
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1
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Measurement and Approximation Spaces Associated

with Linear Canonical Transform
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Abstract—The linear canonical transform (LCT), which gener-
alizes many classical transforms, has been shown to be a powerful
tool for signal processing and optics. Sampling theory of the LCT
for bandlimited signals has blossomed in recent years. However,
in practice signals are never perfectly bandlimited, and in many
cases measurement devices are non-ideal. The objective of this
paper is to develop a sampling theorem for the LCT from general
measurements, which can provide a suitable and realistic model
of sampling and approximation for real-world applications. We
first describe a general class of approximation spaces for the
LCT and provide a full characterization of their basis functions.
Then, we propose a generalized sampling theorem for arbitrary
measurement and approximation spaces associated with the LCT.
Several properties of the proposed sampling theorem are also
discussed. Furthermore, the approximation error is estimated.
Finally, numerical results and several applications of the derived
results are presented.

Index Terms—Linear canonical transform, Riesz basis, oblique
projection, function spaces, sampling and approximation.

I. INTRODUCTION

THE linear canonical transform (LCT) [1]–[3] has recently
attracted much attention as a powerful mathematical tool

for signal and system analysis in signal processing and optics.
It forms a three-parameter family of integral transforms and
was first introduced in the 1970s [4], [5]. The LCT is also
known as the ABCD transform, the affine Fourier transform,
the Collins formula, the generalized Fresnel transform, or
the almost Fourier and almost Fresnel transformation [3]. It
has found applications in fields as diverse as filter design,

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was completed in parts while J. Shi and X. Liu were visiting
the Electrical Engineering Department, University of California, Los Angeles,
CA, USA. This work was supported in part by the National Natural Science
Foundation of China under Grant 61501144, the Fundamental Research Funds
for the Central Universities under Grant 01111305, and the National Basic
Research Program of China under Grant 2013CB329003.

J. Shi, X. Liu, and M. Han are with the Communication Research
Center, Harbin Institute of Technology, Harbin 150001, China (e-mail: jun-
shi@hit.edu.cn; xp.liu@hit.edu.cn; dr.mohan1992@gmail.com).

L. He is with the Electrical Engineering Department, University of Cali-
fornia, Los Angeles, CA 90095, USA (e-mail: lhe@ee.ucla.edu).

Q. Li is with the State Grid Heilongjiang Electric Power Company Limited
Information & Communication Company, Harbin 150090, China (e-mail:
qzlee@foxmail.com).

N. Zhang is with the Communication Research Center, Harbin Institute
of Technology, Harbin 150001, China, and also with the Shenzhen Graduate
School, Harbin Institute of Technology, Shenzhen 518055, China (e-mail:
ntzhang@hit.edu.cn).

radar system analysis, signal synthesis, time-frequency anal-
ysis, phase retrieval, pattern recognition, graded index media
analysis, encryption, and communications [1]–[18].

The LCT of a function f(t) ∈ L2(R) is defined as [2]

FM (u) = LM{f(t)}(u)

=

{∫
R f(t)KM (u, t)dt, b ̸= 0√
de

jcd
2 u2

f(du), b = 0

(1)

where LM denotes the LCT operator, and the transformation
kernel is given by

KM (u, t) = Abe
ja
2b t

2+ jd
2bu

2−j u
b t (2)

where Ab = 1√
j2πb

, and M =
(
a b
c d

)
is the parameter

matrix of LCT satisfying det(M) = ad − bc = 1. Note that
when b = 0, the LCT is essentially a chirp multiplication
operation. Therefore, from now on we consider the LCT for
b ̸= 0, and without loss of generality, we assume b > 0.
The LCT parametrically generalizes a number of well-known
unitary transforms linked with signal processing and optics.
For M =

(
0 1
−1 0

)
, the LCT amounts to the classical Fourier

transform (FT). Similarly, with M =
(

cosα sinα
− sinα cosα

)
, one can

obtain the fractional Fourier transform (FRFT). The Fresnel,
Laplace, Gauss-Weierstrass, and Bargmann transforms are also
particular cases [3]. Conversely, the inverse LCT with respect
to matrix M is the LCT with matrix M−1 =

(
d −c
−b a

)
, i.e.,

f(t) = LM−1

{FM (u)}(t) =
∫
R
FM (u)K∗

M (u, t)du (3)

where ∗ in the superscript denotes the complex conjugate.
Signal processing applications are concerned mainly with

digital data, although the origin of many sources of informa-
tion is analog [19]. Therefore, one of the most fundamental
issues in signal processing associated with the LCT is how to
represent a continuous signal in terms of a discrete sequence.
The most common setting considered in the sampling theory of
the LCT [20]–[28] follows the same paradigm as the classical
Shannon sampling theorem [29], [30], in which the input is
assumed to be bandlimited in the LCT domain, the samples of
the signals are ideal, i.e., they are equal to the signal values
at a set of sampling points, and the reconstructed signal is
also an LCT-bandlimited function, created by using the sinc
interpolation kernel, i.e.,

f̃(t) =
∑
n∈Z

f [n] sinc(t− n)e−
ja
2b (t

2−n2) (4)
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Fig. 1. Block diagram representation of three sampling procedures associated with the LCT: (a) bandlimited interpolation, (b) bandlimited interpolation with
an ideal anti-aliasing lowpass prefilter, and (c) least squares approximation.

where sinc(·) , sinπ(·)/π(·), and a normalized sampling
step is used to keep the notation simple. The reconstructed
signal f̃(t) can be obtained by modulating the sequence
{f [n]}n∈Z with an impulse train signal

∑
n∈Z δ(t − n), and

then by filtering the modulated signal in the LCT domain
using a filter with impulse response sinc(t), as depicted in
Fig. 1(a). However, real world signals or images are never
exactly bandlimited, and the sampling is never ideal. Towards
this end, Liu et al. [31] proposed new sampling expansions
for non-bandlimited signals by introducing certain types of
non-bandlimited function spaces associated with the LCT.
Unfortunately, as the authors of [31] pointed out, there are
no normative rules for determining the parameters of non-
bandlimited function spaces in practical implementations at
present. Within Shannon’s paradigm for the LCT, when the
input signal f(t) is not bandlimited, it needs to be ideally
lowpass filtered prior to sampling in order to avoid aliasing,
see Fig. 1(b). Clearly, there is no such device as an ideal (anti-
aliasing or reconstruction) low-pass filter, and the drawback
of the sampling procedure in Fig. 1(b) is the difficulty in
implementing the infinite sinc interpolating kernel, which
has slow decay. Mathematically, the bandlimited sampling
procedure in the LCT domain is equivalent to projecting the
input signal f(t) onto the LCT-bandlimited function space [32]

BM = span
{
sinc(t− n)e−

ja
2b (t

2−n2)
}
n∈Z

. (5)

It was shown in [32] that one can determine the optimal (least
squares) approximation of the input signal f(t) in some more
general function space

VM (ϕ) = span
{
ϕ(t− n)e−

ja
2b (t

2−n2)
}
n∈Z

(6)

where ϕ(t) is the generating function of the space and can
basically be arbitrary, as illustrated in Fig. 1(c). The optimal
setting for this general case is to choose a measurement
function ψ(t) that is biorthogonal to ϕ(t). However, in most
applications, the measurement function is often specified a
priori [30] and corresponds to the impulse response of the
measurement device, denoted by χ(t). From [32], the approx-
imation error is minimized if and only if χ(t) = ψ(−t). This
situation corresponds to the case of an ideal measurement
device. If this condition is not satisfied, different types of errors

(distortion, aliasing) will be introduced into the sampling
process, resulting in a significant loss of performance. In this
paper, we will introduce a general framework for sampling and
approximation in the LCT domain, which can provide a suit-
able and realistic model of digital signal processing for real-
world applications. The sampling scheme which we develop
allows for almost arbitrary measurement and approximation
spaces, as well as arbitrary input signals. We first describe the
general class of approximation spaces associated with the LCT
and provide a full characterization of their basis functions.
Then, we propose a generalized sampling theorem in arbitrary
measurement and approximation spaces associated with the
LCT. Several properties of the proposed sampling theorem
are also discussed. Furthermore, the analysis of approximation
error is derived. Numerical results and several applications of
the derived results are presented.

