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Abstract—The impact of process variations continues to grow
as transistor feature size shrinks. Such variations in transistor
parameters lead to variations and unpredictability in circuit
output and may ultimately cause them to violate specifications
leading to circuit failure. In fact, timely failures in critical circuits
may lead to catastrophic failures in the entire chip. As such,
statistical modeling of circuit behavior is becoming increasingly
important. However, existing statistical circuit simulation ap-
proaches fail to accurately and efficiently analyze the high sigma
behavior of probabilistic circuit output. To this end, we propose
PDM (Piecewise Distribution Model) - a piecewise distribution
modeling approach via moment matching using maximum en-
tropy to model the high sigma behavior of analog/mixed-signal
(AMS) circuit probability distributions. PDM is independent of
the number of input dimensions and matches region specific
probabilistic moments which allows for significantly greater
accuracy compared to other moment matching approaches.
PDM also utilizes Spearman’s rank correlation coefficient to
select the optimal approximation for the tail of the distribution.
Experiments on a known mathematical distribution and various
circuits obtain accurate results up to 4.8 sigma with 2-3 orders of
speedup relative to Monte Carlo. PDM also demonstrates better
accuracy while compared against other state-of-the-art statistical
modeling approaches, such as maximum entropy, importance
sampling, and subset simulation.

Index Terms—Moment matching, High dimensional, Maxi-
mum Entropy, Probability density function, Circuit modeling

I. I NTRODUCTION

A S transistor feature size continues to shrink, the impact
of process variations on circuit behavior, such as delay

or gain, grows and cannot be neglected [1], [2], [3], [4],
[5]. Under these variations, circuit behavior is no longer a
deterministic value and must be characterized by a random
variable rather than a nominal value. These variations can
cause significant circuit performance degradation that may
not meet the design spec and fail. As such, circuit reliability
has become an area of growing concern. In particular, for
circuits that are repeated millions of times, a small failure

R. Krishnan and W. Wu are with the Department of Electrical En-
gineering, University of California, Los Angeles (email: [r.krishnan390,
weiwu2011]@ucla.edu)

L. He is with China State Key Laboratory on Application Specific IC and
Systems at Fudan University and the Department of Electrical Engineering,
University of California, Los Angeles (email: [lhe]@ee.ucla.edu)

S. Bodapati is with Intel Corp., Santa Clara, CA (email: [srini-
vas.bodapati]@intel.com)

Manuscript received: June 20, 2015; revised: September 19, 2015 and
December 12, 2015; accepted: Apri 9, 2016.

This work was partially supported by Intel and China State Key Laboratory
on Application Specific IC and Systems at Fudan University. Lei He’s portion
of work was performed during his visit at Fudan.

probability may lead to catastrophic results in the entire chip.
Consequently, such “rare event” failures must be accurately
and efficiently modeled to maximize the effective yield of a
circuit.

As industry moves towards more energy efficient chips,
minimizing power consumption becomes increasingly impor-
tant. In such designs, low supply voltages (VDD) are often
used to reduce power. However, while VDD is explicitly
reduced the overdrive voltage (Vgs−Vth) is implicitly reduced
[6]. In the presence ofVth variations from the manufactur-
ing process, transistors may enter the subthreshold operation
region causing a strongly non-linear circuit behavior. This
non-linear behavior translates to circuit behavior distributions
becoming strongly non-Gaussian (see Fig. 14). Consequently,
when modeling this behavior for yield analysis, it is necessary
to consider the inherent non-linearity that arises due to the
aforementioned reasons.

Although there are many methods that attempt to model
overall circuit behavior [1], [3], [7], very few of them ef-
ficiently model the high sigma behavior of strongly non-
Gaussian distributions. One brute force method is Monte
Carlo (MC), which is considered to be the gold standard
approach; it involves repeated sampling and simulation to
extract an approximate distribution of circuit behavior [8].
Although Monte Carlo is highly accurate, it is infeasible for
yield analysis with small failure probability because it requires
millions of samples/simulations for an accurate measurement,
making it runtime prohibitive despite some parallelization
efforts [9], [10], [11]. Moreover, if any design changes are
introduced in the circuit we must repeat these simulations
another million or more times.

In order to improve the efficiency of yield analysis, fast
MC approaches such as Importance Sampling (IS) [12], [13],
[14], [15], [16], [17], [18], and classification based approaches
[19], [20] were proposed to obtain high accuracy with a
minimal number of samples. However, Importance Sampling
methods can rarely handle circuits with a large number of
variables due to the “curse of dimensionality” which causes
the reweighing process to become degenerate and unbounded
[21], [22]. Classification based approaches, such as statistical
Blockade [19], [23], attempt to build a linear classifier to
screen out/block samples that are unlikely to cause failure,
and evaluate these “likely-to-fail” samples to calculate a failure
probability. However, the classifier used in Statistical Blockade
[19], [23] does not account for the non-linearity between
process variables and circuit outputs, or the multiplicity of
input failure regions, leading to large errors. The nonlinear
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classifier separates the “likely-to-fail” samples with better
accuracy [20], but has difficulty in accurately defining the
“likely-to-fail” samples. On the other hand, defining only a
small portion of samples as “likely-to-fail” leads to skewed
classes that require separation - while adding more samples
to the “likely-to-fail” side balances the classes, it could make
classification based approaches inefficient.

Among others, the Scaled Sigma Sampling (SSS) [24] and
subset simulation (SUS) [25] approach the rare failure prob-
ability via different avenues. SSS draws samples by scaling
up the standard deviation (sigma) of the original distribution,
while using the same mean. Failure probabilities are calculated
at different scaling factors to extrapolate the failure probability
under the original distribution, i.e. scaling factor equal to 1
[24]. However, SSS is susceptible to accuracy loss due to
the extrapolation requirement. Alternatively, SUS approaches
the rare failure probability as the production of several, large
conditional probabilities estimated in multiple phases [25].
Samples in each phase are generated with the aid of the
Markov Chain Monte Carlo (MCMC) method.

Unfortunately, the majority of existing approaches do not
efficiently handle a significantly high dimensional problem.
While [12], [13], [14], [15], [16] are only verified on SRAM
cells with 6 variation parameters, there are still some ap-
proaches that do handle the high dimensional problem, such
as [17], [24], [25]. Furthermore, most existing approaches do
not estimate the overall PDF of circuit behavior, requiring
repetitive sampling to estimate different critical points causing
significant runtime overhead.

