
Layout driven FPGA packing
algorithm for performance
optimization

Linfeng Mo1, Chang Wu1, Lei He1,2, and Gengsheng Chen1a)
1 State Key Laboratory of ASIC and System, Fudan University
2 Electrical Engineering Department, University of California at Los Angeles

a) gschen@ fudan.edu.cn

Abstract: FPGA is a 2D array of configurable logic blocks. Packing is to

pack logic elements into device specific configurable logic blocks for

subsequent placement. The traditional fixed delay model of inter and intra

cluster delays used in packing does not represent post-placement delays and

often leads to sub-optimal solutions. This paper presents a new layout driven

packing algorithm, named LDPack, based on a novel pre-packing placement

for performance optimization. Our results show that after placement and

routing LDPack outperforms Xilinx ISE MAP with 8% reduction in area

and 5.22% smaller critical path delay, at the cost of 18% more runtime in

average.

Keywords: FPGA, packing, placement, layout

Classification: Integrated circuits

References

[1] A. Marquardt, et al.: “Using cluster-based logic blocks and timing-driven
packing to improve FPGA speed and density,” ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (1999) 37 (DOI: 10.1145/
296399.296426).

[2] G. Chen and J. Cong: “Simultaneous timing driven clustering and placement
for FPGAs,” International Conference on Field Programmable Logic and
Applications (2004) 158 (DOI: 10.1007/978-3-540-30117-2_18).

[3] D. T. Chen, et al.: “Improving timing-driven FPGA packing with physical
information,” 2007 International Conference on Field Programmable Logic and
Applications (2007) 117 (DOI: 10.1109/FPL.2007.4380635).

[4] W. Sui, et al.: “Physical information driven packing method in FPGA,” JCIS-
2008 Proc. (2008) (DOI: 10.2991/jcis.2008.20).

[5] G. Karypis, et al.: “Multilevel hypergraph partitioning: Applications in VLSI
domain,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7 (1999) 69 (DOI:
10.1109/92.748202).

[6] Y. W. Chang, et al.: “Essential issues in analytical placement algorithms,” IPSJ
Transactions on System LSI Design Methodology 2 (2009) 145 (DOI: 10.2197/
ipsjtsldm.2.145).

[7] W. C. Naylor, et al.: U.S. Patent 6301693 (2001).
[8] T. C. Chen, et al.: “NTUplace3: An analytical placer for large-scale mixed-

size designs with preplaced blocks and density constraints,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 27 (2008) 1228 (DOI: 10.1109/
TCAD.2008.923063).

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

1

LETTER IEICE Electronics Express, Vol.14, No.11, 1–10

http://dx.doi.org/10.1145/296399.296426
http://dx.doi.org/10.1145/296399.296426
http://dx.doi.org/10.1145/296399.296426
http://dx.doi.org/10.1145/296399.296426
http://dx.doi.org/10.1007/978-3-540-30117-2_18
http://dx.doi.org/10.1007/978-3-540-30117-2_18
http://dx.doi.org/10.1007/978-3-540-30117-2_18
http://dx.doi.org/10.1109/FPL.2007.4380635
http://dx.doi.org/10.1109/FPL.2007.4380635
http://dx.doi.org/10.1109/FPL.2007.4380635
http://dx.doi.org/10.1109/FPL.2007.4380635
http://dx.doi.org/10.2991/jcis.2008.20
http://dx.doi.org/10.2991/jcis.2008.20
http://dx.doi.org/10.2991/jcis.2008.20
http://dx.doi.org/10.2991/jcis.2008.20
http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.2197/ipsjtsldm.2.145
http://dx.doi.org/10.2197/ipsjtsldm.2.145
http://dx.doi.org/10.2197/ipsjtsldm.2.145
http://dx.doi.org/10.2197/ipsjtsldm.2.145
http://dx.doi.org/10.2197/ipsjtsldm.2.145
http://dx.doi.org/10.1109/TCAD.2008.923063
http://dx.doi.org/10.1109/TCAD.2008.923063
http://dx.doi.org/10.1109/TCAD.2008.923063
http://dx.doi.org/10.1109/TCAD.2008.923063
http://dx.doi.org/10.1109/TCAD.2008.923063

[9] S. Y. Chen and Y. W. Chang: “Routing-architecture-aware analytical placement
for heterogeneous FPGAs,” 2015 52nd ACM/EDAC/IEEE Design Automa-
tion Conference (DAC) (2015) 1 (DOI: 10.1145/2744769.2744903).