The remainder of this paper is organized as follows. In
Section II, notation and definitions are introduced, and some
facts of the discrete-time LCT and approximation spaces
associated with the LCT are given. In Section III, a sampling
theorem for the LCT from general measurements is developed,
and its basic properties are also presented. In Section IV, a
bound on the approximation error for the proposed sampling
theorem is derived. In Section V, numerical results and several
applications of the derived results are presented. Finally,
concluding remarks are drawn in Section VI.

II. PRELIMINARIES

A. Notation and Definitions

We use the following notation throughout: R, Z, L2(R),
L2[a, b], and ℓ2(Z) denote the set of real numbers, the set
of integers, the space of all square-integrable functions on R,
the space of all square-integrable functions on [a, b], and the
space of all square-summable sequences on Z, respectively.
Continuous signals are denoted with parentheses, e.g., f(t),
t ∈ R, and discrete signals with brackets, e.g., q[n], n ∈ Z.
We denote the L2-inner product between f(t) and g(t) by
⟨f, g⟩L2 =

∫
R f(t)g

∗(t)dt, and the ℓ2-inner product between
p[n] and q[n] by ⟨p, q⟩ℓ2 =

∑
n∈Z p[n]q

∗[n] so that the squared
L2- and ℓ2-norms can be expressed as ∥ · ∥2L2 = ⟨·, ·⟩L2 and
∥ · ∥2ℓ2 = ⟨·, ·⟩ℓ2 , respectively. For a measurable function f(t)
on R, let ∥f∥0 = ess inf |f(t)| be the infimum of |f(t)|. Unless
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otherwise stated, H will always denote an arbitrary (real or
complex) Hilbert space. By a subspace of H, we will always
mean a linear subspace.

The minimal angle θmin ∈ [0, π/2] between two nontrivial
subspaces M and N of a Hilbert space H is defined as [33]

S(M,N ) = cos(θmin) = sup
f∈M\{0}
g∈N\{0}

{
⟨f, g⟩L2

∥f∥L2 · ∥g∥L2

}
(7)

which clearly shows that S(M,N ) = S(N ,M). Taking into
account the fact that for all z0(t) ∈ N we have

∥z0∥L2 = sup
f∈N\{0}

{
⟨z0, f⟩L2

∥f∥L2

}
, (8)

the expression in (7) can be rewritten as

S(M,N ) = sup
f∈M\{0}
g∈N\{0}

{
⟨PN f, g⟩L2

∥f∥L2 · ∥g∥L2

}

= sup
f∈M\{0}

{
∥PN f∥L2

∥f∥L2

} (9)

where PN is the orthogonal projection onto N . Similarly,
the maximal angle θmax ∈ [0, π/2] between two nontrivial
subspaces M and N of H is defined as

R(M,N ) = cos(θmax) = inf
f∈M\{0}

{
∥PN f∥L2

∥f∥L2

}
. (10)

In general, R(M,N ) and R(N ,M) are not necessarily equal,
but we always have

R(M,N ) = R(M⊥,N⊥). (11)

The relationship between the minimal and maximal angles is
expressed as

S2(M,N ) +R2(M,N⊥) = 1. (12)

B. Discrete-time LCT and Its Properties

The discrete-time LCT (DTLCT) of a sequence {s[n]}n∈Z
is defined as [34]

S̃M (u) = L̃M{s[n]}(u) =
∑
n∈Z

s[n]KM (u, n) (13)

where L̃M denotes the DTLCT operator. It is easy to see that if
the sequence {s[n]}n∈Z ∈ ℓ2(Z), then S̃M (u) ∈ L2(I), where
I , I. Conversely, the inverse DTLCT is given by

s[n] =

∫
I
S̃M (u)K∗

M (u, n)du. (14)

The Parseval identity of the DTLCT is expressed as

∥s∥2ℓ2 =

∫
I

∣∣∣S̃M (u)
∣∣∣2 du. (15)

Moreover, the DTLCT has the following chirp-periodicity

S̃M (u+ 2kπb) e−
jd
2b (u+2kπb)2 = S̃M (u)e−

jd
2bu

2
(16)

for any k ∈ Z.

It was shown in [18] that there are several definitions for
canonical convolution of the LCT in the literature. The rela-
tionships among them were investigated in [18] in detail. We
use the one introduced in [32], which inherits the structure of
the Shannon reconstruction formula for the LCT shown in (4).
Let Θf denote the fully-discrete canonical convolution operator
associated with the DTLCT. The canonical convolution of
{s[n]}n∈Z ∈ ℓ2(Z) and {h[n]}n∈Z ∈ ℓ2(Z) is defined as [32]

s[n]Θfh[n] =
∑
m∈Z

s[m]h[n−m]e−
ja
2b (n

2−m2). (17)

It is easy to verify that

s[n]Θfh[n]
L̃M

←−→
√
2πS̃M (u)H̃

(
u
b

)
(18)

where H̃
(
u
b

)
denotes the discrete-time FT (DTFT) (with its

argument scaled by 1
b ) of h[n]. Let g(t) ∈ L2(R). The semi-

discrete canonical convolution operator Θs of the LCT is
defined as a linear map from ℓ2(Z) into L2(R) such that [32]

s[n]Θsg(t) =
∑
n∈Z

s[n]g(t− n)e−
ja
2b (t

2−n2)
(19)

which satisfies

s[n]Θsg(t)
LM

←−→
√
2πS̃M (u)G

(
u
b

)
(20)

where G
(
u
b

)
denotes the FT (with its argument scaled by 1

b )
of g(t).

C. Approximation Spaces Associated with LCT

For a function ϕ(t) ∈ L2(R), the signal approximation
space VM (ϕ) in (6) can be rewritten as

VM (ϕ) =
{∑
n∈Z

c[n]ϕn,M (t)
∣∣∣c[n] ∈ ℓ2(Z)} (21)

where ϕn,M (t) is defined as

ϕn,M (t) , ϕ(t− n)e−
ja
2b (t

2−n2). (22)

In general, the function sequence {ϕn,M (t)}n∈Z is not a Riesz
basis of VM (ϕ) [35]. In fact, it is a Riesz basis of VM (ϕ) if
and only if there exist two positive constants A and B such
that [32]

A ≤
∑
k∈Z

∣∣Φ (ub + 2kπ
)∣∣2 ≤ B (23)

where Φ
(
u
b

)
denotes the FT (with its argument scaled by 1

b )
of ϕ(t). The equality holds if and only if {ϕn,M (t)}n∈Z is
orthonormal, i.e., when A = B = 1.

