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Abstract—with technology scaling down to 90nm and below, process variation has become a primary challenge for both design and 

fabrication of analog/mixed-signal circuits due to significantly increased circuit failures and yield loss. As a result, it is urgently 

required to estimate the yield of one design efficiently in the presence of process variation. In this paper, we present the recent advance 

for yield estimation for analog/mixed-signal circuits with a number of critical topics and techniques discussed and classified into two 

categories. The first is performance domain method, which requires extensive Monte Carlo simulations; and the second is parameter 

domain method, which requires the characterization of yield boundary defined by performance constraints without using Monte Carlo. 

We review the pros and cons of these methods, which are evaluated by a number of circuit examples with quantitative comparison. 
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I. INTRODUCTION 

Process variation has become the dominant challenge for both analog circuit design and fabrication at nano-scale. Many 

uncertainties can be introduced during manufacturing process such as lithography, chemical mechanical polishing (CMP), etching, 

etc. Consequently, circuit parameters such as effective channel length Leff and threshold voltage Vth can deviate significantly from 

their nominal values. This in turn will cause circuit performance merits (such as delay, period, maximum clock frequency, leakage 

power and etc.) to differ from design specifications. 

The undesired uncertainties in circuit performance can lead to analog/mixed-signal circuit failures and yield loss at nano-scale. 

As such, it has become extremely critical for high-precision analog/RF circuits such as phase locked loop (PLL) and custom/mixed-

signal circuits such as SRAM arrays, which both have tight operating margin due to lower power supply and higher operating 

frequency. Thereby, the parametric yield, defined as the percentage of fabricated circuits that can function correctly, has become 

one important criterion to evaluate design robustness under process variation at nano-scale.  

In general, the parametric yield can be estimated in either the performance domain or the parameter domain as shown in Figure 

(1). The performance domain is defined as a space consisting of all possible performance merits (i.e. voltage, gain, bandwidth and 

etc.), while the parameter domain is a space spanned by all circuit parameters (i.e. channel width, threshold voltage and etc.) and 

bounded by their minimum and maximum values. In both domains, the successful samplings form a bounded region called the 

“yield body” or “success region”, and the nonlinear boundary that separates the success and failure regions is called the “yield 

boundary”. As a result, the percentage of satisfied samplings in both domains can be used to estimate the yield rate equivalently. 

 

Figure 1: Yield estimation in (a) parameter domain and (b) performance domain. 

Many performance-domain techniques have become available in past few decades: Monte Carlo method repeatedly draws 

samples, runs simulations and evaluates the yield rate, which can be easily applied to high-dimensional problems. However, it is 

extremely time-consuming. To relieve the problem, Quasi Monte Carlo [1][2] has been proposed to generate quasi-random 

numbers rather than purely-random samplings, which can save a large number of samples. Similarly, Latin Hypercube Sampling 

(LHS) [3] has been developed to generate multivariate samples by dividing the range of each variable into equally probable 

intervals and placing only one sample in each grid cube containing the same position (or called Latin hypercube). Moreover, 

Importance Sampling [4] [5][6] has been established to efficiently handle the rare event (i.e. millions samples can capture only one 

failure) which changes the sampling density to draw more failed samples.  

Meanwhile, a large number of parameter-domain methodologies have been developed as well: nonlinear surface sampling [7] 

locates the points on the “yield boundary” by searching along the nonlinear performance surface in the parameter domain. Global 

search method [8] can find one point on the “yield boundary” with one-time simulation and thus save more runtime. Response 



surface modeling method [9] tries to model the performance as a polynomial function of all variable parameters and then evaluate 

the yield estimation. In addition, design centering method [10], performance modeling method [11] and other advanced techniques 

can also be used for parametric yield estimation. 

In this article, we present several above-mentioned techniques, including the Monte Carlo method and its variants (e.g. Quasi 

Monte Carlo [1][2], Importance Sampling[4][5][6]) in the performance domain, and two recent-established methods in the 

parameter domain (e.g. nonlinear surface sampling method [7] and global search method [8]). We have compared all these 

approaches quantitatively by several circuit examples from the perspectives of both accuracy and efficiency. Moreover, we discuss 

the advantage and limitations of each method and further analyze the remaining challenges for parametric yield estimation of 

analog/mixed-signal circuits. 

It is worthwhile to point out that this article only covers a subset of well-established techniques in this article due to the limited 

space, and interested readers are encouraged to refer to the resources in the reference section. 

