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a b s t r a c t

Modern computing system applications or workloads can bring significant non-uniform temperature

gradient on-chip, and hence can cause significant temperature uncertainty during clock-tree synthesis.

Existing designs of clock-trees have to assume a given time-invariant worst-case temperature map but

cannot deal with a set of temperature maps under a set of workloads. For robust clock-tree synthesis

considering temperature uncertainty, this paper presents a new problem formulation: Stochastic

PErturbation based Clock Optimization (SPECO). In SPECO algorithm, one nominal clock-tree is pre-

synthesized with determined merging points. The impact from the stochastic temperature variation is

modeled by perturbation (or small physical displacement) of merging points to offset the induced

skews. Because the implementation cost is reduced but the design complexity is increased, the

determination of optimal positions of perturbed merging points requires a computationally efficient

algorithm.

In this paper, one Non-Monte-Carlo (NMC) method is deployed to generate skew and skew variance

by one-time analysis when a set of stochastic temperature maps is already provided. Moreover, one

principal temperature–map analysis is developed to reduce the design complexity by clustering

correlated merging points based on the subspace of the correlation matrix. As a result, the new

merging points can be efficiently determined level by level with both skew and its variance reduced.

The experimental results show that our SPECO algorithm can effectively reduce the clock-skew and its

variance under a number of workloads with minimized wire-length overhead and computational cost.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Clock-tree synthesis with timing verification is always one
crucial design step for high-performance VLSI circuits [1,2]. The
deployment of technology scaling has resulted in a large non-
uniform power dissipation, which further causes a non-uniform
temperature gradient, i.e., spatial temperature variation over the
entire chip. [3–9]. As clock net is routed over the chip by global
interconnect, the temperature gradient can bring a significant skew
variation and hence can cause functionary failure. [10,5,11–13]. As
such, the traditional clock-tree synthesis methods [14–16] without
considering temperature impact would become inaccurate.

Given a set of sinks (flip-flops), the clock-tree synthesis is to
find a topology and embedding with the minimized wire
length and mismatch of arrival times, called skew. Wire-length
ll rights reserved.
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minimizations under a zero or bounded skew constraint were
developed in [14–16]. Those balanced skew points for embedding
are called merging points. Fig. 1 shows the general clock-tree
synthesis flow. Note that the previous approaches have not
considered the skew introduced from the variations of process,
supply voltage, and temperature (PVT). PVT variations can shift
the ideal merging points from the nominal positions.1 Considering
the skew caused by the temperature gradient, TACO [10] is the
pioneer work that deploys re-embedding method for clock-tree
synthesis. When the worst-case temperature map is given under
one specific workload, one can minimize the worst-case skew by
searching in a merging diamond. Compared to the other approaches
by adjusting buffer size or by adding linked-resistor [17–19], TACO
does not introduce additional cost of power consumption and
physical implementation. However, it is unknown that how TACO
identifies the worst-case temperature map that can lead to the
worst-case skew.
1 Though this paper is focused on the skew minimization caused by the

temperature variation, the similar procedure can be extended to consider other

environmental variations.
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Fig. 1. Diagrams of clock-tree synthesis of topology mapping and layout

embedding.

Table 1
Table for definitions and terms.

Variable Physical meaning

Pi=Pth
i

Electrical/thermal power at node i

ri=rth
i

Electrical/thermal resistance at node i

dTi Nominal of temperature-gradient at node i

dT̂ i
Mean of temperature-gradient at node i

si Variance of temperature-gradient at node i

Sði,jÞ Correlation of temperature-gradient between node i and j

x Random variable for stochastic temperature gradient

M=M0 Original/perturbed merging points at one level

lkðM,skÞ Embedding path from M to one sink sk

PC Perturbation configuration at one level

Sði,jÞ=dSði,jÞ Skew/skew-variance between nodes i and j at one level

G0=C0 Conductive/capacitive state matrix

GðxÞ=CðxÞ Stochastic conductive/capacitive state matrix

AðxÞ Combined stochastic state matrix

dA Perturbed state matrix

x=y Voltage state variable/output

B=L Input/output port matrix

dGi Conductive change by PCi

F Stochastic orthogonal polynomials

K Principal parameter number
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More importantly, in order to maintain the chip temperature
for device reliability, especially when more computing cores are
integrated together, there is an increasing use of dynamic power
management (DPM) in modern VLSI designs [20–24]. DPM can be
performed in deterministic or stochastic fashion. To consider the
uncertainty introduced by the real-time input of workloads (or a
set of applications), DPM can be deployed as a stationary stochastic

process using Markov chains [24] for an optimal decision. As such,
the uncertainty can be transferred to the uncertainty of the cycle-
accurate power, thermal power and temperature map. Such an
observation implies that if skew is optimized based on the time-
invariant temperature map for one application, the resulting
embedding is unlikely optimized and even may lead to an
excessive skew for other applications. A robust clock-tree synth-
esis thereby needs to consider the stochastic temperature beha-
vior with the presence of the workload uncertainty.