To combat the dimensionality issue of the above meth-
ods, we introduced a moment matching technique based on
Maximum Entropy [26] (referred to as MAXENT), which is
elaborated upon in Section III. The method is novel because
it uses circuit output behavior (e.g. delay) as its only input
and therefore performs moment matching solely in the output
domain. Consequently, the method is constant in dimension-
ality and thus does not fall to the dimensionality issues in
Importance Sampling and classifier methods outlined above.
We observed that MAXENT is very accurate in the bulk of
the distribution, but is often inaccurate in the tail region where
rare events are modeled. This limitation is because MAXENT
uses only one set of moments that are accurate in the low
sigma region but inaccurate in the tail. Obtaining moments
that are accurate in the tail of the distribution (also known
as the high sigma region) requires both a large number of
samples to obtain accurate moments and knowledge of which
exact moments reflect behavior in the tail of the distribution,
which is often unknown [27]. Consequently, the distribution
that MAXENT uses is formulated on a global optimization
framework that attempts to minimize overall error, making it
difficult to capture the high sigma behavior in non-Gaussian
distributions.

To address both the issue of high-dimensionalityand non-
Gaussian distributions while maintaining high accuracy and
efficiency, we propose a piecewise distribution model (PDM)
that uses moment matching via maximum entropy to build
multiple separate, region-based distributions of circuit behav-
ior. Without loss of generality, we consider a distribution as

two segments in the rest of this paper. The first distribution,
Segment1, matches moments that are accurate only in the
body/bulk of the distribution. The second distribution, Seg-
ment2, matches moments that are accurate only in the high
sigma/tail region of the distribution and models the tail of
circuit behavior. Both distributions are constructed using the
maximum entropy moment matching technique but differ by
using two different setsof moments. The moments in Seg-
ment1 are obtained by using circuit behavior sample moments
calculated directly from the original input (process variation)
distributions. The moments in Segment2 are obtained using
sample moments calculated from input distributions that are
shiftedtowards regions that are more likely to fail. The details
of moment calculation are elaborated upon in Section IV.

The optimal Segment1 distribution is selected using Spear-
man’s rank correlation coefficient to analyze the monotonic
behavior of the CDF. The Segment2 distribution is assumed
to be an exponential distribution. Because this distribution is
constructed from shifted moments, its probability must be re-
weighed and is done so using conditional probability and a
scaling factor that corrects for continuity between the Seg-
ment2 distribution and the true model of the tail distribution.

PDM has a constant complexity in terms of input dimen-
sions as it works solely in the output (circuit behavior) domain.
Experiments on both a mathematically known distribution and
circuits demonstrate the method is accurate up to 4.8 sigma for
non-Gaussian distributions with more than 2 orders of speedup
relative to Monte Carlo, which is typically sufficient for analog
circuits that are reused, such as differential amplifiers, bias
circuit, or even PLLs, level shifters, etc.

The performance of PDM is compared against the maximum
entropy moment matching technique [26], high dimensional
importance sampling [17], SUS [25], and Monte Carlo. The
statistical modeling approaches are compared on both low-
dimensional and high-dimensional problems, in addition to
ideal (mathematical) distributions and realistic circuits. Run-
time is evaluated by the number of samples required by each
algorithm, and accuracy is compared against Monte Carlo.

The rest of the paper is organized as follows. Section II
presents background on general statistical modeling. Section
III introduces a detailed derivation of the maximum entropy
moment matching technique, along with results on its applica-
tion to circuit modeling [26]. Section IV presents the proposed
piecewise distribution model and highlights the difference be-
tween it and the general maximum entropy moment matching
technique. Section V evaluates the performance of PDM on
the mathematically known distribution, one digital circuit, and
one analog circuit, where all distributions are non-Gaussian.
Section VI concludes this paper and presents some topics for
future work.

II. BACKGROUND

A. General Statistical Modeling

Fig. 1 shows the flow of performing statistical simulation
on a circuit. Instead of simulating a circuit with deterministic
parameters a single time, we model the circuit parameters,
such as effective channel lengthLeff or oxide thicknesstox,
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Fig. 1. Flowchart for Circuit Simulation

as random variables. These variables form the “parameter
domain” as the input of the statistical simulation. Without
losing generality, we model these variations as independent
Gaussian distributions.

Given N input random variables, we draw a single sam-
ple x1 which can be represented as the vectorx1 =
[x1,1, x1,2, ..., x1,N ]. By feeding samplex1 to a SPICE-
accurate circuit simulator, we can obtain a circuit response
y1. The circuit simulator acts as a non-linear map from input
samples to circuit response. These circuit responses, such as
50% delay or voltage at a node, are considered part of the
“output domain”.

Repeating this sampling and simulation process is straight-
forward Monte Carlo and is used to obtain an estimate of
the distribution/probability density function of circuit response
[8]. Depending on the required accuracy of the response, the
required number of samples will change. In some cases, a few
hundred samples are required to estimate the probability of
a circuit response around the nominal value of the PDF. On
the other hand, it requires millions or even more samples to
model the tail of the distribution, corresponding to the rare
failure events, which is important for highly replicated circuit
cells or critical circuit components.

One method of quantifying the required number of sam-
ples for a target probability is simply taking the inverse.
For example, consider a designer that is interested in the
circuit response that will result in a failure rate of 16%. This
means that we are interested in a circuit response that has
approximately 16% probability in the tail of the PDF. This
failure rate corresponds to approximately 1 failure every 6.25
samples, so a starting point would be drawing 7 samples,
simulating each and selecting the largest value. However, the
preceding case assumes that we will determinately see 1 failed
sample every 6.25 which may not be true due to the large
variations and unpredictability in the circuit. Consequently, in
order to have a more confident estimate, we may require that
we draw enough samples such that we have 5 failures, i.e. we
would draw 32 samples. By using basic probability, we do
not make any assumptions about the shape of the circuit PDF
allowing for an unbiased estimate. Furthermore, to simplify
the relationship between estimated probability (failure rate)
and required number of samples, we utilize the Z score of a
standard normal distribution which is typically referred to as
the “sigma” value [27]. For example, instead of asking for the

circuit response that gives a16% failure rate, we would ask for
the “1 sigma point” of the PDF. Note that the aforementioned
probability and Z score methods work for both ends of the tail
of a PDF.
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Fig. 2. Required samples for various sigma (probability) points

In typical yield analysis, we require a failure rate of at
least 0.003167% or approximately 4 sigma. Obtaining this
probability would require one failure every31, 575 samples.
In many cases, this is the “largest” probability that is required
and we typically need up to the 4.8 or 5 sigma point in the
PDF, which corresponds to roughly3.4E6 samples for one
failure. Furthermore, simulating this many samples is overly
time consuming, making straightforward Monte Carlo runtime
prohibitive. Fig. 2 shows the required number of samples (log
scale) for a given sigma point (linear). We see that even in log
scale, the required number of samples is non-linear. Although
more efficient sampling approaches, e.g. Quasi Monte Carlo,
Latin Hypercube Sampling, etc. [28], might be used, they are
still insufficient to analyze the rare failure event.

