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Abstract—The impact of process variations continues to grow
as transistor feature size shrinks. Such variations in transistor
parameters lead to variations and unpredictability in circuit
output and may ultimately cause them to violate specifications
leading to circuit failure. In fact, timely failures in critical circuits
may lead to catastrophic failures in the entire chip. As such,
statistical modeling of circuit behavior is becoming increasingly
important. However, existing statistical circuit simulation ap-
proaches fail to accurately and efficiently analyze the high sigma
behavior of probabilistic circuit output. To this end, we propose
PDM (Piecewise Distribution Model) - a piecewise distribution
modeling approach via moment matching using maximum en-
tropy to model the high sigma behavior of analog/mixed-signal
(AMS) circuit probability distributions. PDM is independent of
the number of input dimensions and matches region specific
probabilistic moments which allows for significantly greater
accuracy compared to other moment matching approaches.
PDM also utilizes Spearman’s rank correlation coefficient to
select the optimal approximation for the tail of the distribution.
Experiments on a known mathematical distribution and various
circuits obtain accurate results up to 4.8 sigma with 2-3 orders of
speedup relative to Monte Carlo. PDM also demonstrates better
accuracy while compared against other state-of-the-art statistical
modeling approaches, such as maximum entropy, importance
sampling, and subset simulation.

Index Terms—Moment matching, High dimensional, Maxi-
mum Entropy, Probability density function, Circuit modeling

|. INTRODUCTION

IEEE

probability may lead to catastrophic results in the entire chip.
Consequently, such “rare event” failures must be accurately
and efficiently modeled to maximize the effective yield of a
circuit.

As industry moves towards more energy efficient chips,
minimizing power consumption becomes increasingly impor-
tant. In such designs, low supply voltages (VDD) are often
used to reduce power. However, while VDD is explicitly
reduced the overdrive voltag&f, — V) is implicitly reduced
[6]. In the presence of/; variations from the manufactur-
ing process, transistors may enter the subthreshold operation
region causing a strongly non-linear circuit behavior. This
non-linear behavior translates to circuit behavior distributions
becoming strongly non-Gaussian (see Fig. 14). Consequently,
when modeling this behavior for yield analysis, it is hecessary
to consider the inherent non-linearity that arises due to the
aforementioned reasons.

Although there are many methods that attempt to model
overall circuit behavior [1], [3], [7], very few of them ef-
ficiently model the high sigma behavior of strongly non-
Gaussian distributions. One brute force method is Monte
Carlo (MC), which is considered to be the gold standard
approach; it involves repeated sampling and simulation to
extract an approximate distribution of circuit behavior [8].
Although Monte Carlo is highly accurate, it is infeasible for
yield analysis with small failure probability because it requires

S transistor feature size continues to shrink, the impa&llions of samples/simulations for an accurate measurement,

king it runtime prohibitive despite some parallelization

of process variations on circuit behavior, such as del&)@
or gain, grows and cannot be neglected [1], [2], [3], [4Efforts [9]. [10], [11]. Moreover, if any design changes are
[5]. Under these variations, circuit behavior is no longer ®troduced in the circuit we must repeat these simulations
deterministic value and must be characterized by a rand@mother million or more times.
variable rather than a nominal value. These variations canin order to improve the efficiency of yield analysis, fast
cause significant circuit performance degradation that mMC approaches such as Importance Sampling (IS) [12], [13],
not meet the design spec and fail. As such, circuit reliabilifyt4l: [15], [16], [17], [18], and classification based approaches
has become an area of growing concern. In particular, fo¥9l: [20] were proposed to obtain high accuracy with a

circuits that are repeated millions of times, a small failur@inimal number of samples. However, Importance Sampling

methods can rarely handle circuits with a large number of
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classifier separates the ‘“likely-to-fail” samples with bettawo segments in the rest of this paper. The first distribution,
accuracy [20], but has difficulty in accurately defining th&egmentl, matches moments that are accurate only in the
“likely-to-fail” samples. On the other hand, defining only aody/bulk of the distribution. The second distribution, Seg-
small portion of samples as “likely-to-fail” leads to skewednent2, matches moments that are accurate only in the high
classes that require separation - while adding more sampdggma/tail region of the distribution and models the tail of
to the “likely-to-fail” side balances the classes, it could makarcuit behavior. Both distributions are constructed using the
classification based approaches inefficient. maximum entropy moment matching technique but differ by
Among others, the Scaled Sigma Sampling (SSS) [24] anding two different setsof moments. The moments in Seg-
subset simulation (SUS) [25] approach the rare failure probentl are obtained by using circuit behavior sample moments
ability via different avenues. SSS draws samples by scalinglculated directly from the original input (process variation)
up the standard deviation (sigma) of the original distributiowljstributions. The moments in Segment2 are obtained using
while using the same mean. Failure probabilities are calculateinple moments calculated from input distributions that are
at different scaling factors to extrapolate the failure probabilighiftedtowards regions that are more likely to fail. The details
under the original distribution, i.e. scaling factor equal to @f moment calculation are elaborated upon in Section IV.
[24]. However, SSS is susceptible to accuracy loss due toThe optimal Segmentl distribution is selected using Spear-
the extrapolation requirement. Alternatively, SUS approachesn’s rank correlation coefficient to analyze the monotonic
the rare failure probability as the production of several, lardeehavior of the CDF. The Segment2 distribution is assumed
conditional probabilities estimated in multiple phases [25{o be an exponential distribution. Because this distribution is
Samples in each phase are generated with the aid of dwmstructed from shifted moments, its probability must be re-
Markov Chain Monte Carlo (MCMC) method. weighed and is done so using conditional probability and a
Unfortunately, the majority of existing approaches do nafcaling factor that corrects for continuity between the Seg-
efficiently handle a significantly high dimensional problemment2 distribution and the true model of the tail distribution.
While [12], [13], [14], [15], [16] are only verified on SRAM  PDM has a constant complexity in terms of input dimen-
cells with 6 variation parameters, there are still some apions as it works solely in the output (circuit behavior) domain.
proaches that do handle the high dimensional problem, su€kperiments on both a mathematically known distribution and
as [17], [24], [25]. Furthermore, most existing approaches dircuits demonstrate the method is accurate up to 4.8 sigma for
not estimate the overall PDF of circuit behavior, requiringon-Gaussian distributions with more than 2 orders of speedup
repetitive sampling to estimate different critical points causinglative to Monte Carlo, which is typically sufficient for analog
significant runtime overhead. circuits that are reused, such as differential amplifiers, bias
To combat the dimensionality issue of the above metbircuit, or even PLLs, level shifters, etc.
ods, we introduced a moment matching technique based omhe performance of PDM is compared against the maximum
Maximum Entropy [26] (referred to as MAXENT), which isentropy moment matching technique [26], high dimensional
elaborated upon in Section Ill. The method is novel becauigeportance sampling [17], SUS [25], and Monte Carlo. The
it uses circuit output behavior (e.g. delay) as its only inpustatistical modeling approaches are compared on both low-
and therefore performs moment matching solely in the outpditnensional and high-dimensional problems, in addition to
domain. Consequently, the method is constant in dimensidadeal (mathematical) distributions and realistic circuits. Run-
ality and thus does not fall to the dimensionality issues time is evaluated by the number of samples required by each
Importance Sampling and classifier methods outlined abowdgorithm, and accuracy is compared against Monte Carlo.
We observed that MAXENT is very accurate in the bulk of The rest of the paper is organized as follows. Section I
the distribution, but is often inaccurate in the tail region whefgresents background on general statistical modeling. Section
rare events are modeled. This limitation is because MAXENTI introduces a detailed derivation of the maximum entropy
uses only one set of moments that are accurate in the lewoment matching technique, along with results on its applica-
sigma region but inaccurate in the tail. Obtaining momenti®n to circuit modeling [26]. Section IV presents the proposed
that are accurate in the tail of the distribution (also knowpiecewise distribution model and highlights the difference be-
as the high sigma region) requires both a large number tefeen it and the general maximum entropy moment matching
samples to obtain accurate moments and knowledge of whielghnique. Section V evaluates the performance of PDM on
exact moments reflect behavior in the tail of the distributiothe mathematically known distribution, one digital circuit, and
which is often unknown [27]. Consequently, the distributioone analog circuit, where all distributions are non-Gaussian.
that MAXENT uses is formulated on a global optimizatiorsection VI concludes this paper and presents some topics for
framework that attempts to minimize overall error, making future work.
difficult to capture the high sigma behavior in non-Gaussian
distributions. Il. BACKGROUND
To address both the issue of high-dimensionaditgl non- . .
Gaussian distributions while maintaining high accuracy arfty General Statistical Modeling
efficiency, we propose a piecewise distribution model (PDM) Fig. 1 shows the flow of performing statistical simulation
that uses moment matching via maximum entropy to builsh a circuit. Instead of simulating a circuit with deterministic
multiple separate, region-based distributions of circuit behgwarameters a single time, we model the circuit parameters,
ior. Without loss of generality, we consider a distribution asuch as effective channel length;; or oxide thickness,,,
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circuit response that givesl&% failure rate, we would ask for
the “1 sigma point” of the PDF. Note that the aforementioned
probability and Z score methods work for both ends of the tail