 

II. PERFORMANCE DOMAIN YIELD ESTIMATION 

In this section, we discuss the yield estimation methods, which are in the performance domain and include Monte Carlo 

method and its derivations. For illustration purpose, we first briefly present the fundamental idea behind each method and then 

have a quantitative comparison using one 6-T SRAM cell example at the end of this section. 

A. Monte Carlo Method 

The most straight-forward method in the performance domain is Monte Carlo method (MC), which first generates tens of 

thousands of samples with the probability distribution of variable parameters. Then, it performs circuit simulation with each 

sample to evaluate the performance merit of interest. With the given performance constraints, Monte Carlo method can identify 

the successful or acceptable samples. In this way, the percentage of successful samples can be used to estimate the yield rate. 

The advantage of Monte Carlo method is its simplicity and generality; it can be applied to arbitrary distributions of parameters 

and performance merits without any priori knowledge. However, it is very time-consuming to achieve high accuracy since its 

convergence rate to the exact value is only (1 )N , where N is the total number of samples. Therefore, it is not suitable for 

practical applications. 

B. Quasi Monte Carlo Method 

An alternative to the Monte Carlo approach is called Quasi Monte Carlo (QMC) method [1][2], which uses quasi-random 

sequences rather than purely-random samplings. QMC starts with the generation of quasi-random numbers (or representative 

samples), such as Faure (1982), Neiderreiter (1987), Sobol (1967) or Halton (1960) sequences. It then converts the samples 

following those specific distributions to ones following the desired distribution.  

For example, the Sobol sequence follows a uniform distribution u~U(0,1) and can be converted to Gaussian distribution using 

x=F
-1

(u), where F
-1 

is the inverse cumulative distribution function (inverse CDF) of the Gaussian distribution. The resultant 

sequence x follows the Gaussian distribution. As such, circuit simulation can be performed with x sequence to obtain performance 

merits, and the yield is estimated as the percentage of successful samples. 

The key idea behind the Quasi Monte Carlo is try to cover the entire parameter space evenly with deterministic samples rather 

than pure random numbers. Therefore, QMC can use fewer samples and potentially improve both accuracy and efficiency when 

compared with Monte Carlo approach.  

In addition, the convergence rate of Quasi Monte Carlo can be reduced to (1 )N in the optimal cases, much faster than 

Monte Carlo approach. However, the convergence rate becomes O(ln(N
d
)/N) for multiple dimensions in the worst case, where d is 

the number of dimensions. As such, the performance of QMC can degrade with the dimensions. 

C. Importance Sampling 

To improve the efficiency of MC and QMC, the Importance Sampling (IS) method has been proposed [4][5][6], which shifts 

the sampling distribution towards the failure region and makes each sample more useful. 

For example, we consider the original probability density function (PDF) of a variable parameter shown in Figure (2), and 

assume the failure region locates at right tail. As such, IS tries to shift the sampling function towards the failure region which can 

increase the probability of sampling within the failure region. 

 
Figure 2: Shifting sampling distribution in Importance Sampling [5] 

Importance sampling can reduce the number of samples required to achieve a desired accuracy, especially in the case where 

the failure region is small for rare failure events [4]. However, it is always challenging to obtain an optimal sampling distribution 

or shift vector efficiently (e.g. mean shift vector for one parameter in Figure (2)), since this depends on the actual distribution of 

the performance merit and is unknown beforehand. Therefore, many techniques have been developed to find the optimal sampling 

distribution or shift vector in recent literatures [5][6], which will not be discussed in this article due to limited page space. 



D. Experimental Results 

To evaluate the discussed methods, we apply them to estimate yield of a six-transistor SRAM cell shown in Figure (3), which 

is particularly vulnerable to process variation due to ever-decreasing supply voltage and reduced noise margin. One SRAM cell is 

used to store one memory bit, and a typical implementation involves six transistors: the four transistors Mn1, Mn3, Mp5 and Mp6 

have two stable states, i.e., either a logic ‘0’ or ‘1’, and the two additional access transistors Mn2 and Mn4 serve to control the 

access to the cell during read and write operations. The word line is used to determine whether the cell should be accessed 

(connected to bit line) or not, and the bit line is used to read/write the actual data from/to the cell. 

In this paper, the SRAM yield is defined by the data retention failure due to static noise margin (SNM) variations, and the 

threshold voltages of all transistors are modeled as independent random variables. In general, the SNM is used to measure the 

amount of noise voltage that is needed to flip the stored data in one SRAM cell. Typically SNM can be measured by the length of 

the maximum embedded square in the butterfly curves which consists of the voltage transfer curves (VTC) of the two inverters in 

SRAM cell. When SNM is smaller than zero, the butterfly curves collapse and data retention failure happens. 
                 

