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h OVER THE PAST few years, the 22-nanometer

(nm) design has become prevalent in digital circuits

to increase the circuit density while the frequency

of radio-frequency (RF) circuit has roared up to

60 GHz, or even higher, to satisfy the increasing

demand of mobile multimedia communication.

Consequently, the complexities of post-layout level

verification during parasitic extraction, transient

and RF periodic-steady-state (PSS) simulations

have increased significantly. The development of

parallel algorithms tackles this issue by inventing

new approaches towards parallel circuit simulation

in electronic design automation (EDA).

Recently, multicore CPUs and many-core GPUs

have become widely adopted with largely reduced

cost. Because of the increasing popularity of

parallel hardware platforms, revolutionary develop-

ment from sequential algorithms to their parallel

counterparts is taking place in the

software development community, in-

cluding EDA.

However, circuit simulation algo-

rithms for designs at the extreme scale

beyond 22 nm and 60 GHz are difficult

for parallelization. Because of the

nature of circuits, the circuit simulation

algorithms usually deal with sparse

matrices, as most components are sparsely inter-

connected with a few others components [1], [2].

Unlike dense algebra operations, algorithms for

sparse data structure show irregular data depen-

dence patterns [1]. At the same time, parasitics and

EM coupling can result in strong correlation and

hence also strong data dependency. As a result, the

algorithms for circuit simulation cannot be effec-

tively parallelized by simply unfolding ‘‘for’’ loops

into parallel code.

Most EDA algorithms, especially circuit simula-

tion algorithms, are relevant to graph algorithm or

linear algebra [3]. To efficiently parallelize these

algorithms on multicore CPUs and many-core

GPUs, a few recent innovations of parallelization

have been proposed [4]–[7] by reformulating the

original irregular or coupled data into structured

data with eliminated dependency. For example,

board-block-diagonal (BBD) matrix formulation is

deployed for the sparse MNA matrix with inverse-

inductance [4]; fast-multiple-method (FMM) formu-

lation is deployed for capacitance extraction in the

presence of stochastic variations [5]; simplified
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elimination-tree scheduling is deployed for the

sparse matrix factorization during transient simula-

tion [6]; and periodic-cyclic-structured matrix for-

mulation is deployed for RF-PSS simulation by

shooting-Newton method [7].

This paper targets to summarize the aforemen-

tioned parallel algorithms for EDA circuit simula-

tions. We first discuss the existing parallel hardware

platforms and the methodologies of structuring the

data access pattern and eliminating dependency.

Then, three typical applications, ranging from cir-

cuit parameter extraction to transient simulation

and RF-PSS simulation, are further discussed as case

studies to illustrate the methodology.

Parallel hardware architectures
Increasing power and thermal densities on

single-core processors have limited the growth of

their operating frequency [8]. As such, the advance-

ment of processor technology in the past decade

was altered from increasing operating frequency on

single core to integrating multiple cores into one

single processor. Nowadays, the parallel computing

hardware platforms, such as multicore CPUs, many-

core GPUs and FPGAs, are affordable and have

become prevalent in consumer electronics.

Current multicore CPUs are usually integrated

with one to four cores, or even six cores, on a single

die. Beyond six cores, memory bandwidth becomes

the bottleneck of further performance enhance-

ment. Current X86 microprocessors, such as Intel

Xeon processors with Nehalem architecture, whose

layout is illustrated in Figure 1a, are examples of

multicore CPUs [10]. In addition, some coarse-

grained parallelism programming environments

(i.e., POSIX Threads, OpenMP and MPI) have been

developed on multicore systems as user-friendly

solutions for parallelization.

For GPUs, NVIDIA’s FERMI architecture inte-

grates up to 512 CUDA cores, which demonstrates

notable potential for scalability [11]. High-level

programming languages, CUDA and OpenCL, are

developed to unleash the underlying power in the

GPU. However, the CUDA cores, which are much

smaller and simpler as illustrated in Figure 1b, are

usually not general purpose and can only execute

simple operations. Therefore, GPUs are typically ap-

plied to fine-grained parallelism where each opera-

tion is very simple to be implemented on one CUDA

core or one thread.

