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IPF: In-Place X-Filling Algorithm for the Reliability
of Modern FPGAs

Zhe Feng, Naifeng Jing, and Lei He

Abstract— Modern SRAM-based field-programmable gate arrays
(FPGAs) are prone to single event upsets compared to application-
specific integrated circuits. We propose a synthesis-based in-place x-filling
algorithm by utilizing don’t cares to augment the reliability of FPGA-
based designs. Compared to circuit- and architecture-based solutions, our
algorithm is in place, and does not incur area, power, performance, and
design time overheads. Compared to other synthesis-based algorithms,
we take into account widely accepted interconnect architecture. For
the 10 largest combinational MCNC benchmark circuits mapped to
6-LUT architecture, our approach achieves up to 37% greater failure rate
reduction, and up to 7× runtime speedup, compared to the best known
synthesis-based in-place algorithm, namely the in-place decomposition
algorithm.

Index Terms— Design reliability, field-programmable gate array
(FPGA), in place, interconnect, single event upset (SEU), synthesis,
x-filling.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have been widely used in
different applications, such as networking, digital signal processing,
and prototyping. Nevertheless, single event upsets (SEUs), also called
soft errors, have posed a major barrier for the reliability of SRAM-
based FPGAs. SEUs are generally caused by high-energy particle
strikes, e.g., neutrons coming from cosmic rays or alpha particles
emitted from trace impurities in packaging materials and solder
bumps [1]. They change the values of devices such as SRAM
cells and flip-flops when the charges collected from strikes are
larger than a threshold. In SRAM-based FPGAs, because most logic
functions and interconnects are implemented by SRAM cells, they are
more vulnerable to SEUs compared to application-specific integrated
circuits (ASICs). SEUs have a permanent impact on FPGAs till
configuration scrubbings are applied. In the past, the SEU issue
received attention only from high-reliability applications in military
and aerospace areas. As modern FPGAs have advanced to 28-nm
technology, the devices are prone to SEUs for most applications due
to reduction in core voltage, decrease in transistor geometry, and
increase in switching speed.

There have been a number of studies seeking for the solution
of SEU mitigation for SRAM-based FPGAs. These solutions can
broadly be divided into circuit-, architecture-, and synthesis-based
techniques. The first two categories incur extensive area, power,
performance, and design time overheads [2], [3]. Several studies have
demonstrated that the SEU issue can be mitigated by synthesis-based
approaches while minimizing the aforementioned overheads. The in-
place decomposition (IPD) algorithm proposed by Lee et al. [4],
decomposes a logic function in a logic block into two subfunctions,
and converges them via a carry chain. Their work claims to reduce
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TABLE I
RATIO OF DON’T CARES TO UTILIZED LUT CONFIGURATION BITS

failure rates by 76%. However, most synthesis-based techniques either
mitigate errors introduced by SEUs only on lookup tables (LUTs)
[4]–[6], without considering the SEU impact on interconnects, or
there is a drawback in the interconnect SEU model, e.g., the model
in [7] assumes that there is only one configuration bit in each net.
As a result, their improvements for the reliability are significantly
smaller when SEUs on interconnects are taken into consideration (as
shown in Section V). Besides, they rely on creating don’t cares to
tolerate errors introduced by SEUs. However, the large amount of
preexisting don’t cares makes them difficult to further increase don’t
cares without area overhead. As shown in Table I, for the 10 largest
combinational MCNC benchmark circuits [8], we observe that don’t
cares comprise approximately 60% of utilized LUT configuration bits
when the designs are mapped to 6-LUTs.1

This motivates us to exploit preexisting don’t cares in LUTs
to augment the reliability of designs. We present an LUT and
interconnect analysis-based in-place x-filling2 (IPF) algorithm, which
fills don’t cares to mask errors introduced by SEUs on both LUTs
and interconnects. Compared to other synthesis-based algorithms, we
take into account the widely accepted interconnect architecture used
in Versatile Place and Route (VPR) [11] during optimization. In addi-
tion, our algorithm overcomes the slow runtime issue prevailing in
most previous synthesis-based techniques because it does not search
for functionally equivalent implementations, which requires time-
consuming algorithms like Boolean satisfiability [5], integer linear
programming [4], or set of pairs of functions to be distinguished [7].
Compared to circuit- and architecture-based solutions, our algorithm
does not incur area, power, performance, and design time overheads,
because there is no change of LUT level placement and routing, i.e.,
it is an in-place algorithm.