[10] K. Vorwerk and A. Kennings: “An improved multi-level framework for force-
directed placement,” Design, Automation and Test in Europe (2005) 902 (DOI:
10.1109/DATE.2005.59).

1 Introduction

FPGA (Field Programmable Gate Array) design flow normally consists of synthe-

sis, packing, placement and routing. An application circuit is first synthesized into a

netlist of look-up tables (LUTs), flip-flops and other logic elements. Packing is then

performed to form configurable logic blocks, which is also called clusters in this

paper. Normally it is to group LUTs and flip-flops together. During the placement

stage, clusters are placed into legal physical positions of the FPGA device. The last

routing step routes all wires between clusters with available routing resources.

Packing plays an important role by determining the structures of clustered netlists

and has a big impact on post-routing results.

T-VPack algorithm [1] is a well-known research work on FPGA packing. It

aims to reduce critical path delay through minimizing the number of external

connections on the critical paths. However, it uses fixed inter and intra cluster

delays which does not represent post-placement delays and often leads to sub-

optimal solutions.

In [2], Chen and Cong proposed a method to move BLEs (Basic Logic

Elements composed of one LUT and one flip-flop) during placement to solve the

fundamental problem of T-VPack’s fixed delay model. However, due to the

complex constraints on internal connections, set and reset lines, carry chains, and

clock domains, especially for the complex modern FPGA architectures, the DRC

(Design Rule Checking) checking becomes a runtime bottleneck [3]. [3, 4]

proposed two other packing algorithms incorporating layout information into the

cost function to guide cluster generation. They outperform T-VPack in both wire-

length and critical path delay. However, they only use the distance information as

one factor of the cost function for greedy packing. This is not good enough since it

does not solve the problem of fixed inter-cluster delays directly.

In this paper, we propose a new layout driven packing algorithm LDPack, to

obtain a packing solution with smaller post-routing critical path delay. Instead of

the fixed inter-cluster delays in T-VPack, we use a pre-packing placement to

estimate the inter-cluster delays and to guide a timing driven packing. Since the

pre-packing placement needs to deal with a heterogeneous netlist with clusters and

basic logic elements like LUTs and flip-flops, we propose a novel multi-density

optimization based analytical placement. Notice that all the previous FPGA

analytical algorithms deal with packed netlist of all clusters, our method is a very

useful approach to solve heterogeneous netlist placement problem. Our experimen-

tal results show that LDPack outperforms one industrial standard tool Xilinx ISE

MAP with 8% reduction in area and 5.22% smaller critical path delay after

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

2

IEICE Electronics Express, Vol.14, No.11, 1–10

http://dx.doi.org/10.1145/2744769.2744903
http://dx.doi.org/10.1145/2744769.2744903
http://dx.doi.org/10.1145/2744769.2744903
http://dx.doi.org/10.1109/DATE.2005.59
http://dx.doi.org/10.1109/DATE.2005.59
http://dx.doi.org/10.1109/DATE.2005.59
http://dx.doi.org/10.1109/DATE.2005.59
http://dx.doi.org/10.1109/DATE.2005.59

placement and routing, at a cost of 18% more runtime in average.

The rest of this paper is organized as follows. Section 2 introduces the previous

work on the packing algorithm for FPGA. Section 3 presents the details of LDPack,

and the experimental results are shown in Sections 4. Finally, Section 5 concludes

the paper.

2 Background

As a well-known timing driven packing algorithm, T-VPack [1] groups connected

LUT and flip-flop pairs to form BLEs, and packs those BLEs into clusters with

bounded area. To perform the packing process, T-VPack selects a BLE as a seed

and puts it into a blank cluster. Then, T-VPack grows the cluster by absorbing BLEs

with the highest attraction factor. Both the seed selection and attraction factor

computation are based on timing criticality and edge connections. T-VPack

performs this process until all BLEs are packed into clusters.