Alternative methods such as Quasi Monte Carlo may be
utilized, however they still require a large number of samples
and it can be shown that as the dimensionality of the sampling
space increases (in this case, the input domain), the conver-
gence rate of QMC and MC are similar [28]. Consequently, it
is necessary to develop efficient algorithms that minimize the
number of samples to accurately estimate a very small failure
probability.

III. M AXIMUM ENTROPY METHOD FORSTATISTICAL

CIRCUIT PERFORMANCEMODELING

Entropy is a measure of uncertainty. When choosing a
distribution, one should choose a distribution that maximizes
the entropy [29]. By doing this, the distribution is uniquely
determined to be maximally unbiased with regard to missing
information, while still agreeing with what is known [29].
Consequently, the distribution with the maximum entropy will
create a model based solely on the true information that is
provided and will be less susceptible to assumptions from
missing information. The entropyW of a distributionp(x) is
defined in (1). To select the distribution with the least missing
information, we maximize the entropy function with respect to
a set of probabilistic moment constraints (2), as a probability
distribution can be completely defined by its set of moments
[30]. When applying the maximum entropy method to circuit
simulation algorithms, we consider probabilistic sample mo-
ments of circuit response with moment orderi = 0, 1, ..., k.
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W =

∫

−p(x) log p(x)dx (1)

∫

xip(x)dx = µi, i = 0, 1, ..., k. (2)

To maximize (1) we first introduce Lagrange multipliers,
resulting in the Lagrangian function

L = −

∫

(p(x) log p(x))dx +
k
∑

i=0

λi(

∫

xip(x)dx − µi) (3)

Next, we take partial derivatives ofL with respect top(x)
andλ to find the points where it reaches a maximum, as shown
in (5) and (4).

δL

δλi

= 0 (4)

δL

δp(x)
= 0 (5)

Taking the derivative with respect toλ results in the original
moment constraints from (2) and is redundant information. The
derivative with respect top(x) yields (6)

δL

δp(x)
=

∫

(log p(x)dx) + 1− {

k
∑

i=0

λi(

∫

(xidx))} = 0 (6)

We can further simplify this by absorbing the constant1 into
the λ0 term and combining the finite sum with the integrand
resulting in (7)

∫

(log p(x)dx) −

∫

(

k
∑

i=0

λix
idx) = 0 (7)

Note that the limits on both integrals are identical and are
typically from∞ to −∞ for standard probability distributions
because the distribution is assumed to be 0 outside of the
support of random variablex. In the case of circuit simulation
algorithms, this is also true, i.e. the circuit has maximum and
minimum operating values and is zero outside these points.
Consequently, because the above equation must hold in the
general case of arbitrary limits, the integrand must be 0 and
we can rearrange terms to solve for the unknown variablep(x)
as shown in (8).

p(x) = exp

(

−

k
∑

i=0

λix
i

)

(8)

However, the solution in (8) does not exist for values of
k ≥ 2 [31]. Consequently, [32] propose that we transform
the constrained problem into an unconstrained problem by
utilizing its dual. Utilizing duality allows us to recast the
original problem of maximizing (3) into its dual form that we
can minimize. This dual function can be obtained by plugging
the results of (8) into the Lagrange function (3) resulting in its
dual, which is represented by the two functions (9) and (10).
We also note that the termµ0 is simply a normalizing factor

representing the area and is thus folded into equations (9) and
(10). For further details in the derivation, we refer the reader
towards [33].

Γ = lnZ +

k
∑

i=1

λiµi (9)

Z = exp(λ0) =

∫

exp

(

−

k
∑

i=1

λix
i

)

dx (10)

Now this dual problem can be solved for any value ofk.
One approach is using an iterative method such as traditional
Newton’s method as shown in [31], [34], [26]. Here, New-
ton’s method is used to solve for the Lagrangian multipliers
λ = [λ0, λ1, ..., λk]

′ for a corresponding set of moments
i = 0, 1, ..., k. The standard Newton update equation for
iterationm is shown in (11)

λ(m) = λ(m) −H−1 δΓ

δλ
(11)

Where the gradient (12) and Hessian (13) are defined as

δΓ

δλi

= µi −

∫

xi exp

(

−
k
∑

i=1

λiµi

)

dx

∫

exp

(

−
k
∑

i=1

λiµi

)

dx

= µi − µi(λ) (12)

Hij =
δ2Γ

δλiδλj

= µi+j(λ) − µi(λ)µj(λ) (13)

µi+j(λ) =

∫

xi+j exp

(

−
k
∑

i=1

λiµi

)

dx

∫

exp

(

−
k
∑

i=1

λiµi

)

dx

(14)

Equation (13) indicates that the dual functionΓ has a second
derivative and that it is positive definite [33]. Consequently,
the function (9) is everywhere convex which guarantees that
if a stationary point exists it must be theunique absolute
minimum. However, convexity does not ensure that a minimum
does exist. Consequently, a necessary and sufficient condition
that a unique absolute minimum exists at a finite value ofλ is
that the moment sequence{µi, i = 0, 1, ..., k} be completely
monotonic [33]. We note that the derivation of such an
existence condition is outside of the circuit simulation topic
and we therefore refer to [33] for its derivation.

A. Application to Statistical Circuit Modeling

We begin by drawing a small number of samples from
the input variables and feeding them to a circuit simulator
to produce a set of outputs. These small number of outputs
are realizations of the random variablex which are used
to construct the momentsµi that are to be matched in the
optimization. Note that probabilistic moments are typically
calculated asµi =

∫

xip(x)dx. However, because we have
no prior information about the shape or form of the distri-
bution p(x), we cannot use this method. Consequently, we
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utilize sample momentsµi =
N
∑

j=1

xi
j/N (N is the number

of samples that we draw) to construct the moments for this
generic case[27]. By using sample moments, we ensure that
the requirement for monotonic moments is satisfied because
the random variablex is assumed to be always positive (we
can always transform the circuit response to be positive).
Consequently, we are guaranteed that the estimated probability
distributionp(x) will be stable.

After obtaining the sample momentsµi for a set i =
0, 1, ...k we perform the maximum entropy moment matching
method using traditional Newton’s method. We initialize the
Lagrange multipliers to 0,λ = [0; 0; ...; 0], resulting in the
initial guess of the distribution as a uniform distribution. This
result is reasonable as the uniform distribution inherently has
the maximum entropy of all distributions. Next, we let the
algorithm continue until the successive changes in multipliers
λi are within a user specified tolerance. As such, we obtain a
probability distributionp(x)k wherek denotes the number of
moments that are used.