For the 10 largest combinational MCNC benchmark circuits
mapped to 6-LUTs, our approach achieves up to 37% greater failure
rate reduction, and up to 7× runtime speedup, compared to the best
known synthesis-based in-place algorithm, namely the IPD algorithm.

The rest of this brief is organized as follows. We start with
preliminaries introducing FPGA design representation, failure rate,
and don’t cares in Section II, followed by the formulation of the
IPF problem in Section III. The proposed algorithm is presented in
Section IV. The experimental results are summarized in Section V,
followed by conclusions in Section VI.

1After designs are mapped by the Berkeley mapper [9], the number of don’t
cares is computed by the windowing technique proposed by Cong et al. [6].

2The term has been used for power-aware automatic test pattern gener-
ation (ATPG) [10], in which power is minimized by filling don’t cares to
reduce logic switches of designs.
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Fig. 1. Given the same functionality and topology, different implementations
yield different failure rates due to the assignment of the SDC bit. (a) Failure
rate = 0.2031. (b) Failure rate = 0.1875.

II. PRELIMINARIES

A. FPGA Design Representation

An FPGA design is usually represented by a directed acyclic graph.
In the graph, nodes represent LUTs, and edges represent interconnects
between LUTs. If Node a drives Node b, Node a is called Node b’s
fan-in, and Node b is called Node a’s fan-out. The node without the
fan-in is called the primary input, and the node without fan-out is
called the primary output. The fan-in (fan-out) cone of Node a is the
nodes reachable through fan-in (fan-out) edges from Node a.

B. Failure Rate and Don’t Care

In this brief, the sensitivity of a configuration bit Ci to an SEU
is measured by the failure rate of the configuration bit, i.e., the
frequency with which a circuit fails because of the SEU on the
configuration bit, expressed in (1). The sensitivity of a circuit to
SEUs can be measured by the failure rate of the circuit, which is the
average of the failure rates of all the configuration bits. V denotes
the full set of input vectors. POgolden is the primary output vector
without the impact of SEUs. POSEU is the primary output vector
when an SEU occurs on the configuration bit Ci

Fr(Ci ) =
∑

∀v∈V (POgolden(v) ∧ POSEU(v)(Ci ))

|V | . (1)

If the failure rate of a configuration bit is 0, the bit is a don’t
care bit. There are two kinds of don’t care bits, i.e., satisfiability
don’t care (SDC) bits and observability don’t care (ODC) bits due
to limited accessibilities and observabilities of configuration bits in a
circuit. The SDC bit is the inaccessible configuration bit in the node
that does not have a full set of input permutations at their fan-ins. The
ODC bit is the configuration bit that is not observable at the primary
output given a set of input vectors [12]. In Fig. 1, C11

3 in LUT D
is an SDC bit that is not accessible. C00 in LUT A is an ODC bit
when a = 0 and d = 0. We only focus on exploiting SDC bits for
SEU mitigation for two reasons: 1) SDC bits comprise about 90% of
total don’t cares for the designs under test, as shown in Table I and
2) SDC bits are compatible don’t cares, because flipping an SDC bit
does not invalidate other don’t cares.

III. PROBLEM FORMULATION

In this section, we illustrate utilizing preexisting don’t cares to
mask the errors introduced by SEUs, and formulate the IPF problem.
In Fig. 1, given a logic function f , there are two implementations
with the same interconnects between LUTs. Configuration bit C11
in LUT D is an SDC bit that is inaccessible in a normal situation.

3In this brief, the configuration bit corresponding to the input ABCD is
denoted as CABCD.