Another parallel hardware platform, FPGA, is

featured with flexibility due to its reconfigurable

architecture. It is usually deployed as a network

processor [12] or an accelerator for specific appli-

cations [13], [14]. Compared to multicore CPUs and

many-core GPUs, where friendly programming

environments are developed, FPGAs are still

programmed by low-level hardware description lan-

guages (HDL), such as Verilog HDL and VHDL. With

the absence of efficient high-level programming

Figure 1. Architecture of multicore CPU and many-core GPU [9]. (a) Intel’s Nehalem architecture
and (b) NVIDIA’s Fermi architecture.
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languages, FPGAs are less popular compared with

multicore CPUs and many-core GPUs in parallel

computing.

Data access pattern and
data dependency

Parallelism efficiency is determined by the data

structure in the algorithm. As an example, this

section discusses the data access pattern and data

dependency based on the data structures of dense

matrices and sparse matrices, respectively.

In a dense matrix, each entry can be accessed

directly by its row and column indices. Thus the

dense matrix-vector-products (MVP) can be easily

parallelized on GPU or multicore CPU by unfolding

the multiplication operations on each core. Different

from the dense matrix, the sparse matrix is usually

stored in a compressed sparse column (CSC)

format, as shown in Figure 2b, which consists of

three vectors for row index, entry value and starting/

ending boundary for each column. During the

sparse MVP, the row index of each matrix entry

needs to be accessed along with the multiplications.

Since in each column of a sparse matrix, the non-

zero entries are located in different location (with

different row indices), it complicates the data access

pattern, as illustrated in Figure 2c. Consequently, fine-

grained parallelism cannot be achieved by straight-

forwardly mapping all the data and operations to

multicore/many-core platforms with balanced loads.

Data dependency is another critical issue for

parallelism. Although the algorithm of sparse MVP

is hard to be parallelized with fine-grained patterns,

it can be considered as several vector-vector-

products, which are independent and can be

executed simultaneously. However, for more com-

plicated sparse algebra algorithm, such as sparse

matrix LU factorization [6], if we consider the

algorithm as several tasks, strong dependency exists

between the tasks. The data dependency is usually

illustrated by the directed acyclic graph (DAG),

where each node represents a task and the edge

illustrates the dependencies between tasks. A DAG

of sparse matrix LU factorization is shown in

Figure 5b during the case study. If these tasks are

directly assigned to parallel hardware, they cannot

be efficiently parallelized because of a high

overhead of synchronization that caused by data

dependencies.

To parallelize these applications, one solution is

to build customized architecture on FPGAs to deal

with the task synchronization, such as the Graph-

Step [13], [15]. However, the on-chip resources and

long development cycle limit the application of

FPGAs on EDA algorithms. Based on existing archi-

tecture, such as multicore CPUs, an effective solu-

tion is to study the algorithm itself and reformulate it

to cater to the architecture of parallel hardware.

Building structured algorithms [4], [7] and elimi-

nating the data dependency [5], [6] are typical ap-

proaches to achieve this goal.

Case study: applications in
circuit simulation

In this section, three typical algorithms, ranging

from parameter extraction to transient simulation

and RF-PSS simulation, are illustrated to show how

parallelism can be achieved by the structured refor-

mulation to eliminate the data dependency.

Figure 2. Data access in sparse matrix operations. (a) Matrix A and vector b;
(b) matrix A in CSC format; (c) data access in SMVP.
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Inductive interconnection
analysis and capacitance
extraction

The extraction and analysis

of inductance and capacitance

are important during post-lay-

out simulation. With transistor

size scaling down to 22 nm and

RF operating frequency scaling

up to 60 GHz, the strong induc-

tive coupling and the stochastic

capacitive coupling are difficult

to model and analyze. In this

subsection, we describe paral-

lelization algorithms by BBD formulation of the

sparse MNA with inverse-inductance and by FMM

formulation of capacitance extraction with sto-

chastic variation, respectively.

Build BBD structure for inductive interconnec-
tions. The post-layout circuits are analyzed using

the modified nodal analysis (MNA) algorithm [16],

where the circuit is represented by a large sparse

circuit matrix. For the RC network, an efficient so-

lution is to formulate the BBD structured circuit

matrix by network decomposition [17]. As shown in

Figure 3a, the RC network can be partitioned into a

few independent blocks and each block at the leaf

level may only have coupling with a top-level super

block (i.e., M0). Then, the circuit matrix can be for-

mulated into a BBD fashion as shown in Figure 3b,

where the diagonal blocks represent the connec-

tions inside each block, and the border blocks indi-

cate the connections between the top-level block

and other blocks.