B. Preliminary Results using MAXENT

Examples of this work are implemented as the MAX-
ENT algorithm and are shown in [26]. We implemented the
proposed algorithm in MATLAB. The first circuit is a 6-T
SRAM bit-cell with 54 variables, while the second circuit is
an Operational Amplifier with 70 variables. HSPICE is used
to simulate these 2 circuits for circuit performance. Also, MC
[8] and PEM [1] are used for comparison. PEM is another
circuit modeling algorithm that converts probabilistic moments
of circuit performance into corresponding time moments of
an LTI system then uses Asymptotic Waveform Evaluation
(AWE) to match these time moments to the transfer function
of the system. AWE uses the Pade approximation which
generates poles (eigenvalues) that correspond to the dominant
poles of the original system, and also poles that do not
correspond to the poles of the original system but account
for the effects of the remaining poles [35].

Fig. 3 shows a schematic of the 6T SRAM bit cell. The
reading operation of the cell can either be a success or a failure
based on the voltage difference∆V between the nodesBL
andBL. If the voltage∆V is large enough to be sensed, then
the reading operation is considered to be successful. Due to the
process variations in every transistor, the discharge behavior of
BL will vary for different cells and conditions. Consequently,
the designed discharge behavior will have significant variation,
and if the behavior is drastically different, the voltage∆V
may not be sufficiently large causing a read failure. Fig. 4
shows a schematic of the Operational Amplifier that was used.
We considered the bandwidth of the amplifier as the circuit
performance to be modeled.

C. Stability

The stability of the two algorithms is clearly demonstrated
in Fig. 5a, Fig. 5b, and 5c which show the performance
distributions that model the value of∆V in the 6T SRAM
circuit. In all 3 figures, both MAXENT and PEM were

Q

Q

WL

BL
BL

Vdd

Mn1

Mn2

Mn3

Mn4

Mp5 Mp6

WL

Fig. 3. 6T SRAM Circuit Layout

Fig. 4. Operational Amplifier Circuit Layout

constructed using the same set of moments. We can see that
PEM is clearly dependent on both the number of moments
and number of samples used. In Fig. 5 PEM is unstable when
using 18 moments constructed with 200 samples, but becomes
stable in Fig. 5b when using 18 moments constructed with
250 samples. However, PEM becomes unstable again in Fig.
5c when using 18 moments constructed with 300 samples.
Clearly, increasing the number of samples has produced a
set of moments that allows PEM to be stable under scenarios
where it was previously unstable. On the other hand, we can
see that MAXENT is stable in all 3 figures regardless of the
number of moments used or the number of samples used to
construct them. Furthermore, the MAXENT distributions show
very good overlap with the Monte Carlo distributions.

PEM’s sensitivity arises because it uses the Pade approxi-
mation, which can produce small, positive poles, to estimate
a transfer function model that is used to match moments.
Since PEM uses a transfer function in its model for the
distribution, these positive poles can produce the instability
we see above. On the other hand, MAXENT is stable in all
of the previous cases. MAXENT is guaranteed to be stable if
it uses monotonic moments and its stability is not sensitive
to the order of moments that are matched or the number of
samples that are used to produce these moments. Moreover,
because MAXENT estimates its distribution as a product of
exponential functions, it will never have a negative probability.
Consequently, we see that MAXENT is more robust when
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(a) PEM lack of stability on SRAM circuit (200 samples)
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(b) PEM stability on SRAM circuit (250 samples)
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(c) PEM lack of stability on SRAM circuit (300 samples)

Fig. 5. Stability of PEM and MAXENT under different number of samples

compared to other moment matching methods such as PEM.

D. Accuracy

Fig. 6 shows the different distributions generated by MAX-
ENT and PEM vs the ground truth distribution from MC
for the Operational Amplifier circuit. We see that using 10
moments, MAXENT does a good job of estimating the overall
shape of the distribution but still lacks some detail. Increasing
the order of moments to 12 produces a distribution that
overlaps extremely well with the ground truth distribution.
On the other hand, PEM fails to give an accurate estimate
of the distribution with both 10 and 12 moments. When
moving from 10 to 12 moments with MAXENT, we saw a
significant increase in accuracy. When moving from 10 to 12
moments with PEM, we see essentially no change in accuracy.
Furthermore, we see that PEM produces an unreasonable,
negative probability in its distribution.

To quantify the accuracy results, Tables I and II shows the
relative error (calculated by (15)) for both MAXENT and PEM
in the 6T SRAM and Operational Amplifier circuits. As we
can see from both tables, MAXENT offers up to110% less
error for the OpAmp, and up to27% less error for the SRAM
circuit once we reach a steady-state value. We also note that

although values of variance and kurtosis (moments 2 and 4) are
accurately calculated, the distributions generated using only 2
and 4 moments are inaccurate. Distributions generated with 2
and 4 moments are identical to an Exponential and Gaussian
distribution, respectively, due to the mathematical representa-
tion of the maximum entropy distribution [36]. This type of
inaccuracy is present in all moment matching algorithms and
these two orders were therefore excluded from the accuracy
tables.

error =

∫

(f1(x)− f2(x)) dx (15)
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Fig. 6. Operational Amplifier Accuracy (800 samples)

TABLE I
ACCURACY COMPARISION

Circuit # Samples Moment Order PEM MAXENT
Error(%) Error(%)

6 46.349 11.85
8 30.656 3.988

SRAM 200 10 15.577 3.281
12 9.4457 3.394
14 6.6038 3.181
18 198.97 5.470
10 125.54 30.943
12 116.39 30.881

Op. Amp. 200 14 108.43 5.374
16 102.05 5.506
18 93.793 5.567
20 111.49 5.584

TABLE II
ACCURACY COMPARISON

Circuit # Samples Moment Order PEM MAXENT
Error(%) Error(%)

6 46.117 11.043
8 30.251 5.331

SRAM 300 10 15.097 6.046
12 11.341 5.818
14 10.74 6.516
18 200 6.222
10 126.51 28.271
12 117.26 3.851

Op. Amp. 800 14 108.40 4.232
16 101.110 3.679
18 94.682 3.465
20 89.264 3.568



0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2562923, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

IV. PIECEWISE DISTRIBUTION MODEL

In the previous section, we saw that MAXENT is a robust
method for statistical circuit performance modeling. It guaran-
tees stability for monotonic moments and offers high accuracy
compared to other statistical modeling algorithms. However,
we note that MAXENT is a global moment matching approach
which offers high accuracy in the bulk of the distribution, but is
unlikely to capture the accuracy in the tail (high sigma) region
of the distribution. To this end, MAXENT is an insufficient
approach when modeling the high sigma behavior of circuit
performance distributions.