Fig. 2. Overview of the LUT and interconnect analysis-based IPF algorithm.

Under the impact of SEUs, the failure rate is greater when C11 is
filled with 0 in Fig. 1(a) than when C11 is assigned 1 in Fig. 1(b).
Both failure rates in Figs. 1(a) and (b) are calculated by equation (1).
The reason is that SDC bit C11 in LUT D can be accessed when an
SEU is in the fan-in cone of LUT D; therefore, when C11 is filled
with a feasible value, even if an SEU occurs, C11 can be used to
mask errors in LUT D.

The idea behind the example is that, in a normal circuit, SDC bits
in LUTs are inaccessible. When SEUs occur in fan-in cones, SDC
bits can be hit. In this situation, LUTs can still output correct values
if the SDC bits are preset feasibly. More concretely, we formulate
the IPF problem as follows: given a design, fill SDC bits in all LUTs
to increase the logic masking for errors introduced by SEUs in their
fan-in cones thereby to augment the reliability of the design.

IV. IN-PLACE X-FILLING ALGORITHM

In this section, we propose a synthesis-based IPF algorithm
employing logic masking targeting SEUs on both LUTs and inter-
connects. As shown in Fig. 2, given a mapped netlist, we first collect
all the SDC bits in the netlist; we perform the analyses of SDC bit
preferences for LUTs and interconnects; the values of SDC bits are
filled on the basis of the analyses, and an enhanced netlist is dumped.

A. SDC Bit Collection

A window-based logic simulation is performed to collect SDC bits,
i.e., launching a logic simulation on a selected window, to collect the
inaccessible SDC bits during the logic simulation. We adopt Cong
and Minkovich’s work [6] to collect SDC bits. The criteria of selected
windows are as follows: 1) when choosing the window covering the
node under test, priority is given to the windows covering the most
nodes given a bounded input number and 2) overlapping windows
are used to minimize the controllability set, i.e., making the SDC bit
collection a tight lower bound compared to a full-circuit simulation.

B. SDC Bit Preferences

In order to mask errors by filling SDC bits, in a faulty circuit
simulation we evaluate how many times the propagated errors can
be masked if the SDC bits are preset as 0 (or 1), i.e., the SDC bit
preferences to be preset as 0 (or 1). The more preferable value is
assigned to the SDC bit for SEU mitigation. Here is an example
illustrating the calculation of the SDC bit preference for 0. Suppose
that the output sequence of an LUT is 0101 without the impact of
SEUs, denoted as G, and the output sequence under SEUs is 0110,
denoted as F . The difference of the two output sequences is 0011,
denoted as D. For an SDC bit of the LUT, suppose that the SDC
bit is hit only by the third input vector, i.e., 0010, denoted as H .
For the third input vector, there is a difference between G and F ,
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and G outputs 0. At the same time, the SDC bit is hit according to
H . The error can be tolerated if the SDC bit is preset to 0. Therefore,
the SDC bit preference for 0 increases by 1. Calculations for SDC
bit preferences to mask errors introduced by SEUs on LUTs are
formulated in (2) and (3). count_1 counts the number of 1s in a
vector. Equation (2) computes the chance that the SDC bit can be
used for masking errors if preset as 1: i.e., when the SDC bit is hit,
there is a difference between the outputs of the LUT with and without
injecting an SEU, and the output is 1 in a normal circuit. The same
logic applies for the SDC bit preference for 0 in (3)

1 − preference = count_1{H&D&G} = count_1{H&(G ∧ F)&G}
= count_1{H&F̄&G} (2)

0 − preference = count_1{H&D&Ḡ} = count_1{H&(G ∧ F)&Ḡ}
= count_1{H&F&Ḡ}. (3)

When analyzing SDC bit preferences for SEUs on interconnects,
we adopt the same interconnect architecture as used in VPR [11], i.e.,
interconnects consist of local wires, connection boxes, and switch
boxes. The signal routes are directed by configuration bits in the
three components. Configuration bits in interconnects can be flipped
by SEUs, resulting in LUT SDC bits being hit and outputted. The
calculations of the SDC bit preferences for SEUs on LUTs are applied
to the analysis of interconnect too.