To compute timing criticality, T-VPack assumes a delay model of fixed intra

and inter cluster delays. However, after the placement of the clusters, the inter-

cluster delays can vary significantly from several tens picoseconds to several

nanoseconds. This fixed delay model is quite inaccurate and usually leads to

sub-optimal packing solutions after placement.

There are some existing layout driven packing algorithms trying to solve this

problem. In [4], the physical information is used for packing unrelated clusters and

BLEs. The hMetis algorithm [5] is used to recursively bi-partition the synthesized

netlist to a partitioning tree. The depth-first or breadth-first search orders of the

BLEs in the partitioning tree are regarded as their coordinate values for x or y. Then

the Manhattan distance between BLEs can be computed and used to guide packing

in [4]. Compared to T-VPack, their results show a maximum reduction of 8.58%

in wirelength.

DPack [3] uses a similar packing process as T-VPack. Besides T-VPack’s cost

function based on timing and connections, DPack also considers Manhattan

distance information based on a placement derived by a min-cut partitioning.

The results in [3] show that DPack outperforms T-VPack in wirelength and critical

path delay.

However, above mentioned layout driven packing algorithms only use the

distance information as a factor of their cost functions for greedy packing, which

does not represent the post-placement delays. In the following, we will introduce a

new layout driven packing algorithm LDPack by performing fast global placement

to drive a packing process.

3 Layout driven packing (LDPack)

Fig. 1 shows the flowchart of our LDPack algorithm. The fixed packing is first

performed to pack logic elements with dedicated connections into clusters to form

a heterogeneous netlist with clusters and unpacked logic elements. Pre-packing

placement is then to place the heterogeneous netlist. To solve the analytical

placement problem on the heterogeneous netlist, we propose a multi-density

optimization method which will be discussed in detail in section 3.2. At last,

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

3

IEICE Electronics Express, Vol.14, No.11, 1–10

layout driven packing is performed to group clusters and unpacked logic elements

into clusters to form a final packing solution for final placement and routing.

3.1 Fixed packing

Fixed packing is to group logic elements (i.e. LUTs, flip-flops, and etc.) with

dedicated connections into clusters to avoid them being separated in subsequent

steps. For example, Xilinx FPGAs have dedicated connections of MUXCYs (or

CARRY4 in their Virtex-7 devices) to form fast adder chains. Obviously, we need

to group those MUXCYs together with surrounding logics (like XORCYs and

LUTs). They also have dedicated connections of a pair of LUTs with a special mux

to form wide multiplexers. The pair of LUTs and the special mux also need to be

packed together. Clearly, this kind of packing based on dedicated connections is a

design rule based on target FPGA devices. We perform such fixed packing at the

beginning of LDPack because it can reduce solution spaces of subsequent steps and

improve runtime without affecting the final quality.

The clusters generated in the fixed packing are likely to have different sizes. For

those unsaturated clusters, we allow subsequent steps to further pack logic elements

into them. Notice that not all the logic elements are packed in the fixed packing

step. Those LUTs and flip-flops without dedicated connections will be packed

subsequently.

3.2 Pre-packing placement

Pre-packing placement is to obtain layout information for use in LDPack. We

choose the analytical placement [6] engine for our pre-packing placement for its

shorter runtime and better quality. Since the netlist after fixed packing is a mixture

of logic elements and clusters, a multi-density optimization method is proposed in

our analytical placement. Notice that previous analytical placement methods handle

fully clustered netlist only. The main difficulty of heterogeneous netlist placement

is that the elements have variable sizes and can be merged to form larger elements.

3.2.1 Analytical placement

In the remaining of this paper, we use cells to represent elements for placement

which can be partial clusters, basic logic elements or large macros. The analytical

placement mathematically addresses the placement problem as an objective func-

Fig. 1. Flowchart of LDPack

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

4

IEICE Electronics Express, Vol.14, No.11, 1–10

tion with a set of constraints, and then optimizes the objective through analytical

approaches.