In this section, we propose PDM (Piecewise Distribution
Model) to accurately and effectively model the high sigma
portion of non-linear distributions from circuits in high dimen-
sionality. The motivation behind PDM is to accurately model
the tail distribution of circuit behavior by using region specific
moments. In general, moment matching techniques such as
[1], [26] use moments that may accurately reflect the bulk or
body of the distribution. However, these global approximation
methods use general probabilistic moments which give very
little information about the high sigma areas and thus fail
to accurately model the tail distribution. To this end, PDM
utilizes moment matching to approximate the high sigma
distribution by usingregion specific momentswhich capture
highly accurate information in regions of interest. In general,
an arbitrary number of segments can be used to model the
overall distribution. Without losing generality, we break the
total distribution into two segments - the first distribution
(Segment1) matches the low sigma region and is accurate
in the body (typically≤ 4σ) while the second distribution
(Segment2) matches the high sigma region and is accurate in
the tail (typically≥ 4σ). The flow of the method is shown in
Fig. 7 while details are given below.

A. Building the Segment1 Distribution

To build the Segment1 distribution, we first draw sam-
ples qi; i = {1, ..., N1} from input parameter distributions
f(xj); j = {1, ..., p} where p is the number of variables.
Next, we simulate these samples using a circuit simulator to
obtain circuit behavior outputsyi; i = {1, ..., N1}. Finally,
sample probabilistic momentsµk are calculated and matched
using MAXENT as outlined in [26], [33]. Depending on
the number of moments that are matched, we will obtain
different Segment1 distributions. However, the exact number
of moments to be matched is unknown because we do not
know which set of moments map to different areas of the
distribution [27]. Consequently, we sweep across a range of
valuesk = 5, 7, 9, ...,K to build multiple Segment1 distribu-
tions and select a single, “optimal” Segment1 distribution as
explained below.

B. Selecting the Optimal Segment1 Distribution

One of the key characteristics of non-Gaussian distributions
is that the gradient of their CDFs are monotonically increasing,
i.e. the change in circuit behavior for a fixed change in prob-
ability continuously increases as the sigma value increases.

Here, the sigma value is simply the standard Z-score of a
Standard Normal distribution,P (Z ≥ σ). On the other hand,
the gradient is constant for a Gaussian distribution. This is
illustrated in Fig. 8 which shows the gradient of the CDF
for a LogNormal (non-Gaussian) distribution vs a Gaussian
distribution. Here, although the LogNormal distribution is
a mathematical distribution, we label they − axis of the
figure as Circuit Behavior to emphasize that this type of
circuit behavior is of interest. Consequently, we select the
optimal Segment1 distribution by choosing the one with a
monotonically increasing gradient.
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Fig. 8. Slope of Gaussian vs Non-Gaussian Distribution

In order to gauge the monotonicity of the gradient, we
turn to Spearman’s rank correlation coefficient [37]. Unlike
the conventional Pearon correlation coefficient, which directly
measures the correlation between two sets of variables, we
utilize Spearman’s rank correlation coefficient because it mea-
sures themonotonicrelationship between two sets of variables.
Specifically, the correlation coefficientρ is a measure of
how well a set of data can be described using a monotonic
function. A coefficient of +1 indicates strong correlation to
a monotonically increasing function while a coefficient of -
1 indicates strong correlation to a monotonically decreasing
function. To this end, we measure the gradient of the CDF
for various body distributions and compare the data set to a
monotonically increasing set using Spearman’s Coefficientρ
and select the distribution with the largest, positive coefficient.
Fig. 9 compares various Segment1 distributions, each built
with a different number of moments, that are used for approxi-
mating a non-Gaussian distribution. We see that the coefficient
for 5 of 6 distributions indicates that the gradient data set
is monotonically decreasing or uncorrelated. However, there
is a single distribution using 14 moments with a coefficient
of ρ = 0.98, indicating it is a monotonically increasing set
and should be used as the optimal Segment 1 distribution. In
general, the optimal Segment 1 distribution may not have 14
moments.

Fig. 9. Spearman’s Correlation of Distributions with Different Moments
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Phase 1: Build and Choose 

Optimal Segment 1 Distribution

Phase 2: Shift Inputs, Build 

Segment 2 and Estimate 

Parameters Performance

Fig. 7. PDM contains 2 Phases: building the Segment1 distribution and selecting the optimal Segment1 distribution; shifting input parameters to build the
Segment2 distribution, and estimating the final probability

To confirm that this is the optimal choice of the above
example, we compare the estimated data from the selected
Segment1 distribution (strong Spearman’s correlation), one
non-selected distribution (poor Spearman’s correlation), and
the ground truth values as shown in Fig. 10. We see that
the selected distribution matches very well with the ground
truth because both distributions are non-Gaussian and exhibit
monotonically increasing gradients. On the other hand, the
distribution with poor correlation is very inaccurate. We utilize
this combination of gradient and Spearman’s correlation to
select the optimal Segment1 distribution used in PDM.

Fig. 10. Segment1 Comparison using Spearman’s Correlation Results

C. Shifting Input Distributions and Building the Segment2
Distribution

The motivation behind shifting the input distributions is to
draw more samples that yield an output in the tail of the orig-
inal circuit behavior distribution. By generating more samples
in this region, we can generate region specific moments that
are highly accurate in the tail. To obtain momentsνl that
are specific to the tail of the distribution, we must shift the
mean of the input parameter distributions fromm to m̂ for
each input parameter individually. To shift the mean, we first
find the largest circuit behaviorymax from the setyi used
when building the Segment1 distribution. The value ofymax

is directly impacted by the sampling algorithm and number of
samples inN1. Finding the optimalymax is out of the scope
of this paper, and theymax used in the proposed application
attempts a shift towards the general vicinity of parameter
samples that produce tail-like circuit behaviors. Each circuit
behavioryi has a corresponding set of input samplesqj for
each input parameterj = 1, ..., p. The largest circuit behavior
ymax will have a sample valueq∗j for each input parameter
j = 1, ..., p. To obtain the shifted distributions, we simply shift
the meanmj of parameterj to the sampleq∗j .

Once the input parameters are shifted, an additionalN2

samplesq̂i; i = 1, ..., N2 are drawn and simulated yielding
an outputŷi; i = 1, ..., N2. To ensure that the momentsνl
are comprised of informationonly in the tail distribution, we
must first screen the simulated dataŷi such that only samples
that lay in the tail are used. To do this, we simply pick a
circuit behaviort∗ that separates the Segment1 distribution
and the next distribution, in this case Segment2. The value of
t∗ is obtained by selecting a sigma points in the Segment1
distribution and extracting the corresponding circuit behavior.
Typically, s is chosen to be a sigma value between 3 and 4 as
this is where the long, flat region of the tail begins as shown in
Fig. 8. Next, the circuit behavior values are screened to obtain
wk = ŷi ≥ t∗; k = 1, ..., N3 whereN3 is the number of points
beyondt∗. Because the output was screened, we ensure that
the momentsνl shall only be reflective of the tail distribution’s
domain and not be polluted by information outside of it.