In the traditional MNA algorithm, the state varia-

bles are branch currents and node voltages. In the

inductive interconnections, there are a large num-

ber of nonzero fill-ins between different blocks in

BBD structure to represent the long-range mutual

inductance. Therefore, it is difficult to directly for-

mulate a BBD structure for RLC network when

there exists strong inductive coupling from L

matrix, which is important for 60 GHz RF designs.

As L matrix is not diagonal dominant, simply

pruning mutual inductance results in the loss of

passivity.

To achieve a sparse yet passive structured

organization of RLC data in BBD formulation,

vector-potential nodal analysis (VNA) based RLC

representation has been introduced [4], [18].

Instead of using branch currents as state variables

for inductance L, magnetic flux is utilized as the

state variable. During the formulation of the circuit

matrix by VNA, one can stamp L�1 matrix instead of

L. Moreover, since L�1 is diagonal dominant, its

coupling entries can be pruned without the loss of

passivity [4], [18]. Based on the VNA state matrix,

one can build the sparse yet passive BBD formu-

lation, which further facilitates the parallel simula-

tion on multicore CPUs [19].

The proposed method is evaluated in a model

order reduction framework. The BBD-VNA-based re-

duction method (BVOR) is compared to the nodal

analysis (NA)-based reduction method (SAPOR)

and MNA based reduction method (PACT). In the

experiments, three types of RLC circuits (14 circuits

in total), including buses, clock trees and mesh

networks, are deployed. While comparing the sim-

ulation runtime on the reduced circuits, we demon-

strate that BVOR achieves 2.8–33.2� speedup over

SAPOR (11.7� in average), and 2.4–28.7� speedup

over PACT (9.1� in average) [4].

Dependency elimination for capacitance extrac-
tion. The parallel capacitance extraction under

process variation is also difficult in the presence of

stochastic variation for digital designs at 22 nm. In

particular, the work in [5] models the process varia-

tion by stochastic orthogonal polynomials (SOP)

and further incorporates the variation into a mod-

ified fast-multipole method (FMM) to evaluate the

potential interactions between conductor surface

panels in parallel. In particular, the potential inter-

action evaluation needs to calculate a matrix-vector

Figure 3. BBD matrix formulated by block-wise partition. (a) Block-wise
partition of RC network; (b) BBD matrix.
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product (MVP) and the modified FMM algorithm

tries to reduce the complexity of MVP calculation

from OðN 2Þ to nearly OðNÞwhere N is the number of

variables.

In general, the parallel FMM algorithm assigns

surface panels into small cubes and builds a hie-

rarchical oct-tree of cubes such that the potential

interactions between well-separated cubes at dif-

ferent levels can be evaluated on different pro-

cessors in parallel. Clearly, there exists strong data

dependency between different processors which

can significantly degrade the performance. To this

end, a dependency list as shown in Figure 4 is used

in [5] to pre-fetch the needed data for each pro-

cessor before its computation.

The dependency list of one cube (under study)

records other cubes that requires its computation

results (shown in the shaded area) so as to dis-

tribute its generated data ahead of time. In other

words, the processors handling those dependent

cubes can pre-fetch needed data and proceed

without any latency, thereby eliminating the de-

pendency between different processors. [5] has

studied the proposed algorithm on examples with a

different number of variables as shown in Table 1,

where the parallel algorithm shows good scalability

for speedup with respect to the number of

processors.

Sparse direct solver for transient simulation
After circuit parameter extraction, the block cir-

cuit matrix in the BBD partition is usually sparse and

solving the sparse circuit matrix is identified as the

bottleneck during the general transient simulation

in SPICE. The transient simulation is critical to

verify high-precision designs at 22 nm such as

transient noise. According to Synopsys’s white

paper, the sparse direct solver can consume more

than half the simulation time for large post-layout

circuits and it is difficult to be parallelized [20].

In general, the LU factorization algorithm is de-

ployed to solve a sparse matrix, which includes

two steps: 1) symbolic analysis to determine the po-

sition of non-zeros in matrix L and U ; and 2) nu-

merical factorization to calculate the values of

each non-zero. For circuit simulations, while the

symbolic analysis needs to be performed only once

to calculate the sparse pattern, the numerical fac-

torization is repeatedly executed as sparse entries

are updated.