In the circuit, each cell contains several input pins and output pins, and nets

connect cells through these pins. In the analytical placement, the circuit is modeled

by a hypergraph H ¼ ðV; LÞ. V ¼ fv1; v2; . . . ; vng is the set of cells to be placed,

and L ¼ fl1; l2; . . . ; lng is the set of the nets that connect cells. For convenience,

each net is represented by a non-empty subset of V it connects. Therefore, we say a

cell belongs to a net if it is connected with the net. Obviously, a cell can belong to

multiple nets. Let xi and yi be the x and y coordinates of the center of cell vi. The

whole chip is divided into uniform non-overlapping bin grids. Each bin grid has a

fixed capacity to hold cells. The global placement problem can be formulated as a

constrained minimization problem as follows:

min Wðx; yÞ
s:t: Dbðx; yÞ � Mb; for each bin b

ð1Þ

whereWðx; yÞ is the wirelength function of the whole circuit, Dbðx; yÞ is the density
function of bin b, and Mb is the capacity of bin b. The wirelength function Wðx; yÞ
is defined as the total half-perimeter wirelength (HPWL):

Wðx; yÞ ¼
X
l2L

ðmax
vi;vj2l

jxi � xjj þ max
vi;vj2l

jyi � yjjÞ

¼
X
l2L

ðmax
vi2l

xi þmax
vi2l

ð�xiÞ þmax
vi2l

yi þmax
vi2l

ð�yiÞÞ:
ð2Þ

Since Wðx; yÞ is not differentiable, we apply the log-sum-exp (LSE) model [7] to

approximate and smooth the max function where:

max
i

xi ¼ lim
�!0

ð� log
X
i

expðxi=�ÞÞ: ð3Þ

With the LSE model, Eq. (2) can be approximated as follows:

Ŵðx; yÞ ¼ �
X
l2L

ðlog
X
vk2l

expðxk=�Þ þ log
X
vk2l

expð�xk=�Þ

þ log
X
vk2l

expðyk=�Þ þ log
X
vk2l

expð�yk=�ÞÞ:
ð4Þ

When £ approaches zero, the LSE wirelength Ŵðx; yÞ is close to the HPWL. Due to

the computer precision, £ can only be set to a reasonably small value to avoid any

arithmetic overflow during the implementation.

The density function Dbðx; yÞ represents the total overlap area of cells in bin b

and can be expressed as:

Dbðx; yÞ ¼
X
v2V

Pxðb; vÞPyðb; vÞ ð5Þ

where Px and Py are the overlap functions of bin b and cell v along the x and y

directions. Px is defined by

Pxðb; vÞ ¼

wv; 0 � dx � wb � wv

2

wb þ wv

2
� dx;

wb � wv

2
� dx � wb þ wv

2

0;
wb þ wv

2
� dx

8>>>>><
>>>>>:

ð6Þ
© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

5

IEICE Electronics Express, Vol.14, No.11, 1–10

where wb is the bin width, wv is the cell width, and dx is the center-to-center

distance of the cell v and the bin b in the x direction. In Eq. (6), we assume that

wb is greater than wv. Because the overlap function is not differentiable, we use

the bell-shaped function [8] to smooth it. With the bell-shaped function, we get a

smoothed density function D̂bðx; yÞ.
We use the quadratic penalty method [8] to solve Eq. (1) as formulated in

Eq. (7):

min Ŵðx; yÞ þ �
X
b

maxðD̂bðx; yÞ �Mb; 0Þ2 ð7Þ

where ­ is the weight of the density cost. We refer readers to [8] for how to solve

Eq. (7) in iterative mode.

3.2.2 Placement of IP blocks and large macro blocks

As in [9], we separate IP (intellectual property) blocks and large macros (like

BRAMs and DSPs) from regular elements and clusters in our placement stage.

We first use the multilevel placement technique in [9] to pre-place those IPs and

macros. The advantage of this approach is that IPs and macros can be placed much

faster due to their limited candidate locations. We refer readers to [9] for details.

3.2.3 Placement of regular elements and clusters

Since the previous analytical placement only handles clustered netlist, it only needs

one density function (cluster density) to represent the clusters’ distribution. How-

ever, in our placement, we need to handle unpacked logic elements together with

clusters, where one uniform density function is not enough to indicate all cells’

distribution.