Finally, to build the Segment2 distribution, we calculatel =
4 moments usingµi =

∫

xip(x)dx and match them using
maximum entropy as in [26], [31], [34], [33]. The motivation
behind using only 4 moments is that this forces the maximum
entropy method to yield an exponential distribution as shown
in [36]. The exponential distribution is a good approximation
of the tail as it is monotonically decreasing and can easily be
obtained using the maximum entropy method.

D. Reweighing Segment2 via Conditional Probability

Once the Segment2 distribution is obtained, the probability
for a specified circuit behaviortspec can be obtained; however,
it will be inherently biased because the input parameters were
shifted to draw more important samples. To resolve this issue,
we use conditional probability to “re-weigh” probabilities as
follows

P (H ≥ tspec) = P (H ≥ tspec|B ≥ t∗) ∗ P (B ≥ t∗) (16)

WhereH is the random variable associated with the Segment2
distribution, B is the random variable associated with the
Segment1 distribution,tspec is the circuit behavior whose
probability is of interest, andt∗ is the circuit behavior for
sigma points. The conditional probability relationship in (16)
works well when the two distributionsH andB are identical,
i.e. if we are calculating conditional probability under one
distribution, or if they share the same mean. However, this
equation does not hold true in the proposed algorithm. This is
demonstrated by rearranging (16) as shown in (17)
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P (B ≥ t∗) =
P (H ≥ tspec)

P (H ≥ tspec|B ≥ t∗)
(17)

For a new pointt
′

spec, the relationship is

P (H ≥ t
′

spec) = P (H ≥ t
′

spec|B ≥ t∗)P (B ≥ t∗) (18)

P (B ≥ t) =
P (H ≥ t

′

spec)

P (H ≥ t′spec|B ≥ t∗)
(19)

Rearranging (17) and (19) and equating the common term
yields

P (B ≥ t) =
P (H ≥ tspec)

P (H ≥ tspec|B ≥ t∗)
=

P (H ≥ t
′

spec)

P (H ≥ t′spec|B ≥ t∗)
(20)

Clearly this relationship holds perfectly when the distribu-
tions from the numerator and denominator (joint and condi-
tional, respectively) are identical as in importance sampling
algorithms such as [17]. However, because PDM performs the
re-weighing process in the output domain, the modeled tail and
the true distribution may be shaped extremely differently. In
other words, because theB andH distributions are necessarily
two different random variables, the relationship in (16) must
be modified to account for the shape mismatch that inher-
ently arises due to the unknown shape of the distributions.
Consequently, we propose a dynamic scaling technique that
additionally reweighs the probability under the Segment2
distribution by a scaling factorβ. The scaling factor acts
as a heuristic correction factor that is calculated based on
the indicator function of the subsetwk of the entire circuit
behavior space, and the total number of outputsN3 as shown
in (22). Each approximation of differenttspec values has a
different value of beta due to different values of the indicator
function (21).

I(wk) =

{

0 if wk < tspec

1 if wk ≥ tspec
(21)

β =

N3
∑

k=1

I(wk)

N3
(22)

Using this scaling factor yields the final probability of a
specified circuit behaviortspec as (23)

P (H ≥ tspec) = P (H ≥ tspec|B ≥ t∗)∗P (B ≥ t∗)∗β (23)

Fig. 11 shows an example of the difference in shape between
the true tail distribution, the unscaled Segment2 distribution
and the scaled Segment2 distribution. Additionally, we note
that both Segment1 and Segment2 distributions are guaranteed
to be stable, i.e. they will have a non-negative probability and
therefore the CDF is guaranteed to be monotonic. This natu-
rally arises because both distributions are calculated using the
maximum entropy method and all moments in both segments
are monotonically increasing.

Before Scaling

After Scaling

True Distribution

Fig. 11. Shape Issue in Conditional Probability

V. EXPERIMENT RESULTS

A. Experiment Settings

We implemented PDM in MATLAB using simulation out-
puts from HSPICE. PDM is compared with Monte Carlo, mo-
ment matching algorithm MAXENT [26], High Dimensional
Importance Sampling (HDIS) [17], and subset simulation
(SUS) [25] to demonstrate that it offers significant speedup
while maintaining higher accuracy than other methodologies
that are targeted towards modeling the high sigma behavior of
circuits.

The algorithm was tested against the mathematically known
LogNormal distribution, along with the high sigma delay of
a six stage clock path circuit and gain of an Operational
Amplifier. The results show the estimated sigma for multiple
tspec values and are compared to Monte Carlo as ground
truth. The Monte Carlo results were generated with roughly
8E6 samples for the Time Critical Path and2.5E6 samples
for the Operational Amplifier. Additionally, we compare the
results to the MAXENT algorithm to show the improvements
using a piecewise distribution model rather than a global
approach. We also compare the results to HDIS to show
that the re-weighing portion of PDM is accurate and robust
for high dimensional circuits because it is independent of
dimensionality. The independence is due to the re-weighing
process occurring in the output domain where there is only
a single variable. The source code of SUS is also obtained
from its original authors for cross evaluation. Table III gives
an overview of the variables used in each circuit.

TABLE III
PARAMETERS OFMOSFETS

Variable Name Time Critical Path OpAmp
Flat-band Voltage †

Threshold Voltage †

Gate Oxide Thickness † †

Mobility † †

Doping concentration at depletion †

Channel-length offset † †

Channel-width offset †

Source/drain sheet resistance † †

Source-gate overlap unit capacitance † †

Drain-gate overlap unit capacitance † †

The time critical path circuit has six stages and nine process
parameters per transistor for a total of 54 variables, while
the circuit behavior of interest is the delay from input to
output. Fig. 4 displays a schematic of the two-stage differential
cascode operational amplifier, and is the same circuit as in
[26]. The circuit has a total of thirteen transistors and four gain
boosting amplifiers. In total, only ten transistors are considered
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to be independently varied. However, transistors in the gain
boosting amplifiers are also varied, though due to the mirrored
properties of the circuit they are varied simultaneously and are
counted as one variation. As such, although each transistor has
seven process parameters resulting in a total of 70 variables,
the true number of variables is much higher. In the proposed
algorithm, the circuit behavior of interest is the gainVout1

Vin1

.

B. Experiment on Mathematical Distribution
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Fig. 12. LogNormal PDF

To illustrate the capability of modeling strongly non-
Gaussian distributions, we use PDM to model a LogNormal
distribution. The LogNormal distribution with mean and sigma
parametersµ = 0, σ = 0.35 was selected because of its
strongly non-Gaussian behavior. A plot of the PDF of this
distribution is presented in Fig. 12. The distribution appears
to be Gaussian for a small portion due to the bell shaped
curve, but it has a very long tail, giving it the non-Gaussian
properties that are of interest.
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Fig. 13. LogNormal Sigma Behavior

Fig. 13 shows the high sigma modeling results for Monte
Carlo, PDM, HDIS, MAXENT, and SUS at multipletspec
points. The figure is the CDF zoomed into the tail area with the
x-axis as sigma and y-axis as the value of the random variable,
precisely circuit behavior. Here sigma is used to represent
probability, i.e.4σ ≈ 0.000064 in the tail. The motivation for
this type of plot is to best represent the non-linear behavior
of a non-Gaussian PDF. Additionally, it shows only the high
sigma behavior rather than the overall distribution because that
is the motivation and focus behind this algorithm.