Note that ϕ(t) is not the only function that can generate the
space VM (ϕ). By following the steps in [32] and [36], it is
possible to construct many others by using general equivalent
generating function ϕeq(t) ∈ L2(R) of the form

ϕeq(t)e
− ja

2b t
2

=
∑
n∈Z

q[n]ϕn,M (t)

= q[n]Θsϕ(t)

(24)

where q[n] is an appropriate sequence of weights. The nec-
essary and sufficient condition for the function sequence
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TABLE I
PRIMARY TYPES OF EQUIVALENT GENERATING FUNCTIONS WITH THEIR SPECIFIC PROPERTIES

Type The DTLCT of q[n] Property

Generic Q̃M (u) = Abe
jd
2b

u2

√
2π Admissibility: 0 < A ≤

∑
k∈Z

∣∣Φeq
(
u
b
+ 2kπ

)∣∣2 ≤ B

Interpolating Q̃M (u) = Abe
jd
2b

u2

√
2π

∑
k∈Z Φ(u

b
+2kπ)

Interpolating: ϕeq(k) = δk , k ∈ Z

Orthogonal Q̃M (u) = Abe
jd
2b

u2

√
2π

√∑
k∈Z|Φ(u

b
+2kπ)|2

Orthogonality:
⟨
ϕeq,n,M (t), ϕeq,k,M (t)

⟩
= δk−n

Dual Q̃M (u) = Abe
jd
2b

u2

√
2π

∑
k∈Z|Φ(u

b
+2kπ)|2 Biorthogonality: ⟨ϕeq,n,M (t), ϕk,M (t)⟩ = δk−n

{
ϕeq,n,M (t) , ϕeq(t− n)e−

ja
2b (t

2−n2)
}
n∈Z to yield an equiv-

alent Riesz basis of VM (ϕ) is that there exist two strictly
positive constants ϱ0 and ϱ1 such that

ϱ0 ≤ |Q̃M (u)| ≤ ϱ1 a.e. (25)

where Q̃M (u) denotes the DTLCT of q[n]. In fact, the
sequence q[n] can be chosen so that the basis functions
satisfy certain prescribed properties. The most important types
of generating functions are summarized in Table I, where
Φeq(

u
b ) denotes the FT (with its argument scaled by 1

b ) of
ϕeq(t). For each set of basis functions, there exists a unique
set of coefficients that characterizes the function in VM (ϕ).
The selection of the most appropriate representation generally
depends on the application.

III. SAMPLING AND RECONSTRUCTION IN ARBITRARY
MEASUREMENT AND APPROXIMATION SPACES

ASSOCIATED WITH LCT
Many methods exist for representing a signal f(t) by a se-

quence of numbers, which can be interpreted as measurements
of f(t). The ordinary approach is to choose the measurements
as samples of f(t). Here, we consider a generalized sampling
scheme as shown in Fig. 2, in which the measurements can be
expressed as inner products of f(t) with a function sequence
{υn,M (t) , υ(t − n)e−

ja
2b (t

2−n2)}n∈Z that spans a subspace
SM (υ), which is referred to as the measurement space. The
problem then is to reconstruct f(t) from these measurements
by using a function sequence {ϕn,M (t)}n∈Z that spans the
approximation space VM (ϕ).

A. Generalized Sampling Theorem for LCT

In Fig. 1(c), the orthogonal projection of f(t) ∈ L2(R)
on VM (ϕ) provides the optimal representation in the sense

that the L2-approximation error is minimized. This least
squares solution can be computed simply by prefiltering and
sampling [32]. The corresponding optimal prefilter ψ(t) with
ψ(t)e−j ja

2b t
2 ∈ VM (ϕ) is uniquely specified and corresponds

to the dual of the generating function ϕ(t) of VM (ϕ). This
implies that the least squares solution to the generalized
sampling system of Fig. 2 requires the measurement space
SM (υ) to be equal to the approximation space VM (ϕ). In
practice, the prefilter typically corresponds to the impulse
response of the measurement device. In most cases, this
operator is specified a priori, and thus it is usually not possible
to obtain the least squares solution directly. Therefore, we
must relax the requirement for perfect reconstruction. Note
in Fig. 2, it will acquire uniformly spaced samples at the
output of a measurement device to produce an approximation
f̃(t) ∈ VM (ϕ) of the input function f(t) ∈ L2(R). The
function υ(−t) is the impulse response of the measurement
device, and the sequence {h[n]}n∈Z is a digital correction
filter to be specified. Both SM (υ) and VM (ϕ) are defined
by an equation equivalent to (21). In addition, the generating
functions υ(t) and ϕ(t) both satisfy the Riesz basis condition
(23). To specify the signal approximation f̃(t), we introduce
a constraint on our sampling procedure, i.e.,

c1[n] = ⟨f(t), υn,M (t)⟩L2 = ⟨f̃(t), υn,M (t)⟩L2 . (26)

For simplicity, we define the sampled cross-correlation se-
quence of ϕ(t) and υ(t) as

λϕυ[k] , ⟨ϕ(t), υ(t− k)⟩L2 . (27)

Let Λ̃ϕυ(
u
b ) denote the DTFT (with its argument scaled by

1
b ) of λϕυ[k]. Taking the corresponding scaled DTFTs of both
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Fig. 2. Sampling in a general measurement space SM (υ) with signal reconstruction in the approximation space VM (ϕ).



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

sides of (27) results in

Λ̃ϕυ

(
u
b

)
=
√
2π
∑
k∈Z

Φ∗ (u
b + 2kπ

)
Υ
(
u
b + 2kπ

)
(28)

where Υ(ub ) indicates the FT (with its argument scaled by 1
b )

of υ(t). Based on the above results, we have the following
generalized sampling theorem associated with the LCT.

Theorem 1: A unique solution satisfying (26) exists if and
only if there are two positive constants ϵ0 and ϵ1 such that
ϵ0 ≤ |Λ̃ϕυ

(
u
b

)
| ≤ ϵ1. Let {h[n]}n∈Z ∈ ℓ2(Z) be a sequence

with its DTFT H̃
(
u
b

)
= 1/(2πΛ̃ϕυ(

u
b )). The solution is the

projection of f(t) on VM (ϕ) perpendicular to SM (υ), i.e.,

f̃(t) = PVM⊥SM
f(t)

=
∑
n∈Z

c2[n]ϕn,M (t) (29)

where expansion coefficients c2[n] is determined as

c2[n] = (c1Θfh)[n]

=
∑
k∈Z

c1[k]h[n− k]e−
ja
2b (n

2−k2). (30)

Proof: The function f̃(t) can be rewritten as

f̃(t) =
∑
n∈Z

(c1Θfh)[n]ϕn,M (t). (31)

Inserting (31) into (26) results in

c1[n] =
⟨∑
m∈Z

(c1Θfh)[m]ϕm,M (t), υn,M (t)
⟩
L2

=
∑
m∈Z

(c1Θfh)[m] ⟨ϕm,M (t), υn,M (t)⟩L2

(32)

which, in conjunction with (22) and (27), gives rise to

c1[n] =
∑
m∈Z

(c1Θfh)[m]λϕυ[n−m]e−
ja
2b (n

2−m2)

= (c1Θfh)[n]Θfλϕυ[n].

(33)

Then, from (18) and (33), we have

C̃1,M (u) = 2πC̃1,M (u)H̃
(
u
b

)
Λ̃ϕυ

(
u
b

)
(34)

where C̃1,M (u) denotes the DTLCT of c1[n]. Thus, we derive

H̃
(
u
b

)
=

1

2πΛ̃ϕυ

(
u
b

) . (35)

It is not difficult to see that (29) defines a linear operator
P : L2(R) → VM (ϕ). To prove that P is the projection on
VM (ϕ) perpendicular to SM (υ), we will show that P has the
following properties:

∀g(t) ∈ VM (ϕ), Pg(t) = g(t) (36)

∀f(t) ∈ L2(R), f(t)− Pf(t) ∈ S⊥M (υ) (37)

∀e(t) ∈ S⊥M (υ), Pe(t) = 0. (38)

First, since g(t) ∈ VM (ϕ), there exists a scalar sequence
{c[m]}m∈Z ∈ ℓ2(Z) such that

g(t) =
∑
m∈Z

c[m]ϕm,M (t). (39)

By combining (39), (26) and (31), the expansion coefficients
of Pg(t) can be derived as

⟨g(t), υn,M (t)⟩Θfh[n]

=
⟨∑
m∈Z

c[m]ϕm,M (t), υn,M (t)
⟩
L2
Θfh[n]

=
∑
m∈Z

c[m] ⟨ϕm,M (t), υn,M (t)⟩L2 Θfh[n]

=
(
c[n]Θfλϕυ[n]

)
Θfh[n].