The primary contribution of our paper is a new problem
formulation of the clock-tree synthesis with the consideration of
the temperature uncertainty. Instead of using one assumed
worst-case temperature map [10], we propose to consider a set
of temperature maps applied in a stochastic fashion. Accordingly,
we develop a Stochastic PErturbation based Clock-tree Optimiza-
tion (SPECO) to adjust the perturbed merging points and re-
embed them to minimize the stochastic clock-skew and its
variation, instead of the worst-case clock-skew. Given a set of
stochastic temperature maps, the optimization flow of SPECO
starts with an initially balanced clock-tree, and then minimizes
the stochastic clock-skew and its variation level by level driven by
the clock-skew sensitivity, with respect to the displacement of the
merging point. To speed up the whole synthesis flow, fast
computational algorithms can be employed. Our initial work
developed in [11] has applied a structured and parameterized
macromodel for the clock-tree design. This paper improves [11]
from twofold. Firstly, we have formulated a true stochastic
problem formulation to reduce both skew and skew variance
considering temperature uncertainty, and one Non-Monte-Carlo
(NMC) method [25,26] is developed to handle stochastic tem-
perature maps. In contrast, the approach in [11] is still performed
in a deterministic or corner-based fashion. Secondly, we have
applied a new principal temperature-map analysis (PTA) to identify
the dominant temperature-relevant parameters in a more effec-
tive and efficient fashion. For example, the dominant parameters
are identified from the subspace of the correlation matrix in this
paper, instead of using the correlation matrix itself [11]. This
modification has shown more accurate and efficient results. The
experimental results show that when compared to DME, SPECO
can reduce the skew by 6.08�with wire-length overhead 1% on
average, and TACO can only reduce the skew by 3.93�with wire-
length overhead 6% on average. Moreover, only SPECO can further
reduce the skew variance. Note that the computational complex-
ity is also reduced in this new SPECO algorithm. For example, with
the use of NMC, SPECO only requires one-time stochastic analysis
but DME and TACO both need to search the worst-case skew from
1000 temperature maps. In addition, the new PTA in SPECO also
improves the quality of the synthesized tree and reduces the
runtime.

The remaining part of this paper is organized by the following
manner. The problem formulation of SPECO is first described in
Section 2. The stochastic calculation of clock-skew and its varia-
tion are discussed in Section 3. The according stochastic-sensi-
tivity based clock-tree optimization with the utilization of the
compactly parameterized macromodel is presented in Section 4.
The experiment result is summarized in Section 5, and the paper
is concluded in Section 6.
2. Clock tree synthesis considering stochastic temperature

In this section, we elaborate the background of temperature
model and temperature uncertainty and the need of a stochastic
temperature model. We then present an according problem for-
mulation called, Stochastic Perturbation based Clock-tree Optimi-
zation (SPECO). For a clear presentation of mathematical related
derivation, we first summarize the symbols and terms in Table 1.

As the focus of this paper is mainly for clock-tree synthesis
with consideration of temperature, the physical impact to skew
from wire is thereby the target under consideration. However,
this does not mean that the temperature impact to clock-buffer
cannot be considered in this framework. In fact, if one can have
the clock-tree designs with determined clock-buffer size, the
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temperature-dependent delay contributed from the clock-buffer
can be included to optimize by the same approach.

2.1. Temperature model

Let us first review the electro-thermal model in this part. The
overall chip is assumed to be uniformly divided into N tiles.
Accordingly, for one piece of metal of clock at ith tile (i¼ 1, . . . ,N),
its dissipated thermal power Pth

i is defined by averaging the cycle-
accurate Pi at the thermal-time-constant scale tth

Pth
i ¼

1

tth

Z
PiðtÞ dt: ð1Þ

Such a thermal power becomes the source to increase the
surrounding temperature. According to its electrical analogy,
one can have the increased temperature dTi by

dTi ¼ rth
i Pth

i , ð2Þ

where rth
i is the thermal resistance at ith tile.

Note that the electron mobility depends on the temperature.
The mobility decreases with increased temperature and hence
this leads to increased resistance described below:

riðdTiÞ ¼ r0ð1þb � dTiÞ ð3Þ

where r0 is the resistance at the initial temperature for one tile, and
b is the temperature coefficient (1/1C). The increased electrical
resistance further leads to increased delay and skew for clock. As
such, to understand the clock-skew induced by temperature, one
needs to first trace the root to the power consumption.

2.2. Temperature uncertainty

Considering a set of stochastic temperature maps for clock-
tree synthesis is important. In contrast, optimizing clock-tree
under one temperature map for one application [10] can be non-
optimal for other applications. Let us illustrate this by the
following example. We assume a micro-architecture level power
and temperature simulator [23] using alpha architecture with
total N tiles. We also assume that a set of workloads with
applications (ammp, art, compress, equake, gzip, gcc) from
SPEC2000 benchmark are deployed. The thermal power is defined
by averaging the cycle-accurate (scale of ps) power in the
thermal-constant scale (scale of ms). Using this thermal power
as input, the steady-state temperature over the chip can be
estimated at one tile in the grid. Fig. 2 shows the temperature
maps for two different applications at selected time instants,
where (a) is for application:ammp at 11-million cycles and is for
application:gzip at 15-million cycles. Clearly, their temperatures
Fig. 2. The temperature gradient over the chip after 10 million cycles. (a) is for

application:ammp and (b) is under application:gzip.
are quite different and hence each can lead to a significantly
different skew variation.

To maintain a robust performance for the modern VLSI system,
especially the mobile system, dynamic power management
(DPM) is employed to achieve energy-efficient computation by
selectively scheduling the applications or called workloads during
one operation period [20–24]. There are two types of DPM
policies: predictive DPM scheduler and stochastic scheduler. To
obtain the globally optimized solution, the stochastic DPM is
considered in this paper by assuming the DPM scheduler as a
stationary stochastic process. A set of workloads will be scheduled
to executed stochastically. The according cycle-accurate power,
thermal-power and temperature map defined in (1) and (2)
thereby become stochastic. As such, one can assume one type of
stationary stochastic distribution with random variable x for each
tile temperature dTi in an interval ½dTmin

i , dTmax
i �, where dTmin

i and
dTmax

i are determined by taking the minimum and maximum
temperatures from a set of temperature maps. Note that only one
random variable x is assumed as the stochastic DPM scheduler is
applied with the same behavior to all tiles when one set of
workloads are given. Moreover, this stochastic process can be
assumed as stationary since the DPM scheduler takes action only
when the temperature becomes stabilized at the time-scale of
thermal-time-constant for one workload.