While the number of samples required for SUS ranges from
5800 to 7400 in the experiment setup, HDIS, MAXENT and
PDM each used a total of 4000 samples, with PDM using
3000 samples to calculate the Segment1 distribution and 1000
samples to calculate the Segment2 distribution. In this case,

the points that separates Segment1 and Segment2 is selected
to be the 4 sigma point, i.e. whatever circuit behavior that
corresponds to a tail probability of6.4E− 5 in the Segment1
distribution. By introducing the Segment2 distribution at the
point s, PDM is able to avoid any errors that MAXENT
suffers from, allowing PDM to match almost identically with
the Monte Carlo results up to 4.8 sigma. By utilizing region
specific moments and doing a piecewise approximation of the
distribution, PDM keeps consistently small errors. On the other
hand, the MAXENT algorithm begins to lose accuracy and
fails to capture the tail of the distribution because it only uses
one distribution to model the overall behavior.

Furthermore, we see that all the high sigma modeling
methods, HDIS, SUS, and PDM have accuracy comparable
to Monte Carlo (with less than 0.1*sigma deviation). We can
observe some deviations from Monte Carlo on PDM and SUS,
but as statistical algorithms, those deviations are expected and
are within tolerance as they are small and unsystematic. Table
IV shows the error in estimated sigma for PDM. The error is
between -0.25% and 2% all the way to the 4.8 sigma point.

We also note that MAXENT and PDM donot assume the
distributions to be matched are Gaussian distributions because
they do not match only 3 moments. [36] outlines that the
maximum entropy moment matching method can be forced
to assume a Gaussian distribution if we match exactly 3
moments. However, because we sweep through a wide range
of moments for both MAXENT and PDM, we, in general, will
never pick a Gaussian distribution because it does not agree
with the gradient criteria selected by Spearman’s correlation
coefficient. Consequently, the high error that MAXENT suffers
from is due to its limitation of using one set of moments, not
from any assumptions about its model.

TABLE IV
SIGMA ERROR FORLOGNORMAL

True Sigma Estimated Sigma % Error
4.0 4.0786 1.9650%
4.2 4.2224 0.5333%
4.4 4.3886 -0.2591%
4.6 4.5888 -0.2435%
4.8 4.8569 1.1854%

C. Experiments on Circuits
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Fig. 14. Clock Path PDF

The Monte Carlo distribution of the time critical path circuit
delay is presented in Fig. 14. Because the circuit operates at a
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very low VDD level, it behaves in a slightly non-linear way.
The distribution, while not as long tailed as the LogNormal,
has a more elongated tail than a Gaussian distribution.
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Fig. 15. Clock Path Sigma Behavior

Fig. 15 shows the high sigma modeling results for Monte
Carlo, PDM, HDIS, MAXENT, and SUS at multipletspec
points. HDIS, MAXENT and PDM each used a total of
4000 samples, with PDM using 3000 samples to calculate
the Segment1 distribution and 1000 samples to calculate the
Segment2 distribution. Once again in PDM, the points is the
4 sigma point from the Segment1 distribution. By introducing
the Segment2 distribution at the points, PDM is able to
avoid any errors that MAXENT may suffer from. This is most
apparent at the 4.4 sigma point and beyond. Additionally,
PDM is able to capture the increase in slope as the circuit
approaches higher sigma. On the other hand, MAXENT is able
to perform somewhat well up to 4.2 sigma but then blows up
and becomes completely inaccurate afterwards. The significant
increase in accuracy with PDM is, again, due to matching
region specific moments that allow piecewise approximation of
the distribution. Because MAXENT uses a single distribution
to make a global approximation it is unable to capture the tail
of the distribution and instead models the high sigma points
purely as noise. We again note that MAXENT does not assume
the distribution is a Gaussian model, so its error is due to
limitations of using one set of moments to model the total
distribution which PDM does not suffer from.

SUS uses between 5803 and 9010 samples for different
sigma points, which is slightly less efficient compared to PDM
(4000 samples). In terms of accuracy, the probability estimated
by SUS follows the same trend of MC and PDM, i.e., the curve
from SUS is almost parallel to the curves of MC and PDM as
illustrated in Fig. 15. However, if we compare the probability
estimated by PDM and SUS in Fig. 15 in detail, we can find
that at lower threshold (1.98ns), SUS has the smallest deviation
(about 0.04*sigma at 4 sigma) from MC. As we move towards
higher thresholds, and thus allow less failure samples, we find
that the deviation between the estimated probability of MC and
SUS grows constantly, i.e. 0.13-0.15*sigma at 4.2-4.6 sigma,
and finally 0.29*sigma difference at 4.8 sigma. SUS does not
experience such notable estimation error on the 1-dimensional
lognormal distribution. However, at high dimensions, samples
generated by only a few Markov chains could be insufficient
to cover the entire failure region(s), leading to large deviation
compared with MC. Moreover, as samples in each phase
of SUS are generated with a modified Metropolis (MM)
algorithm using the previously failed samples as the seed, the

estimation error in one phase may accumulate and propagate to
the next. When the problem scales to higher sigma values, SUS
would require an increased number of phases to better cover
the smaller failure region, which may lead to an unwanted
runtime overhead. On the other hand, a smaller number of
phases results in larger deviation from the MC estimate as
was mentioned above. Compared with SUS, PDM results stay
closer to MC with less than 0.1*sigma deviation.

Furthermore, we see that the results from HDIS are com-
pletely inaccurate compared to both Monte Carlo and PDM.
HDIS is unable to come anywhere near the proper sigma value
for any of the points that it estimates. This is likely inaccurate
from a combination of high dimensionality and an inaccurate
shift in the mean and sigma of the new sampling distribution
that causes the re-weighing process to again become inaccu-
rate. Simply put, if the shifting method is inaccurate the results
from HDIS will be inaccurate. If a larger number of samples
is used, then the shift and corresponding samples drawn from
the new distribution will be more accurate; however, due to
the run time prohibitive nature of high dimensional circuits, it
is imperative to minimize the number of samples. On the other
hand, the shifting method in PDM is more robust because the
re-weighing process is performed in the output domain and is
performed using conditional probability rather than as a ratio
of two distributions. Table V shows the error in sigma between
PDM and the ground truth from Monte Carlo. We see a worst
case error of 2.7% at 4 sigma but significantly less errors at
higher sigma values.
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Fig. 16. Op. Amp PDF

The Monte Carlo distribution of the Operational Amplifier
circuit gain is shown in Fig. 16. The distribution is heavily
skewed and has a very sharp peak near the beginning and
proceeds to drop very quickly, However, it also has a slightly
flatter portion that eventually decreases to a long, flat region
of the tail. It clearly has a long tail and behaves in a strongly
non-Gaussian way.