(40)

Taking the DTLCTs of both sides of (40) and applying (18)
and (35) yield

L̃M
{
⟨g(t), υn,M (t)⟩L2 Θfh[n]

}
(u)

= 2πC̃M (u)Λ̃ϕυ(
u
b )H̃(ub )

= C̃M (u)

(41)

where C̃M (u) denotes the DTLCT of c[n]. Thus, we have

⟨g(t), υn,M (t)⟩L2 Θfh[n] = c[n] (42)

which validates that (36) is true. That is, P is a projector on
VM (ϕ). Next, we consider the following inner product

⟨f(t)− Pf(t), υn,M (t)⟩L2

= ⟨f(t), υn,M (t)⟩L2 − ⟨Pf(t), υn,M (t)⟩L2

= c1[n]−
⟨∑
m∈Z

c2[m]ϕm,M (t), υn,M (t)
⟩
L2

= c1[n]− (c2Θfλϕυ)[n].

(43)

By applying (43), (33), and (30), it follows that

⟨f(t)−Pf(t), υn,M (t)⟩L2 = 0. (44)

This result implies that the projection error is orthogonal to
SM (υ), i.e., (37) holds. Finally, we can use the fact that

∀e(t) ∈ S⊥M (υ), ⟨e(t), υn,M (t)⟩L2 = 0 (45)

which, along with (26) and (31), implies that (38) is satisfied
as well. This completes the proof of Theorem 1.

B. Discussion and Properties

1) Equivalent Biorthogonal Expansion: The solution of
(26) described by Theorem 1 can also be expanded as a set
of biorthogonal basis functions, i.e.,

PVM⊥SM f(t) =
∑
n∈Z

⟨
f(t), ϕ̊n,M (t)

⟩
L2ϕn,M (t) (46)

where the equivalent biorthogonal function ϕ̊n,M (t) satisfying
ϕ̊n,M (t) ∈ SM (υ) is unique and inherits the structure of
ϕn,M (t) in (22), satisfying

Φ̊
(
u
b

)
=

Υ
(
u
b

)
√
2πΛ̃∗

ϕυ

(
u
b

) (47)

where Φ̊(ub ) denotes the FT (with its argument scaled by 1
b )

of ϕ̊(t). Equation (47) is determined by the biorthogonality
condition

⟨ϕ̊k,M (t), ϕn,M (t)⟩L2 = δn−k. (48)
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The proof of (47) is given as follows.
Since ϕ̊n,M (t) ∈ SM (υ) for any n ∈ Z, we may represent

ϕ̊0,M (t) as a linear combination of {υn,M (t)}n∈Z, i.e.,

ϕ̊(t)e−
ja
2b t

2

=
∑
n∈Z

x[n]υn,M (t) = x[n]Θsυ(t) (49)

with scalar sequence x[n] ∈ ℓ2(Z). Taking the LCTs of both
sides of (49) and applying (20) result in

Abe
jd
2bu

2

Φ̊
(
u
b

)
= X̃M (u)Υ

(
u
b

)
(50)

where X̃M (u) denotes the DTLCT of x[n]. Next, inserting
(49) into (48) leads to

δn =
⟨
ϕ̊0,M (t), ϕn,M (t)

⟩
L2

=

⟨∑
k∈Z

r[k]υk,M (t), ϕn,M (t)

⟩
L2

=
∑
k∈Z

x[k] ⟨υk,M (t), ϕn,M (t)⟩L2

=
∑
k∈Z

x[k]λυϕ[n− k]e−
ja
2b (n

2−k2)

= x[n]Θfλυϕ[n].

(51)

Taking the DTLCTs of both sides of (51) and using (18) yield

Abe
jd
2bu

2

=
√
2πX̃M (u)Λ̃∗

ϕυ

(
u
b

)
. (52)

By combining (52) and (50), (47) can be established.
2) Connection with Reproducing Kernel Hilbert Spaces:

We first briefly introduce the concept of reproducing kernel
Hilbert spaces (RKHS’s). A closed vector space V is a RKHS
with reproducing kernel κ(t, t′) if and only if [37]

∀t0 ∈ R, κ(·, t0) ∈ V (53)

and
∀f(t) ∈ V, ⟨f(·), κ(t, ·)⟩L2 = f(t). (54)

Then, by Theorem 1, we will show that the approximation
space VM (ϕ) associated with the LCT forms a RKHS. We
also need υ(t) = O ((1 + |t|)−ϵ) for some ϵ > 1/2. It is easy
to see that (46) is equivalent to

PVM⊥SM
f(t) =

⟨
f(·),

∑
n∈Z

ϕ̊n,M (·)ϕ∗n,M (t)
⟩
L2

=
⟨
f(·), κM (t, ·)

⟩
L2

(55)

where

κM (t, t′) =
∑
k∈Z

ϕ̊k,M (t′)ϕ∗k,M (t). (56)

By Theorem 1, it is clear that

∀f(t) ∈ VM (ϕ), ⟨f(·), κM (t, ·)⟩L2 = f(t) (57)

which is the same as (54), except that the kernel κM (t, t′)
may be different from κ(t, t′). Next, we give the derivation of
the requirement ∀t0 ∈ R, κM (·, t0) ∈ VM (ϕ). Given t0 ∈ R,

combining (49) and Parseval’s identity of the DTFT [2], we
can derive(∑

n∈Z

∣∣∣ϕ̊n,M (t0)
∣∣∣2) 1

2

=

(∑
n∈Z

∣∣∣ϕ̊(t0 − n)∣∣∣2)
1
2

=

∥∥∥∥∥∑
n∈Z

ϕ̊(t0 − n)ej
u
b n

∥∥∥∥∥
ℓ2

=

∥∥∥∥∥∑
n∈Z

∑
l∈Z

x[l]υ(t0 − n− l)e
ja
2b l

2

ej
u
b n

∥∥∥∥∥
ℓ2

=

∥∥∥∥∥∑
l∈Z

x[l]e
ja
2b l

2−j u
b l
∑
n∈Z

υ(t0 − n− l)ej
u
b (n+l)

∥∥∥∥∥
ℓ2

.

(58)

Then, using (13), we have∑
l∈Z

x[l]e
ja
2b l

2−j u
b l = A−1

b X̃M (u)e−
jd
2bu

2

. (59)

Substituting (52) in (59) leads to∑
l∈Z

x[l]e
ja
2b l

2−j u
b l =

1
√
2πΛ̃∗

ϕυ

(
u
b

) . (60)

Since ϵ0 ≤ |Λ̃ϕυ

(
u
b

)
| ≤ ϵ1 in Theorem 1, combining (60)

and (58) results in(∑
k∈Z

∣∣∣ϕ̊n,M (t0)
∣∣∣2) 1

2

=

∥∥∥∥∥
∑

n′∈Z υ(t0 − n′)ej
u
b n

′

√
2πΛ̃∗

ϕυ

(
u
b

) ∥∥∥∥∥
ℓ2

≤

∥∥∥∑n′∈Z υ(t0 − n′)ej
u
b n

′
∥∥∥
ℓ2

∥
√
2πΛ̃∗

ϕυ

(
u
b

)
∥0

=

∥∥∥∑n′∈Z υ(t0 − n′)ej
u
b n

′
∥∥∥
ℓ2

∥
√
2πΛ̃∗

ϕυ

(
u
b

)
∥0

=

(∑
n′∈Z |υ(t0 − n′)|2

) 1
2

∥
√
2πΛ̃∗

ϕυ

(
u
b

)
∥0

(61)

where the index transform n + l = n′ is used. Clearly,{
ϕ̊n,M (t0)

}
n∈Z

lies in ℓ2(Z) due to the fact that υ(t) =
O ((1 + |t|)−ϵ) for some ϵ > 1/2. Then, from (56), we
conclude that κM (·, t0) ∈ VM (ϕ). In particular, if we choose
ϕ(t) = sinc(t), the constructed RKHS will reduce to the
RKHS for signals bandlimited in the LCT domain, which was
derived by Zhao et. al in [25].