Figure 3: Schematic of a 6-transistor SRAM Cell. 

 

To investigate how the various methods might behave in a more realistic context, we apply the Monte Carlo, Mixture 

Importance Sampling [4], Spherical Sampling [6] to estimate the yield rate due to data retention failures, where both Hspice and 

BSIM4 transistor model are used. Note that the failures have become rare events and the yield rate is highly close to 99.99%. As 

such, we first compare the evolution of failure rate estimation from different methods in Fig.(4), which shows MC converge very 

slowly and Quasi Monte Carlo can significantly improve the convergence. In addition, both Mixture Importance Sampling and 

Spherical Sampling can reach the similar estimation results with much fewer samples.   

Moreover, Table 1 further shows the number of samples and circuit simulations required by different methods when the target 

accuracy level and confidence interval are set to 95%. From this table, it can be observed that Quasi Monte Carlo method can 

achieve around 5.3X speedup over Monte Carlo method, while Importance Sampling based methods can be tens or even hundreds 

times faster than MC method with the same accuracy. Also, it is worthwhile to point out that the performance of Importance 

Sampling based methods is significantly sensitive to the shifted sampling distribution, which can be demonstrated by the different 

speedup obtained from Mixture Importance Sampling and Spherical Sampling. 

 

Figure 4: Evolution comparison of failure rate estimation for different methods (VDD=290mV). 

 

 Monte Carlo Quasi-MC Mixture Importance Sampling Spherical Sampling Method 

Prob.(failure) 8.66E-4 8.64E-4 8.69E-4 8.23E-4 

Accuracy 95% 95% 95% 95% 

# simulation runs 2.5E+6 4.72E+5 1.26E+5 5951 

Speedup 1X 5.3X 20X 420X 

Table 1: Number of simulations runs required by performance-domain methods to achieve the same accuracy for SRAM cell failure estimation. 

We can see that previous conclusions can still hold: Monte Carlo method tries to randomly select samplings to cover the entire 
space evenly, so it needs a huge number of samplings. Quasi Monte Carlo can reduce the number of samplings by covering the 
entire space with deterministic sequences. Moreover, Importance Sampling method can shift the sampling distribution towards the 
failure regions so that to pick more failed samplings for improved accuracy and efficiency.  

III. PARAMETER DOMAIN YIELD ESTIMATION 

In order to avoid the large number of samples and simulations for estimating yield at the performance domain, several 

approaches have been proposed to estimate the yield in the parameter domain. Generally, the variable circuit parameters with 

performance constraint can define one hyper-volume in the parameter domain, and the points within this hyper-volume denote 

those samples that provide satisfied performance merits. Therefore, the parametric yield estimation is to calculate the ratio of the 

volume of the hyper-volume to that of the entire parameter domain. 

One most straight-forward method is to find all the points in the hyper-volume with massive samples, which is expensive and 

unnecessary because the points on the hyper-surface boundary can provide adequate information of the hyper-volume. Therefore, 

the parametric yield estimation methods in the parameter domain aim to locate points on the hyper-surface boundary (or called 

“yield boundary”) efficiently and accurately. 

In this section, we will present two yield estimation approaches (i.e., Nonlinear Surface Sampling [7] and QuickYield [8] in 

the parameter domain, which can efficiently estimate the yield with very high accuracy along with hundreds times speedup over 

Monte-Carlo. Also, we use a ring-oscillator as an example to compare these methods and the reasons are two-fold: 1) QuickYield 

[8] can only be applied to DC and PSS (periodical steady state) analyses and the evaluation of oscillator period needs PSS 

analysis. 2) The methods in parameter domain calculate the yield rate with geometrical computation (i.e., area, volume), therefore, 



they become very inaccurate for circuits with “rare failure events” (i.e., the failure probability of SRAM circuit is very small) 

because the failure region becomes very tiny and the yield rate is very close to 100%.  

A. Nonlinear Surface Sampling 

Yield Estimation with Nonlinear Surface Sampling [7] (or called “YENSS”) aims to find the yield boundary as shown in Figure 
(5(a)). For example, the performance surface can be defined with each point on the surface corresponding to a sampling point in the 
parameter domain. With the given performance constraint, the surface can be divided into success and failure regions, which are 
separated by the intersection of these two surfaces (called the “yield boundary” shown in Figure (5(b))). To that end, it starts from 
the nominal design point (P0 in Figure (5(a))) and searches along the tangent direction locally on the performance surface. As such, 
the yield can be estimated by the area (or, volume) ratio of the bounded region to that of the entire parameter domain. 