Therefore, one can use a stochastic distribution associated with a
random variable xi for the temperature change dTi at each tile
(i¼ 1, . . . ,N ). Assuming that there are X sampled temperature maps
at each tile, the stochastic temperature distribution at ith tile becomes

dTiðxÞ ¼ d̂T iþsix, ð4Þ

where

d̂T i ¼
XX

k ¼ 1

dTk
i =X, si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXX

k ¼ 1

ðdTk
i Þ

2=X�ðd̂T iÞ
2

vuut ð5Þ

defines the mean and the variance. The random variable for stochastic
temperature gradient, x, follows a Gaussian distribution with mean of
zero, and its variance depends on different temperature variations/
perturbations. Note that though only one random variable x is
assumed for all tiles. The stochastic distribution at each tile can be
still different since both d̂T i and si can be different. When Gaussian
distribution is further assumed, the distribution at each tile is mainly
distinguished by si. Moreover, the correlation between ith tile and jth
tile can be described by

Sði,jÞ ¼
1
X

PX
k ¼ 1 dTk

i dTk
j

� �
� 1

X2

PX
k ¼ 1 dTk

i

PX
k ¼ 1 dTk

j

� �
si � sj

, ð6Þ

which forms the correlation matrix S (ARN�N ). Based on the above
definitions, we can develop a stochastic clock-skew analysis and
optimization in the following part of the paper.

2.3. SPECO problem formulation

In this part, we discuss how to robustly embed the clock tree
and reduce the clock skew introduced by the temperature varia-
tion. Similar to TACO, our starting point is a balanced-skew clock-
tree T obtained by either differed-merge embedding (DME)
or bounded-skew clock-routing (BST) method [27,16] with a
uniform temperature map as the initial condition. The tempera-
ture impact is modeled by a perturbation to the merging point.
As such, one can reduce the cost of power and physical resource
by simply adjusting the position of one merging point. However,
the assumption of one given temperature map for the worst-case
skew [10] does not hold under dynamic power management. As a
set of workloads can be scheduled stochastically for one given
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evaluation period, we expect to observe a stochastic temperature
distribution xi at each tile. Therefore, the adjustment of one
merging point needs to reduce the clock-skew under a set of
temperature maps. Our initial work in [11] assumes the use of the
mean temperature to take into account on a set of temperature
maps. However, clock-skew analysis and optimization under the
mean temperature is still inaccurate for an optimal solution for all
types of workloads. In addition, the variation (variance) of clock-
skew is also not considered. This becomes the motivation for this
paper to develop a stochastic perturbation based clock-tree
optimization (SPECO) algorithm as follows.

We first list a few relevant foundations used in the following
paper.

Definition 1. Given a balanced-tree with one source node nsrc , N l

levels and N n nodes, level i (i¼ 1, . . . ,N l) is a node-set with
1, . . . ,ni nodes, a merging-point set with 1, . . . ,mi merging-points,
and a path-set with 1, . . . ,li embedding-paths. The embedding-
path lðM,skÞ is from one node sk (8skAni) to one merging-point M

(8MAmi). After perturbation, re-embedding path is an embedded
path lðM0,skÞ from M0 to node sk. Note that N n ¼

PN l

i ¼ 1 ni.

Definition 2. M can be perturbed by a constant distance d

(d¼ n� d0) along four Manhattan directions (North, South, West,
East). Note that d0 is the tile width and n is one specified integer
parameter as the step of displacement. It is also possible that the
merging point M can happen to remain unchanged for its physical
location. As such, there are totally five types of possible perturba-
tion displacements for M during one iteration.

Based on [10,11], we assume that the merging point (or the
balanced skew point) M of the initial tree T is locally adjusted level
by level in a bottom-up fashion and the bottom one is at the 1st level.
At one level (except for the bottom one), the perturbed merging-point
M0 from the original merging-point M of one pair of nodes ðn1,n2Þ is
assumed to locate in a bounded region centered at M. As such, one
needs to identify the location of M0, which can minimize the clock-
skew and avoid the wire-length overhead. This can be achieved
through a number of local refinement iterations as follows.

Moreover, as shown in Fig. 3, one needs to identify a sequence
of perturbation displacements of M to reach M0, which can
eventually achieve a minimum clock-skew and its variation. After
the determination of the merging point M0, one can further decide
the pair of embedding-paths l from M0 to the pair of nodes ðn1,n2Þ.
By performing the same procedure level by level in a bottom-up
Fig. 3. Five perturbation configurations for one merging point and one perturba-

tion displacement for a sequence of perturbed merging points.
fashion, one can determine a new clock-tree topology with newly
balanced merging points considering the temperature perturbation.

As a result, we can formulate our clock-tree problem as follows

minimize Wirelength

subject to
Sði,jÞrs0

dSði,jÞrss

Formulation 1. Given the source node nsrc, the sink nodes s1 � � � sn

at bottom level, initial topology of one clock-tree (with embedding)
by DME/BST, and a number of temperature maps under different

applications, the temperature dTi at ith tile is assumed to have a

stochastic distribution described by random variable x (dT̂ i, si). Our

Stochastic Perturbation based Clock-tree (SPECO) algorithm is to find

a re-embedded clock-tree to minimize the additional perturbation

displacement (or Wirelength) of merging points at one level such that

the clock-skew Sði,jÞ and its variance dSði,jÞ between nodes i and j

satisfy the budget s0 and ss, respectively.

This problem formulation considers the stochastic temperature
maps but not an averaged temperature map, and is hence different
from our previous work in [11]. The overall flow to solve this problem
is briefly explained as follows. Our SPECO algorithm is performed
level by level in a bottom-up fashion. Fig. 3 only demonstrates the
procedure for one merging-point to find the location of the finalized
merging point M0 and its associated new embedding path.