3) Minimum Error Solution: It is clear that f̃(t) =
PSM f(t) is the orthogonal projection of f(t) onto SM (υ)
if VM (ϕ) = SM (υ). In this special case, Theorem 1 cor-
responds to the least squares sampling theorem of the LCT
derived in [32]. Therefore, by (24), Theorem 1 provides the
minimum error approximation f(t) ∈ L2(R) if and only
if υ(t)e−

ja
2b t

2 ∈ VM (ϕ). Correspondingly, the equivalent
biorthogonal function in (46) is precisely the dual of the basis
function ϕn,M (t) ∈ VM (ϕ) described in the fourth row of
Table I, and the sampling procedure is optimal. Otherwise,
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we will obtain an approximate solution, and the performance
of which depends on the “similarity” of the approximation
space VM (ϕ) and the measurement space SM (υ). A detailed
discussion of this issue is presented in Section IV.

4) Signal Approximation in Measurement Space: Let
PSM

f(t) be the orthogonal projection of f(t) on SM (υ).
Since PVM⊥SM f(t) is the projection of f(t) on VM (ϕ)
perpendicular to SM (υ), for any f(t) ∈ L2(R), it follows
that PSM f(t) = PSMPVM⊥SM f(t), as shown in Fig. 3. This

( )M   

( )M !!

( )f t

( ) ( )
M M

f t f t
 

! 
 !
"

( )
M
f t

!
"

Fig. 3. Graphical representation of function approximations.

implies that the approximation of f̃(t) in (29) contains all the
information necessary to compute PSM

f(t). Now, we discuss
the computation of PSM f(t) from PVM⊥SM f(t) in detail. By
using the general equivalent generating function in (24) and its
property described in the third row of Table I, the orthogonal
generating function υortho(t) of SM (υ) satisfies

υortho(t)e
− ja

2b t
2

=
∑
n∈Z

q1[n]υn,M (t) (62)

where expansion coefficients q1[n] is the inverse DTLCT of(√
2πΛ̃υυ

(
u
b

))− 1
2Abe

jd
2bu

2

. For simplicity, let

q̃[n] , q[n]e
ja
2bn

2

(63)

denote the chirp-modulated version of a sequence q[n]. Fur-
ther, from (62), the orthogonal basis function of SM (υ) is
given by

υortho,n,M (t) = υortho(t− n)e−
ja
2b (t

2−n2)

=
∑
k∈Z

q̃1[k]υ(t− n− k)e−
ja
2b (t

2−n2). (64)

The coefficients of orthogonal projection of PVM⊥SM
f(t) onto

SM (υ) can then be calculated as

ς[n] =
⟨
PVM⊥SM f(t), υortho,n,M (t)

⟩
L2

=
⟨∑
m∈Z

c2[m]ϕm,M (t), υortho,n,M (t)
⟩
L2

= e−
ja
2bn

2
(
c̃2 ⋆ (q̃1 ∗ λϕυ)

)
[n]

(65)

where ⋆ and ∗ denote the ordinary correlation and convolution
operators, respectively. Therefore, we have

∀f(t) ∈ L2(R), PSM
f(t) = PSM

PVM⊥SM
f(t)

=
∑
n∈Z

ς[n]υortho,n,M (t). (66)

5) Generalization of Shannon’s Sampling Theory for LCT:
Theorem 1 provides a restatement of Shannon’s sampling
theorem associated with the LCT for real measured signal
values, i.e., samples obtained after convolution with the im-
pulse response of the sensor. Also, it can be viewed as a
generalization of Shannon’s sampling theory for the LCT.
This may be interpreted twofold. Equation (36) states that
functions included in the approximation space VM (ϕ) are
left unchanged. An equivalent formulation of this property
is that any function f(t) ∈ VM (ϕ) can be reconstructed
without any loss from its sampled measured values. This
statement is very similar to Shannon’s sampling theorem for
the LCT [20]. The main distinction is that we are now talking
about measured values instead of signal samples. The class of
functions considered here is also more general than the family
of LCT-bandlimited signals given in (5). On the other hand,
when ϕ(t) = υ(t) = sinc(t), it follows that h[n] = δ[n]. In
this case, Theorem 1 reduces to Shannon’s sampling theorem
for the LCT [20]. In our previous work [32], we studied
the relationship between Shannon’s sampling theorem and
sampling procedures in function spaces associated with the
LCT in detail. In addition, if M =

(
cosα sinα
− sinα cosα

)
, Theorem

1 reduces to Shannon’s sampling theorem for the FRFT [38].
Further, if M =

(
0 1
−1 0

)
, it is identical to classical Shannon’s

sampling theorem [29].

C. Input/Output Coherence Measures
An important practical issue is how much better the approx-

imation PVM⊥SM
f(t) is when compared to the optimal least

squares solution PVM f(t). To give a quantitative answer to this
question, we will define an input-output coherence function
that measures the “similarity” between the approximation
space VM (ϕ) and the measurement space SM (υ).

Our initial assumption is that both ϕ(t) and υ(t) satisfy the
Riesz basis condition (23). Thus, it is possible to construct the
orthogonal generating functions ϕortho(t) and υortho(t), see the
third row of Table I. Then, we can derive a normalized form
of the cross-correlation sequence λϕυ[k] as

γϕυ[k] = ⟨ϕortho(t), υortho(t− k)⟩L2 . (67)

Following the derivation of υortho(t) in (62), the orthogonal
generating function ϕortho(t) of VM (ϕ) is determined by

ϕortho(t)e
− ja

2b t
2

=
∑
n∈Z

q2[n]ϕn,M (t) (68)

where expansion coefficients q2[n] is the inverse DTLCT of(√
2πΛ̃ϕϕ

(
u
b

))− 1
2Abe

jd
2bu

2

. It follows from (68) and (63) that

ϕortho(t) =
∑
n∈Z

q̃2[n]ϕ(t− n). (69)

Combining (62), (67), and (69), we have

γϕυ[k] =
(
q̃2 ⋆ (q̃

∗
1 ∗ λϕυ)

)
[k]. (70)

Taking the DTFTs (with its argument scaled by 1
b ) of both

sides of (70) and using (28) yield

Γ̃ϕυ

(
u
b

)
=

Λ̃∗
ϕυ(

u
b )√

2πΛ̃ϕϕ(
u
b )Λ̃υυ(

u
b )

(71)
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where Γ̃ϕυ

(
u
b

)
denotes the DTFT (with its argument scaled

by 1
b ) of γϕυ[k]. To get a measure that is symmetrical with

respect to ϕ(t) and υ(t), we take the modulus of Γ̃ϕυ

(
u
b

)
.

This allows us to define the spectral coherence function∣∣∣Γ̃ϕυ

(
u
b

)∣∣∣ = ∣∣∑
k∈Z Φ(

u
b + 2kπ)Υ∗(ub + 2kπ)

∣∣√∑
k∈Z |Φ(

u
b + 2kπ)|2

× 1√
2π
√∑

k∈Z |Υ(ub + 2kπ)|2

(72)

which can be viewed as a function of the FTs (with its
argument scaled by 1

b ) of the generating functions ϕ(t) and
υ(t) using Poisson’s summation formula. This spectral coher-
ence function also takes the form of a correlation coefficient
between the spectral components of ϕortho(t) and υortho(t).
Some relevant properties of it are described as follows:

Theorem 2: If the generating functions ϕ(t) and υ(t) satisfy
the Riesz basis condition (23), then the spectral coherence
function

∣∣Γ̃ϕυ

(
u
b

)∣∣ has the following properties:

(i)
∣∣Γ̃ϕυ

(
u
b

)∣∣ is periodic and independent of a particular
choice of the generating functions for VM (ϕ) and SM (υ).