A typical numerical factorization algorithm for

N � N matrix, A, is the left-looking Gilbert/Peierls

algorithm [21], as shown in Algorithm 1. The basic

idea of parallelizing Algorithm 1 is to unfold the N

tasks (iterations) in the outer for loop. However,

strong dependency can be identified among these

tasks. It is easy to generate a DAG to represent the

dependency of all tasks from the symbolic structure

of U, as illustrated in Figure 5 [6]. Here we define the

task p as the parent of task p if there is an edge

pointing from p to i. It is obvious that a task is

dependent on its parent task(s).

Figure 4. Pre-fetch operation with
dependency list.

Table 1 Runtime (seconds) comparison with different number of variables.

IEEE Design & Test30

Practical Parallel EDA



Algorithm 1 Left-looking G/P numerical

factorization

1: L ¼ I ;

2: for k ¼ 1: N do

3: x ¼ Að:; kÞ;
4: for j ¼ 1: k� 1, where Uðj; kÞ! ¼ 0 do

5: xðj þ 1 : nÞ� ¼ Lðj þ 1 : n; jÞ�xðjÞ;
6: end for

7: Uði : k; kÞ ¼ xð1 : kÞ;
8: Lðk : N ; kÞ ¼ xðk : NÞ=Uðk; kÞ;
9: end for

One idea is to process these N tasks in a pipeline-

like mode. Assuming there are

multiple parent tasks, p1; p2; . . . ;

pk, for task i, fortunately, the task

i does not have to wait for all its

parent tasks to finish. Part of

task i can be processed with the

data from those finished parent

tasks. Therefore, task i can even

be overlapped with some of its

parent nodes, which results in a

pipeline-like structure.

However, the overhead of

synchronizing these tasks is a

drawback of the pipeline-like

mode. To improve the efficien-

cy, Cluster Mode is defined by

analyzing the DAG and catego-

rizing the tasks without depen-

dency into a group. Then the

tasks in each group can be parallelized without

synchronization. Given the DAG, we group the

task(s) without parent task(s) each time and

eliminate them from the original DAG. It is obvious

that tasks in the same group are independent of

each other. In Figure 5b, the DAG is processed

iteratively and tasks are categorized into five groups

as in Figure 5c.

To achieve higher parallel efficiency, one can

combine the Cluster Mode with Pipeline Mode. For

example, in Figure 5c, we process groups 0 and 1 in

cluster mode to reduce the overhead on thread

synchronization, while groups 3–5 are factorized in

pipeline mode so as to fully utilize the computation

Figure 6. Performance comparison of three parallel modes.

Figure 5. Upper matrix U, DAG and the graph partition result [6]. (a) Upper triangular
matrix U; (b) EGraph; (c) EScheduler.
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capability of two threads. To evaluate the proposed

Hybrid Mode [6], we compared it with All

Pipeline-like Mode and All Cluster Mode using 26

circuit matrices from the University of Florida sparse

matrix collection [22]. Using four threads, the ac-

celeration rates of these three parallel modes over

the sequential algorithm is illustrated in Figure 6. It

is obvious that the proposed Hybrid Mode outper-

forms other parallel modes because it takes full

advantage of all threads while maintaining the

smallest overhead on thread synchronization. The

proposed parallel solver is also compared to other

solvers and achieves better performance [6], such

as 1.18–4.45� (with 1–8 threads) faster than KLU

(optimized for circuit simulation problems) [2] and

even higher speedup over SuperLU_MT (a general-

purpose parallel sparse matrix solver) [23], [24].

Periodic Arnoldi shooting for RF-PSS simulation
The analysis of RF circuits is notoriously difficult

to be accelerated as accuracy cannot be compro-

mised for precise design at the scale of 60 GHz. The

shooting-Newton method is usually chosen to find

the PSS solution due to its strong convergence

properties [7]. However, the resulting Jacobian

(sensitivity matrix) during the shooting-Newton

method can be a large-scale dense matrix. The

iterative GMRES with the use of a standard Krylov-

subspace and an implicit matrix formulation

(matrix-free GMRES) [25] may alleviate part of the

cost but still has limited performance for large-scale

RF/MM-ICs designed at 60 GHz or beyond.