Var. 1 Var.

I:> Circuit Simulator of a PDF.

X J

Fig. 1. Flowchart for Circuit Simulation
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domain” as the input of the statistical simulation. Without

losing generality, we model these variations as independen}n typical yield analysis, we require a failure rate of at

Gau.55|an d|.str|but|ons. i . least 0.003167% or approximately 4 sigma. Obtaining this
Given N input random variables, we draw a single samsopapility would require one failure evesi, 575 samples.
ple =, which can be repr_esented as the vectar = | many cases, this is the “largest” probability that is required
[z1,1, 21,2, ...;21,n5]. By feeding samplez; to a SPICE- 44 e typically need up to the 4.8 or 5 sigma point in the
accurate circuit simulator, we can obtain a circuit respoNg&yr \which corresponds to roughty4E6 samples for one
y1- The circuit simulator acts as a non-linear map from inpiijre - Furthermore, simulating this many samples is overly
samples to circuit response. These circuit responses, sUChi@8 consuming, making straightforward Monte Carlo runtime
50% delay or voltage at a node, are considered part of th&yhibitive. Fig. 2 shows the required number of samples (log
output domain”. scale) for a given sigma point (linear). We see that even in log
Repeating this sampling and simulation process is straightale, the required number of samples is non-linear. Although
forward Monte Carlo and is used to obtain an estimate g{ore efficient sampling approaches, e.g. Quasi Monte Carlo,
the distribution/probability density function of circuit responsgatin Hypercube Sampling, etc. [28], might be used, they are
[8]. Depending on the required accuracy of the response, & insufficient to analyze the rare failure event.
required number of samples will change. In some cases, a feW|ternative methods such as Quasi Monte Carlo may be
hundred samples are required to estimate the probability @fized, however they still require a large number of samples
a circuit response around the nominal value of the PDF. QR it can be shown that as the dimensionality of the sampling
the other hand, it requires millions or even more samples §gace increases (in this case, the input domain), the conver-
model the tail of the distribution, corresponding to the rafgence rate of QMC and MC are similar [28]. Consequently, it
failure events, which is important for highly replicated circuijg necessary to develop efficient algorithms that minimize the

cells or critical circuit components. number of samples to accurately estimate a very small failure
One method of quantifying the required number of sanprobability.

ples for a target probability is simply taking the inverse.
For example, consider a designer that is interested in the
circuit response that will result in a failure rate of 16%. This
means that we are interested in a circuit response that has
approximately 16% probability in the tail of the PDF. This Entropy is a measure of uncertainty. When choosing a
failure rate corresponds to approximately 1 failure every 6.28stribution, one should choose a distribution that maximizes
samples, so a starting point would be drawing 7 sampleke entropy [29]. By doing this, the distribution is uniquely
simulating each and selecting the largest value. However, thetermined to be maximally unbiased with regard to missing
preceding case assumes that we will determinately see 1 failefbrmation, while still agreeing with what is known [29].
sample every 6.25 which may not be true due to the lar@onsequently, the distribution with the maximum entropy will
variations and unpredictability in the circuit. Consequently, ioreate a model based solely on the true information that is
order to have a more confident estimate, we may require tipabvided and will be less susceptible to assumptions from
we draw enough samples such that we have 5 failures, i.e. messing information. The entropy” of a distributionp(x) is
would draw 32 samples. By using basic probability, we ddefined in (1). To select the distribution with the least missing
not make any assumptions about the shape of the circuit PDFormation, we maximize the entropy function with respect to
allowing for an unbiased estimate. Furthermore, to simplify set of probabilistic moment constraints (2), as a probability
the relationship between estimated probability (failure ratéjstribution can be completely defined by its set of moments
and required number of samples, we utilize the Z score off20]. When applying the maximum entropy method to circuit
standard normal distribution which is typically referred to asimulation algorithms, we consider probabilistic sample mo-
the “sigma” value [27]. For example, instead of asking for theents of circuit response with moment ordet 0,1, ..., k.