(ii)
∣∣Γ̃ϕυ

(
u
b

)∣∣ ≤ 1√
2π

, ∀u ∈ R. The equality is achieved if
and only if VM (ϕ) = SM (ϕ).

(iii) If the generating functions ϕ(t) and υ(t) lie in L1(R),
and their scaled FTs Φ(ub ) and Υ(ub ) both decay like
O(|u|−ε), ε > 1

2 , then
∣∣Γ̃ϕυ

(
u
b

)∣∣ is continuous.
Proof: (i) From (72), it is easy to see that∣∣Γ̃ϕυ

(
u+2πb

b

)∣∣ = ∣∣∑
k′∈Z Φ(

u
b + 2k′π)Υ∗(ub + 2k′π)

∣∣√∑
k′∈Z |Φ(

u
b + 2k′π)|2

× 1√
2π
√∑

k′∈Z |Υ(ub + 2k′π)|2

=
∣∣Γ̃ϕυ

(
u
b

)∣∣
(73)

where the index transform k+1 = k′ is used. Thus,
∣∣Γ̃ϕυ

(
u
b

)∣∣
is a periodic function with period 2πb. The invariance property
can be verified by computing the spectral coherence for gen-
eral equivalent generating functions ϕeq(t) and υeq(t) defined
by (24). To be specific, using (24) and (20), the FT Φeq(

u
b )

(with its argument scaled by 1
b ) of the general equivalent

generating function ϕeq(t) of VM (ϕ) can be derived as

Φeq
(
u
b

)
= A−1

b Q̃M (u)e−
jd
2bu

2

Φ
(
u
b

)
(74)

where Q̃M (u) denotes the DTLCT of q[n] defined in (24).
Combining (74) and (16), we can see that for any k ∈ Z

Φeq
(
u
b + 2kπ

)
= A−1

b Q̃M (u)e−
jd
2bu

2

Φ
(
u
b + 2kπ

)
. (75)

Meanwhile, from (24), there exists a general equivalent gen-
erating function υeq(t) for SM (υ) such that

υeq(t)e
− ja

2b t
2

=
∑
n∈Z

y[n]υn,M (t)

= y[n]Θsυ(t)

(76)

where expansion coefficients y[n] satisfies the condition in
(25). Let Υeq(

u
b ) and ỸM (u) denote the FT (with its argument

scaled by 1
b ) of υeq(t) and the DTLCT of y[n], respectively.

Using (76) and (20), we have

Υeq
(
u
b

)
= A−1

b ỸM (u)e−
jd
2bu

2

Υ
(
u
b

)
(77)

from which together with (16), it follows that

Υeq
(
u
b + 2kπ

)
= A−1

b ỸM (u)e−
jd
2bu

2

Υ
(
u
b + 2kπ

)
. (78)

Then, from (72), the spectral coherence function for general
equivalent generating functions ϕeq(t) and υeq(t) is given by∣∣∣Γ̃ϕeqυeq

(
u
b

)∣∣∣ = ∣∣∑
k∈Z Φeq(

u
b + 2kπ)Υ∗

eq(
u
b + 2kπ)

∣∣√∑
k∈Z |Φeq(

u
b + 2kπ)|2

× 1√
2π
√∑

k∈Z |Υeq(
u
b + 2kπ)|2

.

(79)

Inserting (75) and (78) into (79) results in∣∣∣Γ̃ϕeqυeq

(
u
b

)∣∣∣ = ∣∣∣Γ̃ϕυ

(
u
b

)∣∣∣ (80)

which states that
∣∣Γ̃ϕυ

(
u
b

)∣∣ is independent of a particular
choice of generating functions for spaces VM (ϕ) and SM (υ).

(ii): For a fixed value of u, using Schwarz’s inequality yields∣∣∣∣∣∑
k∈Z

Φ(ub + 2kπ)Υ∗(ub + 2kπ)

∣∣∣∣∣
2

≤

(∑
k∈Z

∣∣Φ(ub + 2kπ)
∣∣2)(∑

k∈Z

∣∣Υ(ub + 2kπ)
∣∣2) (81)

which together with (72) implies that
∣∣Γ̃ϕυ

(
u
b

)∣∣ ≤ 1√
2π

. The
equality holds for some LCT frequency u0 if and only if there
exists a constant P̃ (which depends on u0) such that

Φ(u0

b + 2kπ) = P̃ (u0

b )Υ(u0

b + 2kπ). (82)

Then, the condition∣∣Γϕυ

(
u
b

)∣∣ = 1√
2π
, ∀u ∈ I (83)

is equivalent to

∀k ∈ Z, Φ(ub + 2kπ) = P̃ (ub )Υ(ub + 2kπ) (84)

which implies that

∀k ∈ Z, P̃ (ub ) = P̃ (ub + 2kπ). (85)

Next, combining (84) and (85) results in∑
k∈Z

∣∣Φ(ub + 2kπ)
∣∣2 =

∣∣∣P̃ (ub )∣∣∣2∑
k∈Z

∣∣Υ(ub + 2kπ)
∣∣2 . (86)

Since ϕ(t) and υ(t) both satisfy the Riesz basis condition (23)
with bounds (A1, B1) and (A2, B2) for VM (ϕ) and SM (υ),
respectively, we have

0 <
A1

B2
≤
∣∣∣P̃ (ub )∣∣∣2 ≤ B1

A2
. (87)

Based on the above facts, we can conclude that P̃ (ub ) ∈ L
2(I).

This means that we can take the inverse DTFT (with its
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argument scaled by 1
b ) of P̃ (ub ) in L2(I) denoted by p[n].

Then, from (84), we derive

ϕ(t) =
∑
n∈Z

p[n]υ(t− n) (88)

which leads to

ϕ(t)e−
ja
2b t

2

=
∑
n∈Z

p̃∗[n]υn,M (t). (89)

Then, it follows from (24) that ϕ(t) and υ(t) generate the
same function space, i.e., VM (ϕ) = SM (υ).

(iii): By the Riemann-Lebesgue Lemma, functions Φ(ub )
and Υ(ub ) are both continuous. If they also decay like
O(|u|−ε), ε > 1

2 , then the series∑
k∈Z

Φ(ub + 2kπ)Υ∗(ub + 2kπ)

≤
∑
k∈Z

∣∣Φ(ub + 2kπ)Υ∗(ub + 2kπ)
∣∣

≤ const
+∞∑
k=1

|k|−2ε

(90)

are absolutely convergent independently of u. Therefore, these
series are continuous on I. Since the denominators on the
right hand side of (72) are bounded and nonvanishing, the
spectral coherence function

∣∣Γ̃ϕυ

(
u
b

)∣∣ is continuous as well.
This completes the proof of Theorem 2.

The spectral coherence function
∣∣Γ̃ϕυ

(
u
b

)∣∣ can be used to
compute an average measure of coherence between VM (ϕ)
and SM (υ). Using Parseval’s identity of the DTFT [2], we
arrive at

0 ≤
(∫

I

∣∣∣Γ̃ϕυ

(
u
b

)∣∣∣2 d (ub )) 1
2

= ∥γϕυ[k]∥ℓ2 ≤ 1. (91)

In particular, note in (ii) of Theorem 2,
∣∣Γ̃ϕυ

(
u
b

)∣∣ has the prop-
erty that it is equal to 1√

2π
if and only if VM (ϕ) = SM (ϕ). In

this case, signal approximations PVM⊥SM
f(t) and PVM

f(t)
are equivalent.