                  
               (a)                                                                                                                   (b) 

Figure 5: (a) Performance surface over parameter domain, and (b) the yield boundary in the parameter domain [7] 

This method can avoid massive sampling but has two-fold disadvantages: firstly, local search is inefficient to find multiple 
boundary points, since a large number of expensive simulations are required; secondly, this method can only handle small-scale 
problems with up to three parameters. In [8], we have shown that a global search algorithm can resolve these limitations. 

B. Global Search Based Yield Estimation 

According to our discussion so far, previous methods in the parameter domain mostly utilize “local search” shown in Figure 

(6(a)): generating samples of variable parameter, performing simulation at samples, and then comparing with the given 

performance constraints to find the samples on the yield boundary. Typically the iteration needs to be repeated many times to find 

one point on the yield boundary. 

                             
                    (a) Local Search                                                                                               (b) Global Search 

Figure 6: Comparison of algorithms to find the yield boundary 

In order to improve the efficiency, “global search” has been proposed in [8] recently to find each point on the yield boundary 

with one-time simulation without sampling. It breaks the framework in “local search” by introducing the constraints as an extra 

equation into the original circuit system and treating the variable parameter as an unknown (as shown in Figure (6(b))).  

Specifically, one circuit can be described by a differential algebraic equation (DAE) system as 

 

                                                                       (1) 

 

Here, x(t) are the state variables including node voltage and branch current. q(x(t)) contains active components such as charges 

and fluxes, and f(x(t)) describes passive component and b denotes input sources. As such, the DAE system can determine a 

performance surface in the parameter domain shown in Figure (7(a)). 

                               
                   (a)                                                                                                               (b) 

Figure 7: (a) Rotated view and (b) Top view of the yield boundary 

Meanwhile, the performance constraint further locates a constraint plane in Figure (7(a)). It is clear that the yield boundary in 

the parameter domain shown in Figure (7(b)) is the intersection boundary of these two surfaces in Figure (7(a)), which is equivalent 

to the solution of an augmented system including DAE and performance constraint. As a result, we can introduce the constraint into 

the DAE system and add the variable parameter as the extra unknown as: 

 

 

(2) 

 

The second equation of ( ; )p mH f is the general expression of performance constraint [7][12], where 
p is the variable 

parameter and worstf is the worst performance that can be accepted. It should be clarified that above nonlinear system is a 

determined system when the number of variable parameters p  equals to the number of performance constraints
( ; )p mH f

.  

However, when number of performance constraints is smaller than that of variable parameters, the nonlinear system can only 

consider part of parameters at one time in order to handle only deterministic system. 

Moreover, this nonlinear system can be denoted as 
( ( ), ) 0pF x t  

 for the ease of notation and be solved with Newton-Raphson 

method which needs to calculate the Jacobian matrix ( )J X F X    ( ;T

pX x    
is a vector of unknowns). For DC analysis, the 

Jacobian matrix becomes simply as: 

( ( )) ( ( )) 0
d

q x t f x t b
dt

  

( ( )) ( ( )) 0

( ; ) ( ) 0p m m p worst

d
q x t f x t b

dt

H f f f 


  


   



    (3) 

 

 

Similarly, one augmented system for PSS analysis can be constructed in discrete time domain with the finite difference method. 

Interested audience are referred to [8][12] for more details. As such, the resultant solution contains the parameter value of 

p corresponding to the point on the yield boundary in the parameter space, thereby, one boundary point can be found with only 

one-time simulation. Since it searches for the boundary point within the entire parameter space, we name this scheme as “global 

search”. In the following, we further show the advantages of the global search based yield estimation. 

C. Experimental Results 

In this section, we consider a 3-stage ring oscillator as shown in Figure (8) to compare the methods in the parameter domain, 

where the period is considered as the performance merit. The nominal period of the oscillator Tnorm is 7.2028ns calculated via 

periodical steady state (PSS) simulation. The design specification requires that the variation in period δT should be within ±2.5% 

of Tnorm. For illustration purpose, we consider the effect of random variations in the width of MOSFET in the first stage with 40% 

perturbation range from their nominal values. The nominal width of Mp1 is 3um and that of Mn1 is 2um. Notice that the same 

methods can be applied to other parameter variations, such as threshold voltage, channel length, and etc. 
   