1. M AXIMUM ENTROPY METHOD FORSTATISTICAL
CIRCUIT PERFORMANCEMODELING
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representing the area and is thus folded into equations (9) and

W = / z)log p(z)dx (1) (10). For further details in the derivation, we refer the reader
towards [33].
zip(x)ds = i, 1=0,1,.., k. 2 k
/ pla)dz = p @) P=mZz+> A ©)
To maximize (1) we first introduce Lagrange multipliers, i=1

resulting in the Lagrangian function

k
Z =exp(A\) = /exp (— Z /\ixi> dz (10)
i=1

L=- /( (z) log p(z))dx + Z)\ / z)dz — ;) (3) Now this dual problem can be solved for any valuekof
One approach is using an iterative method such as traditional
Next, we take partial derivatives df with respect top(x) Newton’s method as shown in [31], [34], [26]. Here, New-
and to find the points where it reaches a maximum, as showen’s method is used to solve for the Lagrangian multipliers

in (5) and (4). A = [Ao, A1,...,Ax] for a corresponding set of moments
i = 0,1,....,k. The standard Newton update equation for
oL _ 0 (4) iterationm is shown in (11)
I
10T
Aoy = Ay — H 71 (12)
oL _, 5) (m) = Awm) = H
op(z) Where the gradient (12) and Hessian (13) are defined as
Taking the derivative with respect foresults in the original
moment constraints from (2) and is redundant information. The . k
derivative with respect tp(x) yields (6) ST [ a"exp (— > )\iﬂi) dx
- = i — = pi —pi(A) (12)
Y k
oL k . feXp — Z /\i,ui dx
) /(1ng(ff)dff) +1-{) /\i(/(ffldf))} =0 (6) =1
i=0 5°r
We can further simplify this by absorbing the constaitito Hij = NN, Pt (A) = (A (A) (13)
the )y term and combining the finite sum with the integrand
ing i k
resulting in (7) [ 2 exp (_ > /\i,ui> g
fivi(A) = = (14)

/ (log pla / Z Naide) = 0 ™ [ exp (_ i W—) da

Note that the limits on both integrals are identical and are Equation (13) indicates that the dual functidihas a second
typically from oo to —oo for standard probability distributions derivative and that it is positive definite [33]. Consequently,
because the distribution is assumed to be O outside of tie function (9) is everywhere convex which guarantees that
support of random variable. In the case of circuit simulation if a stationary point exists it must be thenique absolute
algorithms, this is also true, i.e. the circuit has maximum anginimum However, convexity does not ensure that a minimum
minimum operating values and is zero outside these poing®es exist. Consequently, a necessary and sufficient condition
Consequently, because the above equation must hold in that a unique absolute minimum exists at a finite valug &f
general case of arbitrary limits, the integrand must be O attéht the moment sequendg;,i = 0,1, ..., k} be completely
we can rearrange terms to solve for the unknown varigbt¢ monotonic [33]. We note that the derivation of such an
as shown in (8). existence condition is outside of the circuit simulation topic

and we therefore refer to [33] for its derivation.
p(x) —eXp< ZAI> (8)
A. Application to Statistical Circuit Modeling
However, the solution in (8) does not exist for values of We begin by drawing a small number of samples from

k > 2 [31]. Consequently, [32] propose that we transforrthe input variables and feeding them to a circuit simulator
the constrained problem into an unconstrained problem hy produce a set of outputs. These small number of outputs
utilizing its dual. Utilizing duality allows us to recast theare realizations of the random variable which are used
original problem of maximizing (3) into its dual form that weto construct the momentg; that are to be matched in the
can minimize. This dual function can be obtained by pluggingptimization. Note that probabilistic moments are typically
the results of (8) into the Lagrange function (3) resulting in itsalculated asu; = [ 2'p(z)dz. However, because we have

dual, which is represented by the two functions (9) and (1Gjo prior information about the shape or form of the distri-
We also note that the term, is simply a normalizing factor bution p(z), we cannot use this method. Consequently, we
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oy N N .
utilize sample momentg,; = leé-/N (N is the number vdd
Jj= .
of samples that we draw) to construct the moments for this WL WL

A
]

generic case[27]. By using sample moments, we ensure that | ﬁ wp5 wp6
the requirement for monotonic moments is satisfied because__ s )

the random variable: is assumed to be always positive (we BL
can always transform the circuit response to be positive).
Consequently, we are guaranteed that the estimated probability Mnl Mn3
distribution p(x) will be stable.

After obtaining the sample momenjs; for a seti = =
0,1, ...k we perform the maximum entropy moment matching
method using traditional Newton’s method. We initialize thejg. 3. 6T SRAM Circuit Layout
Lagrange multipliers to 0A = [0;0;...; 0], resulting in the
initial guess of the distribution as a uniform distribution. This
result is reasonable as the uniform distribution inherently has
the maximum entropy of all distributions. Next, we let the vb_p_II:I_‘Ir_|:||_vb_P
algorithm continue until the successive changes in multipliers
A; are within a user specified tolerance. As such, we obtain a

probability distributionp(x);, wherek denotes the number of | E] E |
moments that are used. II :I

| o Vout o |

B. Preliminary Results using MAXENT vin1 I: |—‘gn2 I: :I
Examples of this work are implemented as the MAX- | |
ENT algorithm and are shown in [26]. We implemented the

proposed algorithm in MATLAB. The first circuit is a 6-T . - o ,
SRAM bit-cell with 54 variables, while the second circuit is S -II':I ql' S
an Operational Amplifier with 70 variables. HSPICE is used +

to simulate these 2 circuits for circuit performance. Also, MC _ S

[8] and PEM [1] are used for comparison. PEM is anoth&f9- 4- Operational Amplifier Circuit Layout

circuit modeling algorithm that converts probabilistic moments

of circuit performance into corresponding time moments of .
: . constructed using the same set of moments. We can see that
an LTI system then uses Asymptotic Waveform Evaluati

(AWE) to match these time moments to the transfer functi(())'?'\EM is clearly dependent on bOth the numper of moments
d number of samples used. In Fig. 5 PEM is unstable when

Ol;r:z;tzftirlr;s '(Aevivinszﬁlse;)hg\afigfreip%fglg att;]lgn dc\)Nrr:]ilnusri\ng 18 moments constructed with 200 samples, but becomes
g P 9 P S aéle in Fig. 5b when using 18 moments constructed with

poles of the original system, anq _also poles that do ng 0 samples. However, PEM becomes unstable again in Fig.
correspond to the poles of the original system but aCCOL?c when using 18 moments constructed with 300 samples.

for the effects of the remaining poles [35]. ) .