2.4. Challenges to solve SPECO problem

Note that each perturbation displacement has five candidates,
and there are 5ni

possible perturbation combinations of displace-
ments if there are ni merging points at ith level. This paper defines
the design parameter as every possible perturbation combination
(PC) for merging-points at one level. So during one optimization
step, one PC is selected if the resulted output change, or
sensitivity, can lead to the minimum skew and skew variance.
The merging-point continues to move and the PC selection
continues to proceed till the budgets of the skew and skew
variation at one level are both satisfied. After identifying the PC
at the current level, the solution is propagated to the higher level
and the same optimization process is repeated.

However, there are three primary difficulties encountered
here. Firstly, an efficient stochastic analysis is needed to calculate
both clock-skew and its variation under the temperature uncer-
tainty. The Monte-Carlo simulation needs to be performed many
times repeatedly and hence is slow. Hence non-Mote-Carlo
simulation is needed to perform the analysis just once. Secondly,
one needs to identify a small number of ‘representative’ pertur-
bation combinations. Blindly trying each PC is computationally
impossible. One needs to classify parameters into a few ‘repre-
sentative’ clusters for this purpose. Lastly, the determination of
the sequence of the perturbation combination needs to follow a
track driven by the sensitivity.

Note that the key to solve the SPECO problem depends on an
efficient and accurate calculation of clock-skew and sensitivity. In
the following, we first present an efficient Non-Monte-Carlo
variational analysis of clock-skew.
3. Calculation of stochastic clock-skew and variation

3.1. State equation of clock tree

To calculate the clock-skew and its variation, we need to first
build an electrical circuit model for the clock-tree. Recall that the
chip is uniformly divided into N tiles in this paper. As such, each
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segmented clock wire in one title is represented by one RC

p-element, with two grounded capacitors at two nodes and one
resistor at one edge. Note that the node capacitor includes both
the wire and loading capacitance.

Given the initial clock-tree topology T with N l levels and N n

nodes, its electrical state equation can be described by Modified
Nodal Analysis (MNA) in time-domain as

G0xðtÞþC0
dxðtÞ

dt
¼ BuðtÞ,

yðtÞ ¼ LT xðtÞ, ð7Þ

or in frequency-domain (s) as

ðG0þsC0ÞxðsÞ ¼ BuðsÞ,

yðsÞ ¼ LT xðsÞ, ð8Þ

where G0 and C0 (ARN n�N n ) are the conductive and capacitive
matrices for the initial clock-tree T , x is the state variable for node
voltage, y is the output nodes to observe, and B and L are
topological matrices describing how to connect inputs and out-
puts to the network, or called input and output port matrices.

Moreover, the total N n nodes here include: one source nodes,
w sink nodes and z Steiner nodes. As such, the vector of state
variable x can be represented by

x¼ ½xs1
, . . . ,xsw ,xst1

, . . . ,xstz ,xsrc�
T , ð9Þ

where si (i¼ 1, . . . ,w) is the sink node and sti (i¼ 1, . . . ,z) is the
Steiner node.

Furthermore, since the input signal is applied only to the
source node in the clock-tree, the input port matrix B (ARN n�1)
becomes

B¼ 0, . . . ,0|fflfflfflffl{zfflfflfflffl}
w

,0, . . . ,0|fflfflfflffl{zfflfflfflffl}
z

,1

2
4

3
5

T

, ð10Þ

which connects the input source u(s) to the clock-tree. In this
paper, we assume an impulse input at the source node.

In addition, since the voltage responses at sink nodes are
desired to observe, the output port matrix L (ARN n�w) becomes

LT
¼ ½I 0�, ð11Þ

where I is ARw�w, and 0 is ARðN n�wÞ�w. The accordingly selected
output y becomes

y¼ ½ys1
, . . . ,ysw

�: ð12Þ

Such a state equation for the clock-tree is in fact a so-called SIMO
(single-input-multi-output) system.

Note that the clock-tree resistance observed at one node sk

(state-variable xk) (kA1, . . . ,N n) is given by a summation along
one embedding path lkðM,skÞ from the merging point M to the
node sk

RkðM,sk,TÞ ¼
X

8iA lkðM,skÞ

riðdTiÞ, ð13Þ

where riðdTiÞ is the temperature-affected electrical resistance at
ith tile.

As a result, solving the output yðsiÞ from the MNA at one sink si,
the propagation delay Dðsrc-siÞ, from the source node nsrc to one of
sink si (i¼ 1, . . . ,w), is the time required for the node voltage at
the output yðsiÞ to pass 65% of the peak voltage under the impulse
input at source node. As such, one can calculate the actual clock-
skew between two sinks si and sj by

Sði,jÞ ¼Dðsrc-siÞ�Dðsrc-sjÞ: ð14Þ

In the following, we further discuss how to calculate the impact to
Sði,jÞ from the stochastic temperature perturbation.
3.2. Stochastic temperature perturbation

When one piece of clock wire at ith tile experiences a
temperature gradient, its electrical resistance r(T) changes accord-
ing to (3). To stamp this change in (7) or (8), the conductance
form of (3) is given by

giðTÞ ¼
g0

ð1þb � dTiÞ
� g0 � ð1�b � dTiÞ, ð15Þ

where g0 ¼ 1=r0. Note that the temperature impact (b � DTi) to the
electrical resistance is assumed as a small perturbation (b � dTi51).