IV. ERROR ESTIMATES

If the generating function υ(t) of SM (υ) satisfies the
condition υ(t)e−

ja
2b t

2 ∈ VM (ϕ), then we can derive the mini-
mum error approximation based upon Theorem 1. Otherwise,
Theorem 1 will provide us with an approximate solution. Now,
we give a theoretical performance bound that corresponds to
a worst case scenario via the concept of the minimal and
maximal angles between two subspaces.

To derive the maximal angle between the measurement
space SM (υ) and the approximation space VM (ϕ), we use
the orthogonal representation of a function g(t) ∈ SM (υ) and
the orthogonal projection PVM

g(t) of g(t) onto VM (υ), i.e.,

g(t) =
∑
l∈Z

ω[l]υortho,l,M (t) (92)

PVM g(t) =
∑
k∈Z

ρ[k]ϕortho,k,M (t) (93)

where {ω[l]}l∈Z ∈ ℓ2(Z) and {ρ[k]}k∈Z ∈ ℓ2(Z). The most
important property of the orthogonal representation for our
purpose is that the L2-norm of a function is also equal to the
ℓ2-norm of its coefficients in the orthogonal representation.
Then, combining the linearity of the orthogonal projection
operator PVM

, (92), and (67) gives rise to

PVM
g(t) =

∑
l∈Z

ω[l]PVM
υortho,l,M (t)

=
∑
l∈Z

ω[l]
∑
k∈Z

⟨υortho,l,M (t), ϕortho,k,M (t)⟩

× ϕortho,k,M (t)

=
∑
l∈Z

ω[l]
∑
k∈Z

⟨υortho(t− l), ϕortho(t− k)⟩

× e−
ja
2b (k

2−l2)ϕortho,k,M (t)

=
∑
k∈Z

(ωΘfγυϕ) [k]ϕortho,k,M (t)

(94)

which clearly shows that the coefficients of PVM
g(t) in (93)

can be derived as

ρ[k] = (ωΘfγυϕ) [k] (95)

from which together with (18) it follows that

L̃M{ρ[k]}(u) =
√
2πΩ̃M (u)Γ̃υϕ(

u
b ) (96)

where Ω̃M (u) denotes the DTLCT of ω[k]. Next, from (15),
it follows that

∥PVM g∥
2
L2 = ∥ρ∥2ℓ2

=

∫
I

∣∣∣√2πΩ̃M (u)Γ̃υϕ(
u
b )
∣∣∣2 du

=

∫
I

∣∣∣Ω̃M (u)
∣∣∣2 · ∣∣∣√2πΓ̃υϕ(

u
b )
∣∣∣2 du

≥
∥∥∥√2πΓ̃υϕ(

u
b )
∥∥∥2
0
·
∫
I

∣∣∣Ω̃M (u)
∣∣∣2 du

=
∥∥∥√2πΓ̃υϕ(

u
b )
∥∥∥2
0
· ∥g∥2L2

(97)

which together with (10) implies that

inf
g∈SM\{0}

∥PVM
g∥L2

∥g∥L2

=
∥∥∥√2πΓ̃υϕ(

u
b )
∥∥∥
0

= R(SM ,VM ).

(98)

Note that if condition (iii) of Theorem 2 holds, i.e.,
∣∣Γ̃υϕ(

u
b )
∣∣

is continuous on I, then the essential infimum
∥∥√2πΓ̃υϕ(

u
b )
∥∥
0

will reduce to the minimum of
∣∣Γ̃υϕ(

u
b )
∣∣. Since

∣∣Γ̃υϕ(
u
b )
∣∣ is

symmetrical, we can also restrict the analysis to the interval
[0,+πb]. Note also that the bound given by (98) is symmet-
rical with respect to the generating functions ϕ(t) and υ(t).
Accordingly, it follows that R(SM ,VM ) = R(VM ,SM ).

Based on the above results, we now address the crucial issue
of how close our approximation f̃(t) = PVM⊥SM f(t) is to the
optimal estimate PVM

f(t), which is the orthogonal projection
of f(t) onto VM (ϕ). The question is of importance because the
minimum error solution is in general not accessible. However,
we would like to have some guarantee that the approximation
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produced by Theorem 1 is reasonably close to the best possible
estimate.

Theorem 3: Let SM (υ) and VM (ϕ) be two closed sub-
spaces of L2(R) with bases {υn,M (t)}n∈Z and {ϕn,M (t)}n∈Z,
respectively. Let PVM⊥SM be the oblique projection oper-
ator onto VM (ϕ) along S⊥M (υ), and PVM

be the orthogo-
nal projection operator onto VM (ϕ). Then, for any function
f(t) ∈ L2(R), it follows that

1 ≤ ∥f − PVM⊥SM f∥L2

∥f − PVM
f∥L2

≤ 1

∥
√
2πΓ̃υϕ(

u
b )∥0

(99)

where Γ̃υϕ(
u
b ) is defined in (72).

( )M   

( )M !!

( )f t

( )
M M
f t

  !
( )

M
f t
 

( )
M
e t
 

( )
M M
e t

  !

( )e t!

Fig. 4. Graphical representation of the various approximations and errors in
the function spaces.

Proof: Since PVM
is the orthogonal projection operator

onto VM (ϕ), it follows that ∥f − PVM f∥L2 ≤ ∥f − φ∥L2 ,
∀φ(t) ∈ VM (ϕ). This clearly shows that the left hand side
inequality of (99) holds. Next, to derive the right hand side
inequality, we define the following errors

eVM⊥SM
(t) = f(t)− fVM⊥SM

(t)

eVM
(t) = f(t)− fVM

(t)

∆e(t) = fVM⊥SM (t)− fVM (t)

(100)

where fVM⊥SM
(t) = PVM⊥SM

f(t) and fVM
(t) = PVM

f(t).
A graphical illustration of these errors is shown in Fig. 4. It is
easy to see that eVM⊥SM

(t) ∈ S⊥M (υ), eVM
(t) ∈ V⊥

M (ϕ), and
∆e(t) ∈ VM (ϕ). Clearly, eVM⊥SM

(t) = ∆e(t) + eVM
(t), in

addition ∆e(t) ⊥ eVM
(t). Then, from the Projection Theorem

[39], we obtain

∆e(t) = PVM
eVM⊥SM

(t) (101)

eVM (t) = eVM⊥SM (t)− PVM eVM⊥SM (t). (102)

This result shows that eVM (t) can be viewed as the orthogonal
projection of eVM⊥SM

(t) ∈ S⊥M (υ) on V⊥
M (ϕ). Therefore,

using (10), we can derive

inf
eVM⊥SM

∈S⊥
M\{0}

∥eVM ∥L2

∥eVM⊥SM
∥L2

= inf
eVM⊥SM

∈S⊥
M\{0}

∥(I − PVM
)eVM⊥SM

∥L2

∥eVM⊥SM ∥L2

= inf
eVM⊥SM

∈S⊥
M\{0}

∥PV⊥
M
eVM⊥SM ∥L2

∥eVM⊥SM
∥L2

= R(S⊥M ,V⊥
M )

(103)

where I denotes the identity operator. Combining (103) and
(11), we can see that

inf
eVM⊥SM

∈S⊥
M\{0}

∥eVM
∥L2

∥eVM⊥SM ∥L2

= R(SM ,VM ) (104)

from which along with (98), the right hand side inequality of
(99) is derived. This completes the proof of Theorem 3.

Note that the right hand side of (99) corresponds to the
worst possible case, and this bound may not necessarily reflect
what really happens in practice. A more realistic estimate of
the error ratio may be ∥γϕυ[k]∥−1

ℓ2 , where rϕυ[k] is the global
coherence measure defined by (91). This latter measure is an
average performance index in the sense that it weights to all
LCT-frequency components equally. It also corresponds to the
case of an impulse or white noise signal. Further, we have the
property that ∥γϕυ[k]∥ℓ2 = 1 if and only if R(SM ,VM ) = 1.