Fig. 3 shows a schematic of the 6T SRAM bit cell. Thglearly, increasing the number of samples has produceq a
reading operation of the cell can either be a success or a fai|LSJPé of r_noments th_at allows PEM to be stable under scenarios
based on the voltage differendkV’ between the nodes L where it was previously unstable. On the other hand, we can

and BL. If the voltageAV is large enough to be sensed, theRee that MAXENT is stable in all 3 figures regardless of the

. = . mber of moments used or the number of samples used to
the reading operation is considered to be successful. Due to the o
L . : . . copstruct them. Furthermore, the MAXENT distributions show
process variations in every transistor, the discharge behavior' o . L
very good overlap with the Monte Carlo distributions.

BL will vary for different cells and conditions. Consequently, PEM' L : b ) he Pad .
the designed discharge behavior will have significant variation, S sensitivity arises because it uses the Pade approxi-

and if the behavior is drastically different, the voltagd” mation, which can produce sma_ll, positive poles, to estimate

may not be sufficiently large causing a read failure. Fig. a transfer function modelftha]:[ IS ysed, tq matcz rl‘n?mer;]ts.

shows a schematic of the Operational Amplifier that was usj’nce PEM uses a transfer function in its model for the
t

We considered the bandwidth of the amplifier as the circ stribution, these positive poles can produce the instability
performance to be modeled we see above. On the other hand, MAXENT is stable in all

of the previous cases. MAXENT is guaranteed to be stable if
N it uses monotonic moments and its stability is not sensitive
C. Stability to the order of moments that are matched or the number of
The stability of the two algorithms is clearly demonstratesamples that are used to produce these moments. Moreover,
in Fig. 5a, Fig. 5b, and 5c¢ which show the performandsecause MAXENT estimates its distribution as a product of
distributions that model the value &V in the 6T SRAM exponential functions, it will never have a negative probability.
circuit. In all 3 figures, both MAXENT and PEM were Consequently, we see that MAXENT is more robust when
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Fig. 5. Stability of PEM and MAXENT under different number of samples

although values of variance and kurtosis (moments 2 and 4) are
accurately calculated, the distributions generated using only 2
and 4 moments are inaccurate. Distributions generated with 2
and 4 moments are identical to an Exponential and Gaussian
distribution, respectively, due to the mathematical representa-
tion of the maximum entropy distribution [36]. This type of
inaccuracy is present in all moment matching algorithms and
these two orders were therefore excluded from the accuracy
tables.

error = / (1() - fole)) de (15)

—— Monte Carlo 4
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-~ - Maximum Entropy with 10 moments

Probabilty
T
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Fig. 6. Operational Amplifier Accuracy (800 samples)

TABLE |
ACCURACY COMPARISION

Circuit # Samples| Moment Order| PEM MAXENT
Error(%) | Error(%)
compared to other moment matching methods such as PEM. o et —som
SRAM 200 0 15577 | 3.281
12 9.4457 3.394
D. Accuracy Z 66038 | 3.181
Fig. 6 shows the different distributions generated by MAX- 13 122321 ;5%;23
ENT and PEM vs the ground truth distribution from MC op. Amp 200 1421 iég'ig 350-38%1
for the Operational Amplifier circuit. We see that using 10 ' ' 16 10205 | 5506
moments, MAXENT does a good job of estimating the overall ;g ?ifzg g-ggz
shape of the distribution but still lacks some detail. Increasing : :
the order of moments to 12 produces a distribution that
overlaps extremely well with the ground truth distribution.
On the other hand, PEM fails to give an accurate estimate TABLE Il
of the distribution with both 10 and 12 moments. When ACCURACY COMPARISON
moving from 10 to 12 moments with MAXENT, we saw a Circuit | # Samples| Moment Order] PEM | MAXENT
significant increase in accuracy. When moving from 10 to 12 - ErorCe) | Eror®)
moments with PEM, we see essentially no change in accuracy. 8 30251 | 5.331
Furthermore, we see that PEM produces an unreasonable, | SRAM 300 - Do o
negative probability in its distribution. 4 10.74 6.516
To quantify the accuracy results, Tables | and Il shows the - B R
relative error (calculated by (15)) for both MAXENT and PEM 1 11726 | 3851
in the 6T SRAM and Operational Amplifier circuits. As we Op. Amp.| 800 %‘ 11(?18-14100 gé%
can see from both tables, MAXENT offers up 100% less 18 94682 | 3.465
error for the OpAmp, and up 7% less error for the SRAM 20 89.264 | 3.568

circuit once we reach a steady-state value. We also note that
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IV. PIECEWISEDISTRIBUTION MODEL Here, the sigma value is simply the standard Z-score of a

In the previous section, we saw that MAXENT is a robus%tandard_ Nor_mal distribution?(Z > U)'_ On t_he_oth_er hanq, .
method for statistical circuit performance modeling. It guaral_tlhe gradler_1t IS constan_t for a Gaussian d|_str|but|on. This is
tees stability for monotonic moments and offers high accuraf strated in Fig. 8 which shows the gradient of the CDF
compared to other statistical modeling algorithms. Howev T a ngNormaI (non-Gaussian) distribution Vs a Ga}USS{an
we note that MAXENT is a global moment matching approa stribution. .Here,_ aIFhOL_lgh the LogNormal d|§tr|but|on is
which offers high accuracy in the bulk of the distribution, but & Mathematical distribution, we label the— azis of the
unlikely to capture the accuracy in the tail (high sigma) regiofrlgur? as C|rC_U|t _Behay|0r to emphasize that this type of
of the distribution. To this end, MAXENT is an insufficientc/cuit behavior is of interest. Consequently, we select the
approach when modeling the high sigma behavior of circfPtimal Segmentl distribution by choosing the one with a
performance distributions. monotonically increasing gradient.

In this section, we propose PDM (Piecewise Distribution
Model) to accurately and effectively model the high sigm
portion of non-linear distributions from circuits in high dimen- TV e ——— o
sionality. The motivation behind PDM is to accurately modeg a
the tail distribution of circuit behavior by using region specifit § >
moments. In general, moment matching techniques such 3
[1], [26] use moments that may accurately reflect the bulk ‘60 "
body of the distribution. However, these global approximatic : ' Sig3ma
methods use general probabilistic moments which give very
little information about the high sigma areas and thus féflg. 8. Slope of Gaussian vs Non-Gaussian Distribution
to accurately model the tail distribution. To this end, PDM
utilizes moment matching to approximate the high sigmain order to gauge the monotonicity of the gradient, we
distribution by usingregion specific momentshich capture turn to Spearman’s rank correlation coefficient [37]. Unlike
highly accurate information in regions of interest. In generahe conventional Pearon correlation coefficient, which directly
an arbitrary number of segments can be used to model thgeasures the correlation between two sets of variables, we
overall distribution. Without losing generality, we break thetilize Spearman’s rank correlation coefficient because it mea-
total distribution into two segments - the first distributiosures thanonotoniaelationship between two sets of variables.
(Segmentl) matches the low sigma region and is accur@gecifically, the correlation coefficient is a measure of
in the body (typically< 40) while the second distribution how well a set of data can be described using a monotonic
(Segment2) matches the high sigma region and is accuratdunction. A coefficient of +1 indicates strong correlation to
the tail (typically > 40). The flow of the method is shown ina monotonically increasing function while a coefficient of -
Fig. 7 while details are given below. 1 indicates strong correlation to a monotonically decreasing
function. To this end, we measure the gradient of the CDF
for various body distributions and compare the data set to a
) o . monotonically increasing set using Spearman’s Coefficient