Here we propose a multi-density optimization based analytical placement.

Instead of one density function used in previous algorithms, we propose two

density functions of LUT and flip-flop, and combine them together to form our

placement optimization problem. We call this multi-density placement. The LUT

density function is defined as

DLUT
b ðx; yÞ ¼ DLUT

b;LUT ðx; yÞ þ DLUT
b;clusterðx; yÞ ð8Þ

where DLUT
b;LUT ðx; yÞ is the LUT density function of unpacked LUTs, and

DLUT
b;clusterðx; yÞ is the LUT density function of pre-packed clusters, which is calcu-

lated based on the number of LUTs in those clusters. DLUT
b;LUT ðx; yÞ and DLUT

b;clusterðx; yÞ
are computed by Eq. (5). In the computation of DLUT

b;clusterðx; yÞ, the width and height

of one cluster are defined as follows:

wLUT
cluster ¼

ffiffiffiffiffiffiffiffiffiffi
NLUT

p
wLUT

hLUTcluster ¼
ffiffiffiffiffiffiffiffiffiffi
NLUT

p
hLUT

ð9Þ

where NLUT is the number of LUTs in the cluster, wLUT is the width of LUT, and

hLUT is the height of LUT. In this way, we ensure that the area of one cluster which

contains N LUTs is N times the area of one LUT.

We define the size of flip-flops same as LUTs. The flip-flop density function

and the size of clusters for flip-flop density computation are defined in a similar
© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

6

IEICE Electronics Express, Vol.14, No.11, 1–10

way. Like Eq. (9), we give the definition of the width and height of one cluster for

flip-flop density computation below:

wFF
cluster ¼

ffiffiffiffiffiffiffiffi
NFF

p
wFF

hFFcluster ¼
ffiffiffiffiffiffiffiffi
NFF

p
hFF

ð10Þ

where NFF is the number of flip-flops in the cluster, wFF is the width of flip-flop,

and hFF is the height of flip-flop.

Therefore, our placement problem is formulated as

min Ŵðx; yÞ þ �

�X
b

maxðD̂LUT
b ðx; yÞ �MLUT

b ; 0Þ2

þ
X
b

maxðD̂FF
b ðx; yÞ �MFF

b ; 0Þ2
� ð11Þ

where ­ is the weight of the density cost, MLUT
b and MFF

b are the maximum

allowable area of LUT and flip-flop in bin b respectively. By solving Eq. (11), we

are able to spread the unpacked logic elements together with clusters evenly.

Previous research work [9] states that the HPWL function Eq. (2) cannot model

routed wirelength and delays well since the inter-cell delays are highly non-linear,

discrete, and non-monotone with respect to the distance. Thus, we apply the

routing-architecture-aware cost Rðx; yÞ in [9] to the objective function of pre-

packing placement as

min Ŵðx; yÞ þ �Rðx; yÞ þ �

�X
b

maxðD̂LUT
b ðx; yÞ �MLUT

b ; 0Þ2

þ
X
b

maxðD̂FF
b ðx; yÞ �MFF

b ; 0Þ2
� ð12Þ

where ® is the weight of the routing-architecture-aware cost. Rðx; yÞ in [9] is as

follows:

Rðx; yÞ ¼
X
net l

X
vk2lnfvsg

Idðxk � xs; yk � ysÞ
 !

: ð13Þ

In Eq. (13), vs is the cell driving net l, vk is a cell driven by net l, ðxs; ysÞ is the
position of vs, ðxk; ykÞ is the position of vk, and Idðx; yÞ is the inter-cell delay between
two connected cells where x and y are the horizontal distance and vertical distance

respectively. Idðx; yÞ is a discrete function whose domain is a two-dimensional grid

due to the regularity of legal positions on FPGAs. We refer readers to [9] for the

details of the computation, interpolation and smoothing of the inter-cell delays.

3.3 Layout driven packing

After fixed packing and pre-packing placement, we pack cells into clusters with the

concept of Hybrid First Choice Clustering [10].

At first, layout driven packing computes attractions from Eq. (14) for every two

connected cells that can be packed in one cluster. The pairs of cells are sorted from

highest attraction to the lowest attraction in a packing list. Then layout driven

packing chooses the pair of cells with the highest attraction to pack into one cluster.