C. Implementation and Complexity Analysis

We gather the SDC bit preferences by performing the logic
simulation on the netlist after injecting SEUs on the configuration
bits in LUTs or interconnects. A logic simulation computes the values
of the outputs of internal nodes and the primary outputs of a netlist,
given a set of input vectors. One run of simulation propagates one set
of vectors through the netlist. Its complexity increases linearly with
the netlist size. According to Luckenbill’s experiments [13], 1024
randomly generated input vectors yield a close estimation to the
exhaustive input vectors with a mean error of 1%, and 131 072
input vectors reduce the error to 0.3%. We perform uniform 102 400
simulations for each configuration bit to evaluate the impact of SEUs.
The error is negligible considering that our algorithm achieves up to
37% failure rate reduction.

To ensure the efficiency of the simulation, in our implementation
the following techniques are employed:

1) performing simulations in a bit-parallel manner, i.e., simulating
32 or 64 runs at the same time;

2) performing simulations in an incremental style, i.e.,
except for the initial 102 400 simulations, we only
resimulate and propagate the errors in the fan-in and
fan-out cone of the current node, and stop the propagation
immediately if there is no change of outputs of nodes;

3) using and inverter graph (AIG) [9] representation for the netlist.
Simulating an AIG node benefits bitwise operations on the
simulation information of the fan-ins.

The runtime of the IPF algorithm can be broken into three portions:
the runtime for SDC bits collection, the runtime for evaluation of
the impact of SEUs on configuration bits, and the time spent on
SDC bit filling. The SDC bit filling is performed in constant time
after gathering the SDC bit preferences. Considering that we adopt
a window-based logic simulation for SDC bits collection and full-
circuit simulation for the evaluation of SEU impact, the runtime is
dominated by the evaluation [see (6)]. NW is the number of simula-
tions in 64-bit machine words. n and m are the number of nodes and
the average number of configuration bits insides a node, respectively.
T1 denotes the simulation time spent on one node. Tini denotes the

simulation time for calculating the golden result without the impact of
SEUs. Tinc denotes the simulation time for incrementally evaluating
the impact of SEUs on configuration bits. L denotes the number of
nodes to be resimulated in each simulation during the incremental
process. In summary, the computation complexity of IPF algorithm
is O(nm)

Tini = NW · n · T1 (4)

Tinc = NW · L · n · m · T1 (5)

Ttotal = Tini + Tinc = NW · n · T1(1 + L · m)(L 
 n). (6)

V. EXPERIMENTAL RESULTS

The proposed IPF algorithm was implemented in C++, and tested
on a PC with dual core CPU E4400 @ 2.00 GHz and 2.0 GB of RAM.
For the 10 largest combinational MCNC benchmark circuits [8], we
use designs mapped by the Berkeley ABC mapper [9] as the baseline.
All designs enhanced by our IPF algorithm passed the functional
equivalent checking by the Berkeley ABC mapper. In terms of failure
rate reduction and runtime4, we compare our LUT and interconnect
analysis-based IPF algorithm with the best known synthesis-based
in-place algorithm, namely the IPD algorithm [4], and the two IPF
algorithms proposed in our previous work that perform analysis on
LUTs only [14].

A. Failure Rate Evaluation of SEU Mitigation Techniques at
the Circuit Level

In this section, we perform the circuit level evaluation for failure
rates of synthesis-based SEU mitigation techniques. “Circuit level”
means that SEUs can be on LUTs and interconnects during the
evaluation. We adopt Jing’s work [15] to perform the interconnect
evaluation in which interconnects are composed of local wires,
switching boxes, and connection boxes. Each time, we inject an SEU
on a configuration bit in LUT or interconnect and perform a full-
circuit logic simulation. For each configuration bit, 102 400 input
vectors are injected into circuits.