To build the Segmentl distribution, we first draw samynq select the distribution with the largest, positive coefficient.
ples gi;i = {1,.., N1} from input parameter distributionsgig 9 compares various Segmentl distributions, each built
f(z3);5 = {1,..,p} wherep is the number of variables.yit 4 different number of moments, that are used for approxi-
Next, we simulate these samples using a circuit simulator #oating a non-Gaussian distribution. We see that the coefficient
obtain circuit behavior outputgi;i = {1,..., Ni}. Finally, for 5 of 6 distributions indicates that the gradient data set
sample probabilistic momenjs; are calculated and matcheds monotonically decreasing or uncorrelated. However, there
using MAXENT as outlined in [26], [33]. Depending onjs 5 single distribution using 14 moments with a coefficient
the number of moments that are matched, we will obtayfy , — .9, indicating it is a monotonically increasing set
different Segment1 distributions. However, the exact nuUmbghy should be used as the optimal Segment 1 distribution. In

of moments to be matched is unknown because we do REIheral, the optimal Segment 1 distribution may not have 14
know which set of moments map to different areas of thg,ments.

distribution [27]. Consequently, we sweep across a range of
valuesk = 5,7,9,..., K to build multiple Segmentl distribu-

tions and select a single, “optimal” Segmentl distribution ¢ 1 ‘ W o9
explained below.

o

© Gaussian Distribution

A. Building the Segmentl Distribution

W 0.054
W-0.16

B. Selecting the Optimal Segment1 Distribution

037

Spearman’s Correlation
Coefficient
o

One of the key characteristics of non-Gaussian distributio moze  W-068

is that the gradient of their CDFs are monotonically increasin
i.e. the change in circuit behavior for a fixed change in prob-
ability continuously increases as the sigma value increasgg. 9. Spearman’s Correlation of Distributions with Diéet Moments

o
>k

8 10 12 14
Number of Moments Matched in Distribution
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Phase 1: Build and Choose Phase 2: Shift Inputs, Build
Optimal Segment 1 Distribution Segment 2 and Estimate Prq;;

Parameters Performance pﬂm =P(H = terir)

Fig. 7. PDM contains 2 Phases: building the Segmentl disioitbiand selecting the optimal Segmentl distribution; shifting input parameters to build the
Segment2 distribution, and estimating the final probability

To confirm that this is the optimal choice of the above Once the input parameters are shifted, an additia¥al
example, we compare the estimated data from the selecsamnplesg;;i = 1,..., No are drawn and simulated yielding
Segmentl distribution (strong Spearman’s correlation), oaa outputy;;i = 1,..., No. To ensure that the moments
non-selected distribution (poor Spearman’s correlation), aade comprised of informatioanly in the tail distribution, we
the ground truth values as shown in Fig. 10. We see thaust first screen the simulated dgtasuch that only samples
the selected distribution matches very well with the grourttiat lay in the tail are used. To do this, we simply pick a
truth because both distributions are non-Gaussian and exhddituit behaviort* that separates the Segmentl distribution
monotonically increasing gradients. On the other hand, thed the next distribution, in this case Segment2. The value of
distribution with poor correlation is very inaccurate. We utilize* is obtained by selecting a sigma poinin the Segmentl
this combination of gradient and Spearman’s correlation thstribution and extracting the corresponding circuit behavior.
select the optimal Segmentl distribution used in PDM. Typically, s is chosen to be a sigma value between 3 and 4 as

this is where the long, flat region of the tail begins as shown in
3 R S Fig. 8. Next, the circuit behavior values are screened to obtain
wg = 1; > t*;k =1, ..., N3 whereNs is the number of points
beyondt*. Because the output was screened, we ensure that
the moments; shall only be reflective of the tail distribution’s
domain and not be polluted by information outside of it.
- Finally, to build the Segment2 distribution, we calculate
il ey, Mo ] 4 moments usingy; = [’p(xz)dx and match them using
1 1.2 14 16 1.8 2 22 24 26 238 3 . . . .
Sigma maximum entropy as in [26], [31], [34], [33]. The motivation
behind using only 4 moments is that this forces the maximum
entropy method to yield an exponential distribution as shown
in [36]. The exponential distribution is a good approximation

N o o of the tail as it is monotonically decreasing and can easily be
C. Shifting Input Distributions and Building the Segmentgptained using the maximum entropy method.
Distribution

The motivation behind shifting the input distributions is td. Reweighing Segment2 via Conditional Probability
draw more samples that yield an output in the tail of the orig- Once the Segment2 distribution is obtained, the probability
inal circuit behavior distribution. By generating more samplégr a specified circuit behavidt,.. can be obtained; however,
in this region, we can generate region specific moments thjill be inherently biased because the input parameters were
are highly accurate in the tail. To obtain momemsthat shifted to draw more important samples. To resolve this issue,
are specific to the tail of the distribution, we must shift thgie use conditional probability to “re-weigh” probabilities as
mean of the input parameter distributions framto 7 for follows
each input parameter individually. To shift the mean, we first
find the largest circuit behavioy,,., from the sety; used 5 5
when building the Segmentl distribution. The valueygf,. P(H 2 topec) = P(H 2 tspec| B2 ") x P(B 2 ) (16)
is directly impacted by the sampling algorithm and number &¥hereH is the random variable associated with the Segment2
samples inN;. Finding the optimaly,,.... is out of the scope distribution, B is the random variable associated with the
of this paper, and the,,., used in the proposed applicationSegmentl distributiont,,.. is the circuit behavior whose
attempts a shift towards the general vicinity of parameterobability is of interest, and* is the circuit behavior for
samples that produce tail-like circuit behaviors. Each circustgma points. The conditional probability relationship in (16)
behaviory; has a corresponding set of input sampjesfor works well when the two distribution¥ and B are identical,
each input parametgr= 1, ..., p. The largest circuit behavior i.e. if we are calculating conditional probability under one
Ymaz Will have a sample valug; for each input parameter distribution, or if they share the same mean. However, this
j =1,...,p. To obtain the shifted distributions, we simply shifequation does not hold true in the proposed algorithm. This is
the meann; of parameterj to the sampley;. demonstrated by rearranging (16) as shown in (17)