Based upon Theorem 3, a measure of the maximum dis-
crepancy between PVM

f(t) and PVM⊥SM
f(t) is given by

sup
f−PVM⊥SM

f∈S⊥
M\{0}

∥PVM
f − PVM⊥SM

f∥L2

∥f −PVM⊥SM f∥L2

=
√
1−R2(SM ,VM ).

(105)

Particularly, note that if ∥rϕυ[k]∥ℓ2 = 1, i.e., R(SM ,VM ) =
1, then PVM

f(t) − PVM⊥SM
f(t) = 0. This means that the

corresponding approximations PVM⊥SM
f(t) and PVM

f(t) are
equivalent. The proof of (105) is as follows.

From (100) and (101), (105) can be rewritten as

sup
eVM⊥SM

∈S⊥
M\{0}

∥∆e∥L2

∥eVM⊥SM
∥L2

= sup
eVM⊥SM

∈S⊥
M\{0}

∥PVM eVM⊥SM ∥L2

∥eVM⊥SM
∥L2

(106)

from which along with (9) it follows that

sup
eVM⊥SM

∈S⊥
M\{0}

∥PVM
eVM⊥SM

∥L2

∥eVM⊥SM ∥L2

= S(S⊥M ,VM )

= S(VM ,S⊥M ).

(107)

Then, combining (107) and (12) leads to (105).

V. NUMERICAL RESULTS AND APPLICATIONS

In this section, we want to see a numerical simulation and
several potential applications of the derived results.

We first give a numerical example. Suppose that f(t) is
known to be a B-spline of degree 2 with knots at the integers.
Such a signal can be expressed as

f(t) =
∑
n∈Z

d[n]β2(t− n) (108)

where {d[n]}n∈Z ∈ ℓ2(Z), and β2(t) is the B-spline function
of degree 2. It is clear that f(t) belongs to the approximation
space VM (ϕ) with its generating function ϕ(t) = β2(t) and
parameter M =

(
0 1
−1 2

)
. We wish to recover f(t) from average

of its values over the intervals [n − 1
2 , n + 1

2 ], n ∈ Z. This
setting corresponds to sampling at times t = n at the output of
the prefilter υ(t) = β0(t), where β0(t) is the B-spline function
of degree 0.
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Fig. 5. Reconstruction results: (a) using the proposed sampling scheme; (b)
using the sampling scheme of [32] shown in Fig. 1(c).

Using the proposed sampling scheme of Fig. 2, perfect
recovery of f(t) can be achieved by passing the measurements
{c1[n]}n∈Z through the digital correction filter h[n] which is
the inverse DTFT (with its argument scaled by 1

b ) of

H̃
(
u
b

)
=

1

2πΛ̃β2β0(ub )
=

4√
2π
(
cos(ub ) + 3

) . (109)

The reconstruction results obtained by using the proposed
sampling scheme of Fig. 2 with (109) and the scheme intro-
duced in [32] as illustrated in Fig. 1(c) are shown in Fig. 5(a)
and Fig. 5(b), respectively. The normalized mean-square error
(NMSE) of the proposed sampling scheme is 1.35 × 10−3,
where the NMSE is defined as NMSE = ∥f̃(t)−f(t)∥2

∥f(t)∥2 , and
f̃(t) denotes the reconstructed signal. By comparison, when
using the sampling scheme of [32], the NMSE is 0.2934.
Evidently, the digital filtering stage is required in order to
perfectly restore the signal from its filtered samples.

Next, we discuss applications of the derived results. The
derived theory provides an alternative formulation for the
basic deconvolution problem. Towards this end, we consider
a measurement device with an impulse response υ(t) and
assume that the signal reconstruction is bandlimited with

ϕ(t) = sinc(t). From Theorem 1, the DTFT of the correction
filter h[n] is given by

H̃
(
u
b

)
=

1

Υ(ub )
, u ∈ I (110)

which is identical to the traditional inverse filter solution
in the LCT domain [2]. Evidently, this operator is stable
by supposing that the LCT-frequency response Υ(ub ) of the
measurement device satisfies Υ(ub ) ̸= 0 for all u ∈ I. If υ(t)
satisfies the Riesz basis condition (23), the spectral coherence
function can be derived as∣∣∣Γ̃sinc υ

(
u
b

)∣∣∣ = ∣∣Υ(ub )
∣∣

√
2π
√∑

k∈Z |Υ(ub + 2kπ)|2
(111)

for u ∈ I. It is easy to see that (111) is identical to that of the
LCT-frequency response of the orthogonal generating function
υortho(t) defined by (62), i.e., |Γ̃sinc υ

(
u
b

)
| = |Υortho(

u
b )|. If

υ(t) is bandlimited in the LCT domain, i.e., υ(t)e−
ja
2b t

2 ∈
VM (sinc), then |Γ̃sinc υ

(
u
b

)
| = 1√

2π
, in which case a perfect

signal recovery is possible. Otherwise, our derived results
demonstrate that the ideal bandlimited signal approximation
PVM f(t) can not be obtained exactly from the samples,
unless the input signal f(t) is itself bandlimited in the LCT
domain. One may be tempted to conclude that the proposed
algorithm can be viewed as a special type of deconvolution
technique. The major difference between our method and
ordinary deconvolution methods is that our approach combines
the task of signal approximation and correction for sensor
distortions. Moreover, the resulting algorithm is digital al-
though the problem is initially formulated in the continuous
signal domain. In this sense, the proposed algorithm provides
a proper discretization for an analog deconvolution problem.

Other potential applications of the derived results can be
found in the design of correction filters for improving the
rendition of digital images on a display device (e.g., video
monitor, film recorder, etc.). We will make the standard
assumption that the digital images were acquired using a mea-
surement procedure that conforms with Shannon’s sampling
theorem of the LCT and consider the case of a display device
that use piecewise constant interpolation. The corresponding
basis functions υ(x, y) = sinc(x) sinc(y) and ϕ(x, y) =
β0(x)β0(y) are separable in the x and y coordinates (x
and y represent the horizontal and vertical spatial dimension,
respectively). Then, we can use our derived results to obtain
a separable correction filter that is implemented by successive
one-dimensional processing along the rows and the columns of
the image. The DTFT of the resulting one-dimensional digital
filter specified by Theorem 1 is given by

H̃
(
u
b

)
=

1
1√
2π

sinc( u
2πb )

, u ∈ I (112)

which is plotted in Fig. 6(a). The effect of this filter is to
enhance higher spatial LCT-frequencies, which corresponds
to a special form of image sharpening [40]. In order to verify
the proposed image sharpening technique, we have used the
cameraman image sequence. The original image is shown in
Fig. 6(b), and Fig. 6(c) illustrates the corresponding sharpened
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Fig. 6. Image sharpening based on the proposed method: (a) LCT-frequency
response of the one-dimensional digital correction filter for a piecewise
constant signal reconstruction; (b) original image; (c) sharpened image.

image. It can be observed that fine details are well sharpened
using the proposed image sharpening method.

VI. CONCLUSION

In this paper, we have proposed a generalized sampling
scheme associated with the LCT, which allows for arbitrary
measurement and approximation spaces. The approximation
space is usually determined by the digital to analog conver-
sion algorithm. The only addition to the standard sampling
scheme is a digital correction filter in the LCT domain. No
special constraint, such as bandlimitedness, is imposed on the
input signal. Our only requirement is that the reconstructed
signal is indistinguishable from the input in the sense that it
yields the exact same measurements. Therefore, the proposed
sampling scheme may be applicable to most practical situa-
tions. Moreover, a spectral coherence function that measures
the “similarity” between the measurement and approximation
spaces is introduced, and a relative performance bound for
the comparison with the least squares solution is derived.
Numerical results and several potential applications of the
derived results are also presented.
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