In Fig. 3, the x-axis lists the 10 largest combinational MCNC
benchmark circuits, and the y-axis lists circuit level failure rate
reductions. The “Critical conf bit” algorithm (shown in Fig. 3) and
“Critical output” algorithm are the two IPF algorithms proposed in
our previous work that perform analysis on LUT only [14]. The
“Critical conf bit” algorithm represents the algorithm that employs
SDC bits to mask errors on the most critical configuration bit. The
“Critical output” algorithm utilizes SDC bits to mask the more critical
output. The “LUT and interconnect based” algorithm refers to the
IPF algorithm proposed in this brief. As shown in Fig. 3, when
the designs are small, the IPD algorithm and our LUT analysis-
based algorithms yield similar failure rate reductions. As the design
size increases, our algorithms outperform the IPD algorithm. Our
LUT and interconnect analysis-based algorithm always generates
a design with better reliability than the IPD algorithm does. For
the circuit “des,” the reason why the failure rate is increased by
the LUT analysis-based algorithm but the rate can be reduced by
the IPD algorithm and our LUT and interconnect analysis-based
algorithm is that the criticality used in LUT analysis-based algorithm
does not consider whether the SDC bit is actually hit and used for
logic masking; however, our LUT and interconnect analysis-based
algorithm takes the SDC bit hit into account when calculating the
SDC bit preference, and results in the failure rate reduction.

The IPD algorithm targets SEUs on LUT configuration bits, and
yields 7% circuit level failure rate reduction, although it is known

4We only present comparisons for the 6-LUT mapping because the IPD
algorithm has only 6-LUT mapping results in public,
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Fig. 3. Failure rate comparison of synthesis-based SEU mitigation techniques
at the circuit level for the 6-LUT mapping.

Fig. 4. Runtime comparison of synthesis-based SEU mitigation techniques
at the circuit level for the 6-LUT mapping.

for high failure rate reduction when considering SEUs on LUTs only.
At the circuit level, our LUT analysis-based IPF algorithms achieve
6% higher reduction compared to the IPD algorithm, and our LUT
and interconnect analysis-based IPF algorithm achieves 37% greater
improvement.

B. Runtime Comparison of SEU Mitigation Techniques at
the Circuit Level

Fig. 4 presents runtime comparisons for the IPD algorithm and
our IPF algorithms for the 6-LUT mapping. The x-axis lists the 10
largest combinational MCNC benchmark circuits, and the y-axis lists
runtime in seconds. On average, our Critical conf bit and Critical
output algorithms achieve 150× and 142× speedup compared to the
IPD algorithm. Although our LUT and interconnect analysis-based
algorithm incurs a runtime overhead for the interconnect analysis, it
still achieves 7× speedup compared to the IPD algorithm. The fast
synthesis time makes our IPF algorithms scalable in practice.

The reason for the fast runtime is that our approaches do not
search for functionally equivalent implementations, and therefore do
not need time-consuming algorithms like Boolean satisfiability [5],
integer linear programming [4], or set of pairs of functions to be
distinguished [7] as adopted in other synthesis-based algorithms.
Furthermore, when performing the circuit analysis, we adopt a bit-
parallel logic simulation on and-inverter graph and perform logic
simulations incrementally.

In summary, our IPF algorithms outperform the IPD algorithm in
terms of both failure rate reduction and the runtime.

VI. CONCLUSION

Targeting the ever-increasing SEU issue, we proposed a synthesis-
based IPF algorithm by exploiting don’t cares to augment the reliabil-
ity of designs. Compared to circuit- and architecture-based solutions,
our algorithm is in place and does not incur area, power, performance,
and design time overheads. Compared to other synthesis-based
algorithms, we took into account the widely accepted interconnect
architecture used in VPR [11] during optimization. For the ten largest
combinational MCNC benchmark circuits mapped to 6-LUTs, our
approach achieved up to 37% greater failure rate reduction at the
circuit level, and up to 7× runtime speedup, compared to the best
known synthesis-based in-place algorithm, namely the IPD algorithm.