2.5

Fig. 10. Segmentl Comparison using Spearman’s Correlatesul®
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Before Scaling

P(H > tspec)
P(B > t*) = = °p
B2 = P>t B> )

’

a7)
After Scaling

For a new point the relationship is

spec? True Distribution

R

P(H >t,,.)=P(H >t,,|B>t)P(B>t) (18) >
, Fig. 11. Shape Issue in Conditional Probability
P(B>t)= PUH 2 tye.) 19
R vy B
R . 17 d (19 q ] h V. EXPERIMENT RESULTS
earrangin an and equating the common ter _ .
yields ging (17) (19) d g ,&n Experiment Settings
We implemented PDM in MATLAB using simulation out-
/ puts from HSPICE. PDM is compared with Monte Carlo, mo-
> ) . . i X
P(B>t)= PH 2 topec) — = P(Hl— Lopec) - ment matching algorithm MAXENT [26], High Dimensional
P(H 2 tspec|B 2 1*)  P(H 2 ty,..|B 2(1528) Importance Sampling (HDIS) [17], and subset simulation

. . . 7 (SUS) [25] to demonstrate that it offers significant speedup
Clearly this relationship holds perfectly when the distrib while maintaining higher accuracy than other methodologies

tions from the_numerato_r and_ denom_mgtor (oint and coNGat are targeted towards modeling the high sigma behavior of
tional, respectively) are identical as in importance sampli cuits

algorithms such as [17]. However, because PDM performs t er
re-weighing process in the output domain, the modeled tail ang
the true distribution may be shaped extremely differently. IQ
other words, because tligand H distributions are necessarily A

two different random variables, the relationship in (16) must .. values and are compared to Monte Carlo as ground

e : ; D
be mod_|f|ed to account for the shape m|smatch_th§1t "?h?lfuth. The Monte Carlo results were generated with roughly
ently arises due to the unknown shape of the dlstrlbutlo%;E6 samples for the Time Critical Path ardbEG samples

t

Consequently, we propose a dynamic scaling technique é‘vthe Operational Amplifier. Additionally, we compare the
s

3.‘"‘3'.‘;)02?‘"3’ brewelghsl_thef prtobablll_lrt_]y und?r thfe tSegm(tan ults to the MAXENT algorithm to show the improvements
istribution by a scaling factors. The scaling factor acts using a piecewise distribution model rather than a global

as a heuristic correction factor that is calculated based QBproach We also compare the results to HDIS to show

tt)heh|nQ|cator funcUgnthof tthtelsubsiik 0]; thet entire crllrcwt that the re-weighing portion of PDM is accurate and robust
ehavior space, and the total number of outpugsas shown for high dimensional circuits because it is independent of

n (22). Each approximation OT different,.. values _has_ a dimensionality. The independence is due to the re-weighing

different value of beta due to different values of the 'nd'cat%rrocess occurring in the output domain where there is only

function (21). a single variable. The source code of SUS is also obtained
from its original authors for cross evaluation. Table Il gives

he algorithm was tested against the mathematically known
gNormal distribution, along with the high sigma delay of

six stage clock path circuit and gain of an Operational
mplifier. The results show the estimated sigma for multiple

I(wn) 0 if wi < tspec (21) an overview of the variables used in each circuit.
Wk ) = .
1if wg = tspec
TABLE Il
N3 I( ) PARAMETERS OFMOSFETS
Wk
B = Z N. (22) Variable Name Time Critical Path| OpAmp
k=1 3 Flat-band Voltage i
. . . . . . Threshold Voltage
Using this scaling factor yields the final probability of a Gate Oxide Thick%ess
specified circuit behaviot,y.. as (23) Mobility
Doping concentration at depletion|
Channel-length offset T
* " Channel-width offset
P(H > tspec) = P(H > tspec|B > t")*P(B > t*)x [ (23) Source/drain sheet resistance
) . ) Source-gate overlap unit capacitance T
Fig. 11 shows an example of the difference in shape between [ Drain-gate overlap unit capacitance i

the true tail distribution, the unscaled Segment2 distribution

and the scaled Segment2 distribution. Additionally, we note The time critical path circuit has six stages and nine process
that both Segmentl and Segment2 distributions are guarantpameters per transistor for a total of 54 variables, while
to be stable, i.e. they will have a non-negative probability artde circuit behavior of interest is the delay from input to
therefore the CDF is guaranteed to be monotonic. This natutput. Fig. 4 displays a schematic of the two-stage differential
rally arises because both distributions are calculated using ttescode operational amplifier, and is the same circuit as in
maximum entropy method and all moments in both segmef#§]. The circuit has a total of thirteen transistors and four gain
are monotonically increasing. boosting amplifiers. In total, only ten transistors are considered
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to be independently varied. However, transistors in the gaime points that separates Segmentl and Segment2 is selected
boosting amplifiers are also varied, though due to the mirrortml be the 4 sigma point, i.e. whatever circuit behavior that
properties of the circuit they are varied simultaneously and azerresponds to a tail probability 6f4F — 5 in the Segmentl
counted as one variation. As such, although each transistor Hestribution. By introducing the Segment2 distribution at the
seven process parameters resulting in a total of 70 variablpsint s, PDM is able to avoid any errors that MAXENT
the true number of variables is much higher. In the proposesdffers from, allowing PDM to match almost identically with
algorithm, the circuit behavior of interest is the g%ﬁ% the Monte Carlo results up to 4.8 sigma. By utilizing region
specific moments and doing a piecewise approximation of the
distribution, PDM keeps consistently small errors. On the other
hand, the MAXENT algorithm begins to lose accuracy and
fails to capture the tail of the distribution because it only uses

B. Experiment on Mathematical Distribution

007 : ; ; ; ; one distribution to model the overall behavior.
oosf . Furthermore, we see that all the high sigma modeling
005 1 methods, HDIS, SUS, and PDM have accuracy comparable
goour 1 to Monte Carlo (with less than 0.1*sigma deviation). We can
goor 1 observe some deviations from Monte Carlo on PDM and SUS,
oo 1 but as statistical algorithms, those deviations are expected and
oo 1 are within tolerance as they are small and unsystematic. Table
o i 2 s z s D IV shows the error in estimated sigma for PDM. The error is
between -0.25% and 2% all the way to the 4.8 sigma point.
Fig. 12. LogNormal PDF We also note that MAXENT and PDM doot assume the

distributions to be matched are Gaussian distributions because
To illustrate the capability of modeling strongly nonthey do not match only 3 moments. [36] outlines that the
Gaussian distributions, we use PDM to model a LOgNOI‘mﬁ{aximum entropy moment matching method can be forced
distribution. The LogNormal distribution with mean and sigmg assume a Gaussian distribution if we match exactly 3
parametersy = 0, o = 0.35 was selected because of itsnoments. However, because we sweep through a wide range
strongly non-Gaussian behavior. A plot of the PDF of thisf moments for both MAXENT and PDM, we, in general, will
distribution is presented in Fig. 12. The distribution appeag@ver pick a Gaussian distribution because it does not agree
to be Gaussian for a small portion due to the bell shap@gh the gradient criteria selected by Spearman’s correlation
curve, but it has a very long tail, giving it the non-Gaussiagoefficient. Consequently, the high error that MAXENT suffers

properties that are of interest. from is due to its limitation of using one set of moments, not
from any assumptions about its model.
s4r o TABLE IV
o / 1 SIGMA ERROR FORLOGNORMAL