Layout driven packing repeatedly packs remaining pairs of cells until no more

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

7

IEICE Electronics Express, Vol.14, No.11, 1–10

packing pairs can be done. Finally, unrelated packing is performed to further reduce

area for cells with or without connections when the area is greater than the area of

target device.

The attraction between two connected cells vi and vj is defined as follows:

Attractionðvi; vjÞ ¼ � � criticalityðvi; vjÞ þ �
jNetsðviÞ \ NetsðvjÞj
jNetsðviÞ [NetsðvjÞj

þ ð1 � � � �Þ 1 � 1

1 þ expð1 � disðvi; vjÞÞ
� � ð14Þ

where criticalityðvi; vjÞ is the timing criticality between vi and vj, NetsðviÞ is the set
of nets that connects to vi, disðvi; vjÞ is the Manhattan distance between vi and vj, ¡

and ¢ are trade-off factors with their values located in [0,1].

To compute the timing criticality, we first explain the concept of edge. In the

circuit, each cell contains several input pins and output pins, and nets connect cells

through these pins. Each net connects one output pin and several input pins where

we use edge to represent the connection between the output pin and one input pin.

One edge ek is represented by a pair of pins ðps; ptÞ where ps is the output pin and

pt is the input pin. Since one cell contains multiple pins, there may be multiple

edges connecting two cells. We define the edge set Eðvi; vjÞ between two cells vi
and vj as follows:

Eðvi; vjÞ ¼ fekjek ¼ ðps; ptÞ; ps 2 vi; pt 2 vjg
[fekjek ¼ ðps; ptÞ; ps 2 vj; pt 2 vig

ð15Þ

criticalityðvi; vjÞ can then be computed as follows:

criticalityðvi; vjÞ ¼
X

ek2Eðvi;vjÞ
maxð0; 1 � slackðekÞÞ ð16Þ

where slackðekÞ is the slack of edge ek. If Eðvi; vjÞ is empty, criticalityðvi; vjÞ is 0.
Slack [1] is defined as the amount of delay which can be added to an edge without

increasing the delay of the entire circuit. slackðekÞ is computed as follows:

slackðekÞ ¼ TrequiredðptÞ � TarrivalðptÞ ð17Þ
where pt is the input pin driven by ek, TrequiredðptÞ and TarrivalðptÞ are the required

time and arrival time of signal at pt respectively. Tarrival and Trequired can be

obtained by two breadth-first traversals of the circuit. The first traversal propagates

signal forward from both circuit input pins and flip-flop output pins to compute the

signal delay for each pin to obtain Tarrival. The second traversal propagates signal

backward from both circuit output pins and flip-flop input pins. Trequired for each pin

is computed as the longest path delay (the maximum value of Tarrival) minus the

signal delay. The signal delay is the sum of the delays of cells and edges in the

propagation path. The delays of cells are provided by device manuals and the edge

delays are computed by Idðx; yÞ in Eq. (13).

The pseudo code of LDPack algorithm is shown in Fig. 2.

4 Experimental results

LDPack is implemented in the C++ programming language. Our experiments are

performed on a Linux server with Intel Xeon E5-2643 3.5GHz CPU and 500GB

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

8

IEICE Electronics Express, Vol.14, No.11, 1–10

memory. We choose Xilinx Virtex-4 as our target FPGA and compare LDPack with

industrial standard tool MAP program of ISE 13.1. Notice that, however, our

algorithm is suitable for all FPGA devices like Xilinx Virtex-7 and Altera FPGAs.

To work on Virtex-4 instead of newer devices is because we only have a Virtex-4

test board to verify our test designs. The benchmark circuits are all from the

opencores. Table I shows the statistics of the used benchmark circuits.

The benchmark circuits are first synthesized by ISE XST tool as the input of

both LDPack and ISE MAP. ISE MAP is run on timing-driven mode that will run

packing and placement together, followed by ISE routing. The experimental results

of LDPack are obtained by running ISE PAR after LDPack.

Table II shows the values of parameters used in this paper.