Next, we show how to calculate the resistance observed at
one node sk (state-variable xk) (k¼ 1, . . . ,Nn), which is depen-
dent on the embedding path lðM0,skÞ for one perturbed merging
point M0 and node sk. When M0 is determined through a
sequence of optimizations, the according embedding path lk is
also given with a length, i.e., the nk selected tiles in the path.
As such, one can calculate the temperature-perturbed resis-
tance at one node sk by

RkðM
0,sk,TÞ ¼

Xnk

i ¼ 1

riðdTiÞ ¼ R0
kð1þbdTkÞ,

R0
k ¼ nkr0, dTk ¼

Pnk

i ¼ 1 dTi

nk
: ð16Þ

Note that if each (bdTi) is small, so does the averaged (bdTk),
which is called embedding temperature in this paper.

As such, the conductance is given by

GkðTÞ ¼ G0
k � ð1�bdTkÞ, ð17Þ

where G0
k ¼ 1=R0

k . Therefore, one can build an explicit relation
between conductance Gk(T) and temperature gradient dTk.

Recall that in our problem formulation, dT is described by a
random variable x with a stochastic distribution in the interval
½dTmin,dTmax

�. Therefore, the state equation in (8) considering the
stochastic temperature perturbation (x) becomes

½GðxÞþsC�xðs,xÞ ¼ BuðsÞ, ð18Þ

or

Aðx,sÞxðx,sÞ ¼ bðsÞ: ð19Þ

Clearly, the analysis of x by repeatedly running Monte-Carlo is
computationally expensive. A Non-Monte-Carlo stochastic analysis
is thereby introduced in the next part.

3.3. Non-Monte-Carlo stochastic analysis

In this part, we show a Non-Monte-Carlo stochastic analysis by
expanding the stochastic state matrix AðxÞ and state variable xðxÞ
with stochastic orthogonal polynomials (SOPs) [25,26]. This
assumes that the random distribution x is related to one stochastic
orthogonal polynomial FðxÞ. For example, for a Gaussian random
distribution, FiðxÞ is a Hermite polynomial

FðxÞ ¼ ½1, x, x2
�1, . . . ,�T : ð20Þ

As such, AðxÞ can be expanded by nth order Hermite polynomials

AðxÞ ¼ A0F0ðxÞþA1F1ðxÞþ � � � þAnFnðxÞ ¼
Xn

k ¼ 0

AkFkðxÞ: ð21Þ

Accordingly, the state variable xðxÞ can be also expanded by

xðxÞ ¼
Xn

k ¼ 0

xkFkðxÞ: ð22Þ

One can obtain the mean and the variance of xðxÞ from

EðxðxÞÞ ¼ x0,
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VarðxðxÞÞ ¼ x2
1VarðxÞþx2

2Varðx2
�1Þ,

This needs to solve x0, x1 and x2, which can be achieved by the
point-collocation below.

Assuming a first-order n¼1 expansion of AðxÞ and xðxÞ, and
applying an inner-product with FlðxÞ to minimize the residue error

/Fk, AðxÞxðxÞ�bS¼ 0, ð23Þ

one can obtain an augmented state equation

A0 A1 0

A1 A0 2A1

0 2A1 A0

0
B@

1
CA�

x0

x1

x2

0
B@

1
CA¼

b

0

0

0
B@

1
CA, ð24Þ

to solve x0, x1 and x2 just by one-time simulation. Based on EðxðxÞÞ
and VarðxðxÞÞ, one can further calculate the mean (zero-mean for
Gaussian) and the variance of the clock-skew dSði,jÞ in addition to
the nominal clock-skew Sði,jÞ. Afterwards, the maximum skew and
its variance at one node is searched through the entire tree as the
performance metric.
4. Optimization of stochastic clock-skew and variation

In Section 3, we have presented a Non-Monte-Carlo (NMC)
clock-skew analysis to consider the temperature uncertainty.
To offset the clock-skew caused by the temperature-induced
electrical conductance variation, similar to [10,11], we adjust
the physical location of merging points as our design freedom.
This paper defines the design parameter as every possible
perturbation combination (PC) of merging-points at one level.
One sequence of PCs are selected till the clock-skew and its
variance of one merging point satisfy the budgets at that level.
The same process is repeated for the next level with the mini-
mized total displacement of merging points. Such an optimization
is driven by the updated sensitivity for each PC, which requires to
first parameterize PCs in the stochastic state equation. Moreover,
the number of PCs to consider needs to be pruned by only
selecting the representative or dominant PCs.

4.1. Parameterization of stochastic state equation

Considering the temperature impact is small, one can model
the displacement of the merging-point location as a small
perturbation to the stochastic state equation in (19). As a result,
the corresponding change in the state matrix A is modeled by
dAi

j, given the jth perturbation combination (PC) (j¼ 1, . . . ,J,
J¼ 5mi ) on ith level (i¼ 1, . . . ,N l). Recall that one merging point
can have five possible modified locations and hence mi merging
points can have 5mi

combinations. Each perturbation combination
is treated as a parameter.

Note that dAi
j is mainly from the change of the electrical

conductance when modifying one re-embedding path. As such,
based on (16), if the length of the original embedding path lk with
the embedding temperature dTk is changed to the new embed-
ding path l0k with the new embedding temperature dT 0k, one can
have

dA¼ dG¼ ðbG0
kÞ � ðdTk�dT 0kÞ:

As such, the perturbed stochastic state equation under all
perturbation combinations (PCs) becomes

ðAþdA1Þ � ðxþdx1Þ ¼ b,

ðAþdA2Þ � ðxþdx2Þ ¼ b,

� � �

ðAþdAJÞ � ðxþdxJÞ ¼ b:

ð25Þ
By organizing the expanded terms in the order of perturbations,
and defining a new state variable

xP ¼ ½x,dx1, . . . ,dxJ �
T , ð26Þ

one can obtain a parameterized system equation [11]

APxP ¼ bP , ð27Þ

with augmented state matrix below

AP ¼

A 0 . . . 0 0 0

dA1 A 0 . . . 0 0

^ ^ & ^ ^ ^

dAj 0 . . . A 0 0

^ ^ ^ ^ & ^

dAJ 0 0 . . . 0 A

2
6666666664

3
7777777775

, ð28Þ

bP ¼ b, . . . ,b|fflfflfflffl{zfflfflfflffl}
J

2
64

3
75

T

: ð29Þ

In addition, the output is

yP ¼ LT
PxP ¼ ½y,dy1, . . . ,dyJ �

T , ð30Þ

where LT
P is the augmented output port matrix, and each dyj

(j¼ 1, . . . ,J) is a vector, representing the voltage response and
changes for each sink.