LogNormal Value

5F 4
48r ; ] True Sigma| Estimated Sigma % Error
ol ] 70 4.0786 1.0650%
42 ~

4

—8— Monte Carlo] | 4.2 4.2224 0.5333%
ue// —e— PDM 4.4 4.3886 -0.2591%
)

e ient || 15 45888 | -0.2435%

sus I 4.8 4.8569 1.1854%

I
2 4.4 4.6 4.8 5
Sigma

38 A‘t
Fig. 13. LogNormal Sigma Behavior C. Experiments on Circuits

Fig. 13 shows the high sigma modeling results for Mont
Carlo, PDM, HDIS, MAXENT, and SUS at multiple,,..
points. The figure is the CDF zoomed into the tail area with tt
x-axis as sigma and y-axis as the value of the random variat
precisely circuit behavior. Here sigma is used to represe
probability, i.e.40 ~ 0.000064 in the tail. The motivation for
this type of plot is to best represent the non-linear behavi
of a non-Gaussian PDF. Additionally, it shows only the hig
sigma behavior rather than the overall distribution because tl
is the motivation and focus behind this algorithm.

While the number of samples required for SUS ranges fro..
5800 to 7400 in the experiment setup, HDIS, MAXENT angig. 14. Clock Path PDE
PDM each used a total of 4000 samples, with PDM using
3000 samples to calculate the Segmentl distribution and 1000 he Monte Carlo distribution of the time critical path circuit
samples to calculate the Segment2 distribution. In this caskelay is presented in Fig. 14. Because the circuit operates at a

Probability
o o o o
S 8 f &
¥ ; :

o

2

2
T

oo
o

1 15
Delay [s]
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very low VDD level, it behaves in a slightly non-linear wayestimation error in one phase may accumulate and propagate to
The distribution, while not as long tailed as the LogNormathe next. When the problem scales to higher sigma values, SUS
has a more elongated tail than a Gaussian distribution.  would require an increased number of phases to better cover
the smaller failure region, which may lead to an unwanted
2572, : : : : runtime overhead. On the other hand, a smaller number of
phases results in larger deviation from the MC estimate as
was mentioned above. Compared with SUS, PDM results stay
closer to MC with less than 0.1*sigma deviation.
Furthermore, we see that the results from HDIS are com-

24

231

Delay/s
N
N

il o | pletely inaccurate compared to both Monte Carlo and PDM.

di / +§5;><SENT i HDIS is unable to come anywhere near the proper sigma value

1ol ¢ — T E—r— - = - for any of the points that it estimates. This is likely inaccurate
sioma from a combination of high dimensionality and an inaccurate

shift in the mean and sigma of the new sampling distribution
that causes the re-weighing process to again become inaccu-
Fig. 15 shows the high sigma modeling results for Montate. Simply put, if the shifting method is inaccurate the results
Carlo, PDM, HDIS, MAXENT, and SUS at multiple,,.. from HDIS will be inaccurate. If a larger number of samples
points. HDIS, MAXENT and PDM each used a total ofs used, then the shift and corresponding samples drawn from
4000 samples, with PDM using 3000 samples to calculatee new distribution will be more accurate; however, due to
the Segmentl distribution and 1000 samples to calculate the run time prohibitive nature of high dimensional circuits, it
Segment?2 distribution. Once again in PDM, the pain$ the is imperative to minimize the number of samples. On the other
4 sigma point from the Segmentl distribution. By introducingand, the shifting method in PDM is more robust because the
the Segment2 distribution at the poirf PDM is able to re-weighing process is performed in the output domain and is
avoid any errors that MAXENT may suffer from. This is mosperformed using conditional probability rather than as a ratio
apparent at the 4.4 sigma point and beyond. Additionallgf two distributions. Table V shows the error in sigma between
PDM is able to capture the increase in slope as the circ®DM and the ground truth from Monte Carlo. We see a worst
approaches higher sigma. On the other hand, MAXENT is alidase error of 2.7% at 4 sigma but significantly less errors at
to perform somewhat well up to 4.2 sigma but then blows uggher sigma values.
and becomes completely inaccurate afterwards. The significant
increase in accuracy with PDM is, again, due to matchir o0
region specific moments that allow piecewise approximation oort
the distribution. Because MAXENT uses a single distributio o05r
to make a global approximation it is unable to capture the t:
of the distribution and instead models the high sigma poir

Fig. 15. Clock Path Sigma Behavior

Probability
o o

purely as noise. We again note that MAXENT does not assut ol
the distribution is a Gaussian model, so its error is due oo}
limitations of using one set of moments to model the toti 3 s 1000 o) 2000 = 5000

Gain

distribution which PDM does not suffer from.