We set bin’s size as one configurable logic block, which contains 8 LUTs and 8

flip-flops. The bin’s width and height are both set to 1, and the LUT’s size and flip-

flop’s size are both set to be 0:35 � 0:35 so that the area of one bin equals the area

of 8 LUTs or flip-flops.

Fig. 2. Pseudo code of LDPack

Table I. Statistics of benchmark circuits

Circuits #LUTs #FFs
#DSPs
&RAMs

#Other
cells

#Nets #I/Os

apbtoaes128 3535 924 0 554 5411 79
dmx_rx 2737 4161 0 2038 9080 82
dmx_tx 4994 4330 0 3989 13433 83
ethmac 2977 2341 4 1166 7045 211

othellogame 6178 999 8 1463 9613 16
reed_solomon_decoder 5515 2809 11 1678 10586 21
sd_card_controller 1901 1613 0 973 4960 207

sha1 2199 908 0 493 3812 74
sha256 3178 1107 0 1084 5666 74
sha512 6493 2170 0 1913 10968 76

tiny_tate_bilinear_pairing_151 3179 1326 7 252 5798 15

Table II. Values of parameters

£ ® ­ wb hb wLUT hLUT wFF hFF MLUT
b MFF

b ¡ ¢

0.1 25 230 1 1 0.35 0.35 0.35 0.35 0.95 0.95 0.8 0.15

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

9

IEICE Electronics Express, Vol.14, No.11, 1–10

In Eq. (14), we test ¡ from 0.9 to 0.5, and ¢ from 0.05 to 0.45 with the step of

0.05. (� þ �) is kept below 1 to ensure that the weight of distance cost is positive.

Timing cost is given the biggest weight to be the leading optimization goal. We find

that the timing results are best when ¡ and ¢ are set to 0.8 and 0.15 respectively.

The experimental results are shown in Table III, where the column Area lists

the number of slices after routing, column “Critical Path Delay” lists the post-

routing critical path delay in nano seconds, and column Runtime is the total CPU

time of packing, placement and routing in seconds.

From Table III, it can be seen that the LDPack achieves an average reduction of

8% area compared to ISE MAP. LDPack also outperforms ISE MAP with 5.22%

smaller critical path delay, while the total runtime is 18% longer.

5 Conclusions

In this paper, we propose a new layout driven packing algorithm LDPack. We

propose a new multi-density optimization based analytical placement to deal with

the heterogeneous netlist of clusters together with basic logic elements. With the

obtained timing and distance information, we pack all the logic elements and

clusters into clusters based on the concept of Hybrid First Choice Clustering. Our

experimental results show that LDPack outperforms ISE MAP with 8% reduction

in area and 5.22% smaller critical path delay after placement and routing, at the cost

of 18% more runtime in average. In the future, we will work on reducing the

runtime.

Acknowledgments

The authors wish to acknowledge the funding support by Shanghai Fudan Micro-

electronics Group Co., Ltd.

Table III. Comparison of post-routing results between ISE MAP and
LDPack

Circuits
Area (#slice)

Critical Path Delay
(ns)

Runtime (sec)

ISE
MAP

LDPack
ISE
MAP

LDPack
ISE
flow

LDPack
flow

apbtoaes128 2104 1858 7.6 7.2 144 155
dmx_rx 4988 4858 5.3 5.1 92 121
dmx_tx 5816 4840 5.2 5.0 90 148
ethmac 2831 2781 5.3 5.1 71 73

othellogame 3388 3257 13.3 12.7 126 155
reed_solomon_decoder 3555 3096 5.3 4.8 145 134
sd_card_controller 2024 1830 3.4 3.3 31 46

sha1 1566 1288 9.2 8.7 64 68
sha256 1963 1858 10.6 10.2 38 42
sha512 3684 3623 12.1 11.4 251 249

tiny_tate_bilinear_pairing_151 1867 1751 5.1 4.7 66 75

Average 1.00 0.92 1.00 0.95 1.00 1.18

© IEICE 2017
DOI: 10.1587/elex.14.20170419
Received April 22, 2017
Accepted May 2, 2017
Publicized May 22, 2017
Copyedited June 10, 2017

10

IEICE Electronics Express, Vol.14, No.11, 1–10