To accelerate the matrix-free GMRES algorithm,

a straightforward parallelization of MVP on multi-

core CPUs or many-core GPUs can be beneficial. In

[7], [26], we show that studying the structure of the

shooting Jacobian is an effective way to further

explore the parallelism not only from MVP. Be-

cause most RF circuits usually have periodic

inputs and can be characterized as a PSS problem,

the state matrix in terms of the shooting Jacobian

generally becomes

J�T ¼ AP � AP�1 � � � � � A1 (1)

where Aj ¼ ½Gj þ ðCj=hjÞ��1ðCj�1=hjÞ is the state ma-

trix for the jth time step. Gj and Cj are the linearized

admittance and capacitance matrices in the jth time

step, while hj is the jth time step [26].

Note that j ¼ 1; . . . ; p represent for p steps in one

period. In [26], we show that the above multiplied

product J�T , the shooting Jacobian matrix, has an

identical invariant subspace as follows:

J ¼

0 Ap

A1
. .

.

. .
.

Ap�1 0

2
6664

3
7775: (2)

It has a periodic-cyclic-block structured Krylov-

subspace, which can be determined through a

parallel periodic Arnoldi method and can be paral-

lelized [26]. As shown in Algorithm 2, a periodic

Arnoldi method [26] is employed to generate the

periodic Krylov-subspace, i.e., the block matrices

Vm
j and Hm

j , j ¼ 1; . . . ; p. Here, the subscript j de-

notes the index of the periodic blocks ðj ¼ 1; . . . ; pÞ,
and the superscript i denotes the index of the order

of the Krylov-subspace ði ¼ 1; . . . ;mÞ. Note that the

periodic structure of the generated Krylov-subspace

is preserved in Algorithm 2 because each orthonor-

malized base vi
j is constructed separately for each

Aj . As such, one can explore the parallelism during

the GMRES iteration. Because of the independent

calculation of the new basis vector inside each

subspace for different time-steps j ðj ¼ 1; . . . ; pÞ in
Algorithm 2, the structure-preserved Arnoldi itera-

tion can be highly parallelized on GPU. We call the

approach PAS-GMRES.

Algorithm 2 A matrix-free periodic Arnoldi

method

1: Input: Aj by pre-factorized matrices

ðj ¼ 1; . . . ; pÞ
2: Initialize: V0

1 by v0 and Vi
0 by 0

3: while hiþ1 > tol & i G maxIter do

4: for j ¼ 1: p do

5: Set hi
j ¼ Vi�1

jþ1Ajv
j
i

6: Set w ¼ Ajv
j
i �Vi�1

jþ1h
i
j

7: Set gi
j ¼ kwk2, Hi

j ¼
Hi�1

j &hi
j

0&gi
j

" #

8: Set vi
jþ1 ¼ w=gi

j , Vi
jþ1 ¼ ½Vi�1

jþ1;v
i
jþ1�

9: end for

10: end while

11: Output: Block matrices Vm
j and Hm

j

ðj ¼ 1; . . . ; pÞ
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In Table 2, we demonstrate

the speedup of the GPU paralle-

lized PAS-GMRES. When the

GPU parallelization is applied

to the PAS-GMRES solver, there

is a further speedup of parallel

GPU-PAS-GMRES over the GPU-

GMRES (matrix-free) at up to

27� for these examples.

THE EDA COMMUNITY is un-

dergoing an overhaul of paral-

lelization to keep pace with the increasing

complexity of VLSI circuits at extreme scales. To un-

leash the underlying power of parallel hardware for

EDA applications, the algorithm itself has to be

studied in depth to eliminate the data dependency.

In this paper, three circuit simulation algorithms are

studied to illustrate the methodology of dependency

elimination by means of building structured algo-

rithms. In the example of inductance extraction,

VNA andmatrix stretching are proposed to formulate

a BBD matrix for inductive interconnect, and sto-

chastic FMM is developed for capacitance extraction

with variation. By analyzing and partitioning the

dependency with DAG and combining the cluster

and pipeline-like mode, a high acceleration rate is

achieved for sparse circuit matrix solver, which is

currently viewed as the bottleneck of parallelism for

transient simulation. In addition, the parallelism of

periodic Arnoldi shooting is also presented for RF-PSS

analysis, which takes advantage of the cyclic matrix

structure. As a methodology of parallelism, algorithm-

structure study that eliminates data-dependency is

generic and expected to be meaningful as well for

other applications in or beyond the EDA community. h
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