As shown in Section 3, by solving the above system Eq. (27)
together with Eq. (24) in the time-domain using Backward Euler
method [11], the clock-skew S and its variation dS at each level
can be calculated from the voltage response y(t). Note that as the
augmented system is lower-block-triangular. Considering this
and that the diagonal block is the same A, there is only one
computational cost of factoring A defined in (24). As a result, the
total voltage response in each sink under the perturbation
combination PCi

j at level i (i¼ 1, . . . ,N l, j¼ 1, . . . ,J) is

yPCi
j
ðtÞ ¼ yiðtÞþdyi

jðtÞ: ð31Þ

The solving is performed in a bottom-up fashion by solving
y1,y2, . . . ,yN l level by level sequentially.

4.2. Compression of perturbation configurations

To optimize the clock-tree under temperature variation, one
needs to determine the best positions of merging-points at each
level. Clearly, it is computationally expensive if not impossible
to explore each possible combination of PCs by solving (27).
For example, a typical level in clock-tree contains 200 merging
points. If each merging point has five potential perturbations
(move along North, South, East, West, Origin), there could be
J¼ 5200 parameterized PCs. As observed in [22,23,11,24], logic
sharing can happen frequently in the general-purpose computing
system. Though there can be many different tasks or workloads
applied, many different tasks will access the computing units
(L2 Cache) in a similar pattern. In addition, for the domain-
specific computing system, there are always repeated workloads
with predictable patterns. As a result, there can exist strong
temperature correlation at different regions. When many tiles
show the similar temperature distributions, it in turn leads to the
similar perturbation for a group of merging points, and merging
points in one group can move similarly together along North,
South, East, West, or Origin.

This observation inspires us to compress the complexity of
parameters (PCs) by studying the temperature correlation. Such a
dimension reduction is similar to the conventional classifier
problem in pattern analysis [28]. Learning can be applied to
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identify the eigen-function or classifier from a set of data, because
the intrinsic dimensionality of the data sometimes is much
smaller than the number of parameters used to describe it. The
most popular dimensionality reduction is based on the subspace
learning, such as Principal Component Analysis (PCA), which
projects the data along the directions where the data varies the
most. These directions are generally determined by the eigenvec-
tors of the covariance matrix corresponding to the largest eigen-
values, whose eigenvalues corresponds to the variance of the data
along the eigenvector directions. As such, in order to develop an
efficient yet accurate clock-tree synthesis, one needs to build a
compactly parameterized model with the use of the classifier,
which can prune the insignificant parameters by classifying the
temperature data. Utilizing the classified temperature data, one
can further identify a number of clusters of parameters with a
dimension much smaller than the original as follows.

At one level of the clock-tree, there are m tiles containing m

merging points with m temperature distributions dT1, . . . ,dTm.
Here, each dTi is a vector (ARX�1) of sampled temperature data at
ith tile under different workloads with the power management. It
is computationally expensive for any clustering algorithm directly
applied on the original temperature data with a large size.
Therefore, one needs to find a subset from the original tempera-
ture data dT1, . . . ,dTm, where the insignificant or irrelevant data
can be pruned.

Given a set of pre-measured temperature maps, the tempera-
ture correlation matrix S in (6) can be extracted for merging
points at one level. Such a correlation matrix usually can have a
number of large-valued entries with the similar magnitude,
which generally results in a low-rank matrix. Physically, this
indicates that the temperatures of a number of tiles can change in
the similar fashion. The similar change in temperatures can lead
to the similar displacements of those merging points. Based on
this observation, our previous approach in [11] identifies the
clusters of PCs by analyzing the temperature correlation matrix
(6) via K-means clustering. K-means clustering was initially
introduced by [29] in VLSI macromodeling such as the classifica-
tion of the dominant ports. The computational cost in [29,11] is
high, especially at the bottom level. The reason is that the
unsupervised K-means clustering is naively employed to the
overall correlation matrix S, which has a quite large dimension
in general. In the following, we have developed a new classifying
method to find the dominant PCs with supervision.
�
 Step-1: Extract the correlation matrix S (ARm�m) based on (6);

�
 Step-2: Identify the subspace spanned by K (K5m) columns

u1, . . . ,uK from U (UARm�K ), which is obtained by singular-
value-decomposition (SVD): S¼U � S� V (SARK�K , V ARK�K ),
where the rank K is obtained when the first K singular values
in S are larger than one specified threshold E.

�
 Step-3: Form m rows u01, . . . ,u0m from U, apply K-means cluster-

ing to u01, . . . ,u0m, and find K clusters with K centroid rows
u001, . . . ,u00K ;

�
 Step-4: Cluster m rows of merging-point temperatures

dT1, . . . ,dTm to K clusters with K centroid rows of merging-point
temperatures dT1, . . . ,dTK ; so does the clustering of m tiles of
merging-points to K clusters.