(a)                                                                           (b)                                                                                (c)  

Figure 8: (a) 3-stage ring-oscillator; Simulation results from (b) QuickYield; (c) Monte Carlo method. 

In fact there exist two boundaries in the parameter space, which correspond to Tmin and Tmax. Therefore, we need to solve two 

augmented systems and each of them considers one performance constraint in the below: 

1 min

2 max

0

0

H T T

H T T

  


  
 

As a result, we can observe these two nonlinear boundaries from results of QuickYield in Figure (8(b)), which are identical to 

the result from Monte Carlo method in Figure (8(c)). Also, YENSS in [7] can capture the same boundaries as Figure (8(b)), but it 

needs more circuit simulations due to local search. Note that we consider two variable parameters (e.g., channel widths of the first 

stage as Wp and Wn), which implies that the system in (2) becomes an under-deterministic system. To solve it, we convert it into a 

deterministic system by fixing the values of Wp at different points (shown in Figure (8(b))) and solving for the corresponding 

values of Wn. In other words, the system (2) has one-dimensional 
( ; )p mH f

 and one-dimensional p  parameter.  

To evaluate the efficiency with the same accuracy (95% accuracy with 95% confidence interval), we compare the runtime of 

Monte Carlo, YENSS obtained from [7] by normalizing with respect to its Monte Carlo runtime, and QuickYield in Table 2. From 

this table, the Monte Carlo method needs 44073.8 seconds, while YENSS can achieve139X speedup over it. Moreover, 

QuickYield can obtain 519X speedup over Monte Carlo and be 4X faster than YENSS at a similar accuracy.  
Method Total Simulation Time (second) Speedup 

Monte Carlo 44073.8 1X 

YENSS 317 139X 

QuickYield 84.9 519X 

Table 2: Number of circuit simulations required by parameter-domain methods to achieve the same accuracy for SRAM cell yield estimation. 

Note that the runtime comparison in Table 2 only contains the runtime of circuit simulations, and thereby QuickYield can 

achieve more speedup over YENSS when the expensive sensitivity analysis in YENSS is considered. Furthermore, extensive 

experiments show that the accuracy and runtime of QuickYield can scale with the number of boundary points [8], which is 

suitable for analog/RF circuits with the high-precision design requirement. 

IV. DISCUSSION AND CONCLUSION 

The methods in the performance domain (e.g. Monte Carlo method and its variants) tend to follow the “sampling-and-checking” 

procedure and thereby make them extremely time-consuming. As for the Importance Sampling, it is a critical but not trivial 

problem to find one good alternative distribution as shown in Fig.(2) which can provide fast convergence rate of probability 

estimation so as to reduce the number of required samples and circuit simulations. As a summary, the primary unresolved issue 

for methods in the performance domain is how to efficiently identify as few samples as possible yet to provide accurate yield 

estimation. 

As for methods in the parameter domain, on the one hand, they can provide extremely efficient yield estimation by searching 

yield boundary and approximate the yield with the ratio of area or volume of the success region to that of the entire parameter 

space; on the other hand, they are also facing the same high-dimensional challenge as the Monte-Carlo based sampling 

approaches:  usually a typical process design kit contains more than 100 independent random variables to model the global 

variations and 5-10 extra independent random variables to model random mismatches for a single transistor. As such, it easily 

( )
( ; ) ( ; )

p

p m p m p

f x f b
J X

H f x H f



  

     
  

    



involves 1000+ random variables in the parametric yield analysis of a typical analog/mixed-signal circuit. Therefore, the methods 

in the parameter domain become quite computationally expensive for high-dimensional problems, since these methods require 

expensive calculations for the hyper-volume of the success region in the high-dimensional space. Moreover, when “rare failure 

events” are considered, the area/hyper-volume of the failure region becomes very tiny so that the methods in parameter domain 

depending on calculation of area/volume ratios cannot provide accurate yield estimation. For a subset of cases - DC and PSS - 

QuickYield can provide significant additional speed improvements over YENSS. 

In this article, the problem of variability-aware parametric yield estimation for analog/mixed-signal circuits is introduced: the 

first is the existing approaches in the performance domain, such as Monte Carlo method and its variants; and the second is the 

newly developed approaches in the parameter domain, such as YENSS and QuickYield. The pros and cons of all these methods are 

evaluated and compared using different circuit examples. Moreover, the potential challenges facing the variability-aware parametric 

yield estimation are also elaborated to facilitate the future research. 
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