conducted. As such, according to incremental
analysis, we can obtain the total capacitance as a superposition
of nominal capacitance and both variation contributions. More-
over, we introduce the Monte Carlo simulations (10 000 times)
as the baseline, where both variations are introduced simulta-
neously. The comparison is shown in Table I, and we can ob-
serve that the results from incremental analysis can achieve high
accuracy.
Actually, it is ideal to consider all variations simultaneously,

but the dimension of system can increase exponentially with the
number of variations and thus the complexity is prohibited. As a
result, when the variation sources are independent, it is possible
and necessary to separate them by solving the problemwith each
variation individually.
2) SGMs: Next, the accuracy of proposed method based on

SGM is verified with the same two panel examples. To do so,
we introduce a set of different random variation ranges with
Gaussian distribution for their distance and width . For this
example, Monte Carlo method is used to validate the accuracy
of stochastic geometrical moments.
First, Monte Carlo method calculates their 3000 times

and each time the variation with a normal distribution is intro-
duced to distance randomly.
Then, we introduce the same random variation to geometric

moments in (9) with stochastic polynomial expansion. Because
of an explicit dependence on geometrical parameters according
to (4), we can efficiently calculate . Table II shows the
value and runtime using the aforementioned two approaches.
The comparison in Table II shows that stochastic geometric mo-
ments can not only keep high accuracy, which yields an average
error of 1.8%, but also are up to faster than the Monte
Carlo method.

B. Speed Validation

In this part, we study the runtime scalability using a few large
examples to show both the advantage of the parallel FMM for
MVP and the advantage of the deflated GMRES with incre-
mental preconditions.

TABLE II
ACCURACY AND RUNTIME(S) COMPARISON BETWEEN MC(3000), PICAP

Fig. 3. Structure and discretization of two-layer example with 20 conductors.

TABLE III
MVP RUNTIME (SECONDS)/SPEEDUP COMPARISON FOR

FOUR DIFFERENT EXAMPLES

1) Parallel Fast Multipole Method: The four large exam-
ples are comprised of 20, 40, 80, and 160 conductors, respec-
tively. For the two-layer example with 20 conductors, each con-
ductor is of size 1 m 1 m 25 m width thick length ,
and piCap employs a uniform 3 3 50 discretization. Fig. 3
shows its structure and surface discretization.
For each example, we use a different number of processors

to calculate the MVP of by the parallel FMM. Here we
assume that only has a 10% perturbation range with Gaussian
distribution. As shown in Table III, the runtime of the parallel
MVP decreases evidently when more processors are involved.
Due to the use of the complement interaction list, the latency of
communication is largely reduced and the runtime shows a good
scalability versus the number of processors. Moreover, the total
MVP runtimewith four processors is about faster on average
than runtime with a single processor.
It is worth mentioning that MVP needs to be performed many

times in the iterative solver such as GMRES. Hence, even a
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Fig. 4. Test structures: (a) plate; (b) cubic; (c) crossover bus2 2.

TABLE IV
RUNTIME AND ITERATION COMPARISON FOR DIFFERENT EXAMPLES

small reduction of MVP runtime can lead to an essential impact
on the total runtime of the solution, especially when the problem
size increases rapidly.
2) Deflated GMRES: piCap has been used to perform

analysis for three different structures as shown in Fig. 4. The
first is a plate with size 32 m 32 m and discretized as
16 16 panels. The other two examples are Cubic capacitor
and Bus2 2 crossover structures. For each example, we can
obtain two stochastic equation systems in (17) by considering
variations separately from width of each panel and from
the centric distance between two panels, both with 20%
perturbation ranges from their nominal values which should
obey the Gaussian distribution.
To demonstrate the effectiveness of the deflated GMRES

with a spectral preconditioner, two different algorithms are
compared in Table IV. In the baseline algorithm (column
“diagonal prec.”), it constructs a simple preconditioner using
diagonal entries. As the fine mesh structure in the extraction
usually introduces degenerated or small eigen values, such a
preconditioning strategy within the traditional GMRES usually
needs much more iterations to converge. In contrast, since the
deflated GMRES employs the spectral preconditioner to shift
the distribution of non-dominant eigen values, it accelerates the
convergence of GMRES leads to a reduced number of itera-
tions. As shown by Table IV, the deflated GMRES consistently
reduces the number of iterations by on average.
3) Incremental Preconditioner: With the spectral precondi-

tioner, an incremental GMRES can be designed easily to update
the preconditioner when considering different stochastic varia-
tions. It quite often happens that a change occurs in the pertur-
bation range of one geometry parameter or in the variation type
from one geometry parameter to the other. As the system equa-
tion in (17) is augmented to larger than the nominal system,
it becomes computationally expensive to apply any non-incre-
mental GMRES methods whenever there is a change from the
variation. As shown by the experiments, the incremental pre-
conditioning in the deflated GMRES can reduce the computa-
tion cost dramatically.

TABLE V
TOTAL RUNTIME (SECONDS) COMPARISON FOR 2-LAYER

20-CONDUCTOR BY DIFFERENT METHODS

As described in SectionV, iGMRES needs to perform the pre-
condition only one time for the nominal system and to update
the preconditioner with perturbations frommatrix block . In
order to verify the efficiency of such an incremental precondi-
tioner strategy, we apply two different perturbation ranges for
for panels of the two-layer 20 conductors shown in Fig. 3. Then,
we compare the total runtime of the iGMRES and GMRES, both
with the deflation. The results are shown in Table V.
From Table V, we can see that a non-incremental approach

needs to construct its preconditioner whenever there is an up-
date of variations, which is very time consuming. Our proposed
iGMRES can reduce CPU time greatly during the construction
of the preconditioner by only updating the nominal spectral
preconditioner incrementally with (25). The result of iGMRES
shows a speedup up to over non-incremental algorithms
and only iGMRES can finish all large-scale examples up to
14 760 panels.

VII. CONCLUSION

In this paper, we have proposed the use of geometrical mo-
ments to capture local random variations for full-chip capaci-
tance extraction. Based on geometrical moments, the stochastic
capacitance can be thereby calculated via SoPs by FMM in a
parallel fashion. As such, the complexity of the MVP can be
largely reduced to evaluate both nominal and stochastic values.
Moreover, one incrementally preconditioned GMRES is devel-
oped to consider different types of update of variations with an
improved convergence by spectrum deflation.
A number of experiments show that our approach is

faster than the Monte Carlo-based evaluation of variation with a
similar accuracy, up to faster than the serial method in MVP,
and up to faster than non-incremental GMRES methods. In
detail, the observed speedup of our approach is analyzed from
twofold: the first is from the efficient parallel FMM, and the
other is from the non-Monte Carlo evaluation by SoPs. The fu-
ture work is planned to extend our approach to deal with the gen-
eral capacitance extraction with a non-square-panel geometry.
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