The above approach is called principal temperature-map
analysis. Different from [11], the K-means clustering is applied
to the subspace of the correlation matrix. The subspace are m

much shorter singular vectors, which have already pruned the
unimportant data by SVD analysis and hence have a much lower
computational cost. Moreover, the use of the above principal
temperature-map analysis results in K dominant clusters of
merging points. As such, instead of trying all J¼ 5m PCs, one only
needs to try J0 ¼ 5K PCs, where K is the order that is much smaller
than m. Therefore, the calculation of clock-skew and its variance
has a much lower complexity, and hence can be further integrated
inside the clock-tree optimization discussed below.

4.3. Summary of SPECO flow

In summary, the flow of the overall SPECO algorithm is
presented in Algorithm 1. After a DME-initialized clock tree
construction, the re-embedding by perturbation is determined
in a bottom-up fashion level by level. At each level, the merging
points are first perturbed with a displacement d0. There are five
possible displacement directions to be determined. To reduce
complexity, m merging points are first clustered into K clusters
based on the principal temperature–map analysis. Then the
compressed parameterized state equation is solved and PCi is
decided for whom could lead to the minimum clock-skew and
variance. The displacement is continued till the clock-skew budget
is satisfied. After obtaining the re-embedding path at level i, the
procedure is repeated to the upper level.

Algorithm 1. SPECO Algorithm.

Input: source, sinks, initial tree T and correlation S
Output: A re-embedded clock-tree T 0
1: (Nl Levels) ’ Levelize T

{Bottom up embedding from the second last level to the
second level}

2: for i¼Nl�1 to 1 do
3: while SZs0 and dSZss do
4: Assume a displacement of d0 for m merging points
5: Find K clusters from m merging points

6: Form Parameterized (27) with J0 PCi
js

7: xsk ,sl
,8sinks’ Solve clock-skew Sðk,lÞ and its variance

dSðk,lÞ based on (24) and (28)
8: Decide PCis for K clusters
9: end while
10: Embed in level i

11: end for
12: Find the maximum skew and its variance

13: return T 0

5. Numerical experiment results

The proposed SPECO algorithm is implemented in Cþþ and
Matlab. The experimental data is measured on a Linux server with
1.9 GHz CPU and 2Gb memory. the DME method in [27] and
TACO method in [10] are also implemented for the comparison.
The clock-tree r1-r5 in [16] are used as the benchmark. The initial
tree is constructed by the DME method.

A chip with size 6 cm2 is divided into a uniform grid with 10�10
tiles to sample the non-uniformly distributed temperature map. The
temperature maps at nodes of the grid are obtained from a micro-
architecture level power and temperature transient simulator [23]
by applying six SPEC2000 applications (art, ammp, compress, equake,

gcc, gzip). The six applications are assumed applied in one sequence
and their order in the sequence is determined by one stochastic
DPM scheduler. Under this stochastic DPM, 1000 random tempera-
ture maps are generated with a sampling rate by 10 million clock
cycles. The range of the temperature variation at one tile is observed
about 50 1C. The macromodel (4th-order) developed in [11] is used
to generate both the transient voltage response, and then to
calculate the clock-skew and its variance. The maximum skew and
its variance are searched through the whole tree and are recorded
for the comparison. In addition, all simulations assume the unit
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resistance r0 ¼ 0:03 O=mm, unit capacitance c0 ¼ 2:0� 10�17F=mm
and b¼ 0:0068 [10,11], where b is the temperature coefficient of
resistance.
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Fig. 4. The spatial correlation map under a given sequential applications.
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Fig. 5. Singular-value distribution of the correlation matrix. x-axis is the order of

the singular values.

Table 2
The skew and skew variance comparison for DME, TACO, SPECO-1 (Kmean) and SPECO

Ckt (sink#) DME (avg. of 1000) TACO (avg. of 1000)

Skew(ps) Var(ps) Skew(ps) Var(p

r1(267) 96.6 10.2 88.4 10.5

r2(598) 358.5 42.3 226.4 40.1

r3(862) 393.3 51.4 219.1 49.5

r4(903) 952.7 105 669.2 98

r5(3101) 2359 263 1258 256

Avg. 6.08� 6.99� 3.93� 6.68�
5.1. Principal temperature–map analysis

Given the 1000 sequences of power traces generated by the
stochastic DPM for six applications, one can obtain a set of 1000
stochastic temperature maps. The stochastic temperature distri-
bution at each tile is extracted based on (4)-(6). Fig. 4 shows the
spatial distribution of one calculated correlation matrix. The
result shows that the correlation is strong as the average correla-
tion strength is about 0.8, which indicates the clustering based on
the correlation would be effective. As such, instead of using one
fixed and assumed temperature map in [10], our SPECO considers
a set of stochastic temperature maps, which include the mean and
variance for each chip region, and the spatial correlation between
variances for different regions.

Then, the principal temperature-map analysis (PTA) is applied
to compress the redundant parameterized perturbations, and is
further compared with the direct K-means (Kmean) method used
in [11]. SVD is first applied to explore the rank of correlation
matrix S. Fig. 5 shows a distribution of singular values. Clearly,
the dominant singular values of S decay sharply in a deceasing
order. Thus, a low-rank representation of perturbed merging
-2(PTA) on benchmarks r1 to r5.

SPECO-1 (one time) SPECO-2 (one time)

s) Skew(ps) Var(ps) Skew(ps) Var(ps)

71.8 4.6 37 3

108.5 13.1 76 7.5

134.2 15.7 82 8.5

190.3 21.3 88 7

923.7 95.3 315 54

2.1� 1.98� 1.0 1.0

Table 4
Runtime comparison between the Monte-Carlo method with each run using DME/

TACO; and the Non-Monte-Carlo method using one-time SoP based SPECO on

benchmarks r1 to r5.