The more don’t cares are reconfigured to mask errors introduced
by SEUs, the greater failure rate reduction we can achieve. Increasing
don’t cares during synthesis can be leveraged to obtain the targeted
tradeoff between reliability and area in the future. Furthermore,
we plan to extend the IPF algorithm to handle sequential circuits.
The key to this extension is to model the error propagations in
sequential cycles efficiently. In addition, the impact of the technology
scaling makes multiple errors introduced by SEUs a big concern. The
difficulty to extend the IPF algorithm for multiple errors is in tackling
the correlation between errors. The three issues will be addressed in
future work.

REFERENCES

[1] N. Bidokhti, “SEU concept to reality (allocation, prediction, mitiga-
tion),” in Proc. Rel. Maintainab. Symp., Jan. 2010, pp. 1–5.

[2] (2012, Mar.). Radiation-Hardened, Space-Grade Virtex-5QV Device
Overview [Online]. Available: http://www.xilinx.com

[3] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs,” IEEE Trans. Nucl. Sci., vol. 51, no. 5, pp. 2957–2969,
Oct. 2004.

[4] J.-Y. Lee, Z. Feng, and L. He, “In-place decomposition for robustness
in FPGA,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
Nov. 2010, pp. 143–148.

[5] Y. Hu, Z. Feng, L. He, and R. Majumdar, “Robust FPGA resynthesis
based on fault-tolerant Boolean matching,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, Nov. 2008, pp. 706–713.

[6] J. Cong and K. Minkovich, “LUT-based FPGA technology mapping
for reliability,” in Proc. IEEE/ACM Design Autom. Conf., Jun. 2010,
pp. 517–522.

[7] M. Jose, Y. Hu, R. Majumdar, and L. He, “Rewiring for robustness,”
in Proc. IEEE/ACM Design Autom. Conf., Jun. 2010, pp. 469–474.

[8] S. Yang, “Logic synthesis and optimization benchmarks, version 3.0,”
Microelectronics Center of North Carolina (MCNC), Long Island City,
NY, USA, Tech. Rep., 1991.

[9] A. Mishchenko. (2011, Feb.). ABC: A System for Sequential Synthe-
sis and Verification [Online]. Available: http://www.eecs.berkeley.edu/
alanmi/abc/

[10] J.-Y. Lee, Y. Hu, and R. Majumdar, “Simultaneous test pattern com-
paction, ordering and X-filling for testing power reduction,” in Proc.
Int. Symp. Qual. Electron. Design, Mar. 2009, pp. 702–707.

[11] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. Fang, K. Kent, and
J. Rose, “VPR 5.0: FPGA CAD and architecture exploration tools with
single-driver routing, heterogeneity and process scaling,” ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 32, pp. 1–23, Dec. 2011.

[12] A. Mishchenko, J. Zhang, S. Sinha, J. Burch, R. Brayton, and
M. Chrzanowska-Jeske, “Using simulation and satisfiability to compute
flexibilities in Boolean networks,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 5, pp. 743–755, May 2006.

[13] S. Luckenbill, J.-Y. Lee, Y. Hu, R. Majumdar, and L. He, “RALF:
Reliability analysis for logic faults—An exact algorithm and its appli-
cations,” in Proc. Design, Autom. Test Eur. Conf. Exhibit., Mar. 2010,
pp. 783–788.

[14] Z. Feng, N. Jing, G. Chen, Y. Hu, and L. He, “IPF: In-place X-filling to
mitigate soft errors in SRAM-based FPGAs,” in Proc. Int. Conf. FPL,
Sep. 2011, pp. 482–485.

[15] N. Jing, J.-Y. Lee, Z. Feng, W. He, Z. Mao, S.-J. Wen, R. Wong,
and L. He, “Quantitative SEU fault evaluation for SRAM-based FPGA
architectures and synthesis algorithms,” in Proc. Int. Conf. Field-
Program. Logic Appl., Sep. 2011, pp. 282–285.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