SUS uses between 5803 and 9010 samples for differeqf 16. op. Amp PDF
sigma points, which is slightly less efficient compared to PDM
(4000 samples). In terms of accuracy, the probability estimatedThe Monte Carlo distribution of the Operational Amplifier
by SUS follows the same trend of MC and PDM, i.e., the cunarcuit gain is shown in Fig. 16. The distribution is heavily
from SUS is almost parallel to the curves of MC and PDM askewed and has a very sharp peak near the beginning and
illustrated in Fig. 15. However, if we compare the probabilitproceeds to drop very quickly, However, it also has a slightly
estimated by PDM and SUS in Fig. 15 in detail, we can finflatter portion that eventually decreases to a long, flat region
that at lower threshold (1.98ns), SUS has the smallest deviatafrthe tail. It clearly has a long tail and behaves in a strongly
(about 0.04*sigma at 4 sigma) from MC. As we move towardson-Gaussian way.
higher thresholds, and thus allow less failure samples, we find~ig. 17 shows the high sigma modeling results for Monte
that the deviation between the estimated probability of MC ari@arlo, MAXENT, and PDM at multiplet,,.. points. The
SUS grows constantly, i.e. 0.13-0.15*sigma at 4.2-4.6 signfaggure shows only the high sigma behavior rather than the
and finally 0.29*sigma difference at 4.8 sigma. SUS does naterall distribution because that is the motivation and focus
experience such notable estimation error on the 1-dimensiohahind this algorithm. Both MAXENT and PDM used a total
lognormal distribution. However, at high dimensions, sample$ 3000 samples, with PDM using 2000 samples to calculate
generated by only a few Markov chains could be insufficiethe Segmentl distribution and 1000 samples to calculate the
to cover the entire failure region(s), leading to large deviatidbegment2 distribution. In the case of the OpAmp, the point
compared with MC. Moreover, as samples in each phasavas determined to be the 3.6 sigma point rather than the 4
of SUS are generated with a modified Metropolis (MM§igma point as in the previous cases due to the extremely long-
algorithm using the previously failed samples as the seed, théed nature of the distribution. Before the pointit's clear
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2000 : . ‘ : D. Speedup Comparison
ZZ: o n ] To analyze the efficiency of the_ proposed method, we com-
ol / | pare the number of samples required by PDM to the number of
£ ool | samples used for Monte Carlo. Since the LogNormal distribu-
® ool ' | tion is a mathematically known circuit and requires no Monte
sa00} / ==l Carlo simulations, we exclude that speedup comparison. In
23001 —o—AXeNT the clock path circuit, PDM requires a total of 4000 samples -
2200 35 . a5 5 3000 samples for the body distribution and 1000 for the hybrid
some distribution. In the Operational Amplifier, PDM requires a total
Fig. 17. Op Amp Sigma Behavior of 3000 samples - 2000 samples for the Segmentl distribution

and 1000 for the Segment2 distribution. Table VI compares the
Monte Carlo and PDM runtime requirements and the speedup

that PDM has a larger error (roughly 5%) than in previo€ all circuit examples. We note that the speedup of the
cases. However, when we introduce the Segment2 distributi@forithm compared to Monte Carlo will vary based on the
PDM is able to immediately recover and match the 3.8 sigridlmber of samples that are used; however, it is clear that PDM

point closely and continues to match larger sigma points aRgers & significant speedup at very little loss in accuracy.

the overall shape of the Monte Carlo curve very well. By
introducing this second “piece” to model the distribution, we
are able to get a significant increase in accuracy. On the other

TABLE VI
SPEEDUPCOMPARISON

hand, the MAXENT method has a large error, blows up and Circuit Mgntet_carlo RPDtM Speeduq
returns noise values because it is unable to capture the tail of ToeK P —B.000.000- 400030005
the distribution as it does not use moments that are specific Op. Amp.| 2,500,000 | 3000 | 833z

to that region. We again note that MAXENT does not assume
the distribution is a Gaussian model because it matches more
than 3 moments. Hence, its error is due to limitations of using V1. CONCLUSION

one set of moments to model the total distribution. In this paper, we presented two novel algorithms for sta-
The SUS algorithm used between 5004 and 8216 sampiRsical performance modeling of circuits. The first algorithm
at different sigma points. While SUS is able to capture thgas based on the maximum entropy moment matching method
overall trend and shape of the Monte Carlo results, the sigWich was originally proposed in the communications and
estimated by SUS is pessimistic with respect to Monte Card@ynal processing field. The MAXENT algorithm is provably
and tends to slightly overestimate the true sigma value, wigfable under general statistical circuit analysis methods. Ex-
small pessimism at lower sigmas (3.7 vs 3.6) and highgérimental results indicate that it offers high accuracy and
pessimism at larger sigmas (5.1 vs 4.8). The results obserégshility when compared to other moment matching methods
on this circuit are similar to those on the clock path circuifi], [3]. However, MAXENT is unable to accurately model the
indicating a growing deviation between MC at higher sigmagigh sigma behavior of non-Gaussian circuits and is therefore
We see that the results from HDIS are inaccurate and wnsuitable for yield analysis. To this end, we proposed PDM
one point has a huge jump in its results and is simply noisya piecewise distribution model that performs region based
throughout. Although the Operational Amplifier circuit is nomoment matching to extract the PDF of circuit performance.
as high dimensional as the Clock Path, HDIS is still unable #DM is provably stable because it is based on the maximum
properly model the high sigma region. Again, the inaccuragntropy method. Furthermore, it is able to model the high
is most likely from an inaccurate shift in the mean and signsigma regions of the circuit performance PDF. In particular,
of the new sampling distribution that causes the re-weighimgge introduced a second distribution based on a set of moments
process to again become inaccurate. Table V shows the ettt are accurate in the tail of the PDF leads to significantly
in estimated sigma between PDM and the ground truth froimproved accuracy over MAXENT [26] with little error com-
Monte Carlo. We see very accurate results with a worst cgzsared to Monte Carlo.
error of about -1% at 4.2 sigma. We demonstrated that PDM performs as well or better
than other state-of-the-art statistical modeling methodologies
[26], [17], [25]. The importance sampling technique in [17] is

TABLE V inaccurate for high-dimensional circuits due to the “curse-of-
SIGMA ERROR FORCIRCUITS . . - L .
dimensionality” [21] from the re-weighing procedure applied
Time Critical Path Op Amp to every input parameter that is shifted. While PDM employs
True | Estimated| % Error| True | Estimated % Error .. . i . s .
Sigma| sigma Sigma| Sigma a similar input p_arameter shlftlng, its r_e-vyelghlng _procefjure is
j-g j-;g;; igggz//o 2-2 3-(11(53‘113 (1-%37;56%/0 performed only in th@utputdomain which is one-dimensional
AT 080 T8t 42386 087739 a_nd _thus avoids issues with the de_g_eneration ar_ld_ unbounded
4.6 | 45793 |-0.450%| 46 | 4.6329 | 0.7152% distribution support. Consequently, it is able to efficiently han-
7.8 | 48517 | 1.077%| 4.8 | 4.7662 | -0.7042%

dle high-dimensional cases without instability. Finally, SUS
offers higher accuracy than both MAXENT and Importance
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Sampling, especially in the lower-dimensional experiments4] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking the
The estimates from SUS match the general trend of those
from MC and PDM, and often provides the very high accuracy
at lower sigma values. However, at higher sigma values SiS]
suffers from some inaccuracy on both high dimensional circuit
examples, on which the failure regions are difficult to capture
with only a few Markov chains. Furthermore, because SUS

generates samples in each phase using the previously falféd
samples as the seed, estimation errors in one phase may
accumulate to the latter phases.

[17]

In the future, we plan to develop a weighted moment

matching based approach that allows us to pick and choose the

important moments of a distribution. The motivation behings)
this is not all moments are important to the distribution, e.g. in
a Gaussian distribution only even order moments are non-zero,
and therefore applying more weight to “important” momentso)
may help improve accuracy and reduce noise.
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