Ckt

(sink#)

Runtime (s)

Kmean PTA DME (avg.

of 1000)

TACO (avg.

of 1000)

SPECO (one-time)

Macromodel Optimization

r1 (267) 0.2 0.1 0.5 1.9 1.1 0.2

r2 (598) 0.9 0.5 1.0 10.4 6.9 0.6

r3 (862) 2.3 1.0 1.2 28.2 16.9 1.3

r4 (903) 2.6 1.1 4.1 90.3 43.0 1.1

r5 (3101) 12.8 5.7 7.2 256.2 164.4 1.4

Avg. 2.2� 1.0 144� 1596� 1.0

Table 3
The wirelength comparison for DME, TACO, SPECO-1 (Kmean) and SPECO-2(PTA)

on benchmarks r1 to r5.

Ckt (sink#) Wirelength (mm)

DME

(avg. of 1000)

TACO

(avg. of 1000)

SPECO-1

(one time)

SPECO-2

(one time)

r1(267) 1.30e06 1.42e06 1.34e06 1.30e06

r2(598) 2.59e06 2.63e06 2.60e06 2.58e06

r3(862) 3.37e06 3.50e06 3.39e06 3.38e06

r4(903) 6.81e06 6.95e06 6.85e06 6.82e06

r5(3101) 1.01e07 1.12e07 1.05e07 1.02e07

Avg. 1.0 6% 2% 1%
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points by clustering could yield a good approximation. In this
case, a rank-3 approximation is selected to generate 3 clusters to
consider 53 (125) perturbation configurations (PCs).

The approach in [11] deploys the Kmean clustering directly to
the correlation matrix, given the rank of the approximation. This
approach is inaccurate and expensive when the number of merging
points to be clustered is large. Instead, the PTA developed in this
paper applies the pattern recognition in a supervised fashion [28] by
pruning. In short, as discussed in Section 4.2, the subspace U of S, a
by-product obtained for SVD, is used for the clustering study instead
of S itself. When compared to SPECO-1 with Kmean by SPECO-2
with PTA, Table 2 shows that SPECO-2 with PTA reduces the skew by
2.1� and reduces the skew variance by 1.98� . Table 3 shows that
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Fig. 7. Comparison of skew distributions before and after SPECO under all 1000 sequ

Clock Tree r3: 1724 nodes

Fig. 6. Initial clock tree (shown in black dash-line), and optimized clock tree

(shown in red dot-line) after SPECO of r3. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
SPECO-2 reduces the wire-length by 2� . Table 4 further shows that
SPECO-2 reduces the runtime by 2.2� .

5.2. Comparison with DME and TACO

We further compare the performance of synthesized clock-tress
by DME, TACO and SPECO, respectively. For both DME and TACO:
(1) Elmore delay is used for skew calculation; and (2) skew and wire-
length are the averaged results under 1000 temperature maps by
Monte-Carlo (MC) method. In contrast, SPECO uses (1) more accurate
4th-order macromodel; and (2) only one-time Non-Monte-Carlo
(NMC) method. Moreover, the maximum skew is identified by
searching the skew at all nodes. First, Fig. 6 compares the topologies
of the initial clock-tree (shown in black dash-line) and the re-
embedded one (shown in red dot-line) for r3 benchmark. Fig. 7
further compares distributions of skew and variance for r1-r4 bench-
marks before and after the SPECO optimization at one node with
inputs of 1000 temperature maps. Clearly, with the SPECO optimiza-
tion both skew and skew variance in the four cases are reduced.

Next, Table 2 compares the skew and the skew variance of the
synthesized clock-tree by DME, TACO and SPECO. Here, the results of
SPECO-II are used as the base. Clearly, the averaged skew and skew-
variance of the clock-tree by DME are 6.08� and 6.99� larger than
SPECO, and those by TACO are 3.93� and 6.68� larger than SPECO.
Moreover, Table 2 further compares the wire-length. Because of the
re-embedding, the overall wire-length of TACO and SPECO are both
larger than DME. Note that as the perturbation is bounded, the
overhead on wire-length is 6% by TACO, 2% by SPECO-1 and 1% by
SPECO-2 on average.

The runtime comparison is also reported in Table 4. The runtime
here for SPECO includes the time to build macromodel and the one
to find optimized merging point. Though for one synthesis under
one temperature map the overall runtime of SPECO is lager than
both DME and TACO, the total runtime of SPECO for 1000 maps is
still much smaller than DME and TACO. This is because only one-
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ences (or temperature maps) at one node of bottom level for r1–r4 benchmarks.
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time Non-Monte-Carlo analysis is performed by SPECO. As such,
144� and 1596� speedups are observed by SPECO when compared
to DME and TACO, respectively.
6. Conclusion

For the clock-tree synthesis considering the temperature uncer-
tainty, this paper has presented one new problem formulation:
Stochastic PErturbation based Clock Optimization (SPECO). This
optimization is to modify the clock-tree topology and to adjust the
additional skew induced from the temperature uncertainty. To
efficiently find the perturbed clock-tree topology under a set of
stochastic temperature maps, the Non-Monte-Carlo method is
applied to identify the temperature induced clock-skew and variance
by one-time analysis. Moreover, the principal temperature-map
analysis is applied to reduce the design complexity by clustering
merging points based on the subspace of the correlation. As a result,
SPECO can be efficiently deployed to identify the new positions of
the perturbed merging points for clock-tree optimization.

The experimental results show that when compared to DME
on average, SPECO reduces the skew by 6.08�with wire-length
overhead 1%, while TACO reduces the skew by 3.93�with wire-
length overhead 6%. Moreover, only SPECO can reduce the skew
variance during the optimization. In addition, SPECO only requires
one-time Non-Monte-Carlo analysis but DME and TACO search
the worst-case skew from 1000 temperature maps. The new
principal temperature-map analysis in SPECO also improves the
quality of the synthesized tree and reduces the runtime by
2.2� compared to the use of K-means method.
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