Fig. 17 shows the high sigma modeling results for Monte
Carlo, MAXENT, and PDM at multipletspec points. The
figure shows only the high sigma behavior rather than the
overall distribution because that is the motivation and focus
behind this algorithm. Both MAXENT and PDM used a total
of 3000 samples, with PDM using 2000 samples to calculate
the Segment1 distribution and 1000 samples to calculate the
Segment2 distribution. In the case of the OpAmp, the point
s was determined to be the 3.6 sigma point rather than the 4
sigma point as in the previous cases due to the extremely long-
tailed nature of the distribution. Before the points, it’s clear
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that PDM has a larger error (roughly 5%) than in previous
cases. However, when we introduce the Segment2 distribution,
PDM is able to immediately recover and match the 3.8 sigma
point closely and continues to match larger sigma points and
the overall shape of the Monte Carlo curve very well. By
introducing this second “piece” to model the distribution, we
are able to get a significant increase in accuracy. On the other
hand, the MAXENT method has a large error, blows up and
returns noise values because it is unable to capture the tail of
the distribution as it does not use moments that are specific
to that region. We again note that MAXENT does not assume
the distribution is a Gaussian model because it matches more
than 3 moments. Hence, its error is due to limitations of using
one set of moments to model the total distribution.

The SUS algorithm used between 5004 and 8216 samples
at different sigma points. While SUS is able to capture the
overall trend and shape of the Monte Carlo results, the sigma
estimated by SUS is pessimistic with respect to Monte Carlo
and tends to slightly overestimate the true sigma value, with
small pessimism at lower sigmas (3.7 vs 3.6) and higher
pessimism at larger sigmas (5.1 vs 4.8). The results observed
on this circuit are similar to those on the clock path circuit,
indicating a growing deviation between MC at higher sigmas.

We see that the results from HDIS are inaccurate and at
one point has a huge jump in its results and is simply noisy
throughout. Although the Operational Amplifier circuit is not
as high dimensional as the Clock Path, HDIS is still unable to
properly model the high sigma region. Again, the inaccuracy
is most likely from an inaccurate shift in the mean and sigma
of the new sampling distribution that causes the re-weighing
process to again become inaccurate. Table V shows the error
in estimated sigma between PDM and the ground truth from
Monte Carlo. We see very accurate results with a worst case
error of about -1% at 4.2 sigma.

TABLE V
SIGMA ERROR FORCIRCUITS

Time Critical Path Op Amp
True Estimated % Error True Estimated % Error

Sigma Sigma Sigma Sigma
4.0 4.1077 2.693% 4.0 4.0015 0.0375%
4.2 4.2571 1.360% 4.2 4.1547 -1.0786%
4.4 4.4080 0.182% 4.4 4.4386 0.8773%
4.6 4.5793 -0.450% 4.6 4.6329 0.7152%
4.8 4.8517 1.077% 4.8 4.7662 -0.7042%

D. Speedup Comparison

To analyze the efficiency of the proposed method, we com-
pare the number of samples required by PDM to the number of
samples used for Monte Carlo. Since the LogNormal distribu-
tion is a mathematically known circuit and requires no Monte
Carlo simulations, we exclude that speedup comparison. In
the clock path circuit, PDM requires a total of 4000 samples -
3000 samples for the body distribution and 1000 for the hybrid
distribution. In the Operational Amplifier, PDM requires a total
of 3000 samples - 2000 samples for the Segment1 distribution
and 1000 for the Segment2 distribution. Table VI compares the
Monte Carlo and PDM runtime requirements and the speedup
for all circuit examples. We note that the speedup of the
algorithm compared to Monte Carlo will vary based on the
number of samples that are used; however, it is clear that PDM
offers a significant speedup at very little loss in accuracy.

TABLE VI
SPEEDUPCOMPARISON

Circuit Monte Carlo PDM Speedup
Runtime Runtime

Clock Path 8,000,000 4000 2000x
Op. Amp. 2,500,000 3000 833x

VI. CONCLUSION

In this paper, we presented two novel algorithms for sta-
tistical performance modeling of circuits. The first algorithm
was based on the maximum entropy moment matching method
which was originally proposed in the communications and
signal processing field. The MAXENT algorithm is provably
stable under general statistical circuit analysis methods. Ex-
perimental results indicate that it offers high accuracy and
stability when compared to other moment matching methods
[1], [3]. However, MAXENT is unable to accurately model the
high sigma behavior of non-Gaussian circuits and is therefore
unsuitable for yield analysis. To this end, we proposed PDM
- a piecewise distribution model that performs region based
moment matching to extract the PDF of circuit performance.
PDM is provably stable because it is based on the maximum
entropy method. Furthermore, it is able to model the high
sigma regions of the circuit performance PDF. In particular,
we introduced a second distribution based on a set of moments
that are accurate in the tail of the PDF leads to significantly
improved accuracy over MAXENT [26] with little error com-
pared to Monte Carlo.

We demonstrated that PDM performs as well or better
than other state-of-the-art statistical modeling methodologies
[26], [17], [25]. The importance sampling technique in [17] is
inaccurate for high-dimensional circuits due to the “curse-of-
dimensionality” [21] from the re-weighing procedure applied
to every input parameter that is shifted. While PDM employs
a similar input parameter shifting, its re-weighing procedure is
performed only in theoutputdomain which is one-dimensional
and thus avoids issues with the degeneration and unbounded
distribution support. Consequently, it is able to efficiently han-
dle high-dimensional cases without instability. Finally, SUS
offers higher accuracy than both MAXENT and Importance
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Sampling, especially in the lower-dimensional experiments.
The estimates from SUS match the general trend of those
from MC and PDM, and often provides the very high accuracy
at lower sigma values. However, at higher sigma values SUS
suffers from some inaccuracy on both high dimensional circuit
examples, on which the failure regions are difficult to capture
with only a few Markov chains. Furthermore, because SUS
generates samples in each phase using the previously failed
samples as the seed, estimation errors in one phase may
accumulate to the latter phases.

In the future, we plan to develop a weighted moment
matching based approach that allows us to pick and choose the
important moments of a distribution. The motivation behind
this is not all moments are important to the distribution, e.g. in
a Gaussian distribution only even order moments are non-zero,
and therefore applying more weight to “important” moments
may help improve accuracy and reduce noise.
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