
Chapter 9

POWER MODELING AND REDUCTION OF VLIW
PROCESSORS

�

Weiping Liao and Lei He
Electrical and Computer Engineering Department

University of Wisconsin, Madison, WI 53706

1. Introduction

Power is rapidly becoming one of the primary design constraints for mod-
ern processor design due to increased complexity and speed of the system.
Cycle-accurate microarchitecture-level power simulators such as Wattch [1],
SimplePower [2], and TE ������� EST [3], have been developed and used ex-
tensively to validate power-efficient microarchitecture innovations, including
clock gating [4], dynamically reconfiguring resources [5], etc. However, all
aforementioned work focuses on superscalar architecture.

In this chapter, we study power modeling and reduction for VLIW architec-
tures. Our contributions include:

We integrate the Cai-Lim power model [6, 7] into the IMPACT toolset
[8] and develop a cycle-accurate power simulator named PowerImpact.
This simulator allows the designer to evaluate both VLIW compiler and
microarchitecture innovations for power reduction.

We develop and compare the following techniques with a bounded perfor-
mance loss of 1%, compared to the case without any dynamic throttling:
(i) clock ramping with hardware-based prescan (CRHP), and (ii) clock
ramping with compiler-based prediction (CRCP).

Experiments using PowerImpact and SPEC2000 floating-point bench-
marks show that the power consumed by floating-point units can be re-
duced by up to 31% for CRHP and 37% for CRCP, respectively.

�
This research was partially supported by SRC grant 2000-HJ-782 and Intel. We used computers donated

by HP and SUN Microsystems. Address comments to lhe@ece.wisc.edu.

1

2

The rest of the chapter is organized as follows. Section 2 describes the power
simulator for VLIW architectures. Sections 3 presents implementations of
CRHP and CRCP. Section 4 shows the experiment results. Section 5 concludes
the paper and discusses ongoing work.

2. Cycle-Accurate VLIW Power Simulation

Existing work [1, 2, 3] considers superscalar architecture. There has been
limited work on architectural-level power simulator for Very Long Instruction
Word(VLIW) architectures. In this section, we first introduce the IMPACT
infrastructure for VLIW architectures[8] and the power models we used. We
then present the power simulation enhancement to IMPACT.

IMPACT C
compiler

C benchmark

 LSIM
simulator

Emulator

Encoded C code

Compiled
by host
compiler

Simulation
results

Lcode

executable
code

Figure 1.1. Flow diagram for IMPACT

2.1 IMPACT Architecture Framework

The IMPACT toolset (http://www.crhc.uiuc.edu/IMPACT/) contains the IM-
PACT EPIC architecture, compiler, and emulation and simulation tools (see Fig-
ure 1.1). The IMPACT compiler compiles a C benchmark with both front-end
and back-end optimizations. The emulator translates the intermediate repre-
sentation to C code, which can be compiled by the host compiler, and the ex-
ecutable code is generated. Lsim, the cycle-accurate microarchitectural-level
performance simulator, takes the executable code directly, generates a trace on-
the-fly and consumes the trace for simulation. The executable code can also be
executed on the host machine to generate a trace as the input of Lsim. In our
experiments, we used the former mode, as shown in Figure 1.1. This toolset has
been successfully utilized to conduct the system-level architectural experiment
and new code optimization [8, 9].

2.2 Power Models

The essential idea of microarchitecture power models is to partition a pro-
cessor into multiple modules. Given the value of active energy ��� and inactive
energy ��� per cycle for each module, the total energy for each module can be
calculated as

Power Modeling and Reduction of VLIW Processors 2 3

� � � ���������
	�� 	�
��������
���
�������� � � ���
����	�� ����	�
��
�����
 ��
������
where the number of total active and inactive cycles are collected by a cycle-
accurate performance simulator. The whole system energy is the sum of the
total energy for each module. The difference between different power models
is the ways in which partition the processor and get the value of power for each
module. There are mainly two ways to get the power value. One is based on
empirical data and the other is based on formulae. Corresponding to the two
ways, there are two prevalent power models for microarchitecture-level power
simulation in the literature. One is the Cai-Lim power model [6] and the other
is Wattch [1]. They were both originally used for superscalar architectures.

The Cai-Lim power model [6] is an empirical model. It partitions the pro-
cessor into Functional Unit Blocks (FUBs). The � � and � � for each FUB can
be given directly. Alternatively, each FUB is characterized by areas (!#"$�&%) of
four circuit types - dynamic, static, PLA (programmable logic array), and clock
and memory - to implement this FUB, as well as active power densities ' � "$�&%
and inactive power densities ' � "$�&% for each type of circuit. Then, the energy
dissipation of a FUB is given by

� � (*) !) �+",' � "$�&%��-	�
����.���
���
����/�0�1' ��"$�&%0���.��	�
��
�����
���
��2�/��%
where ' � and ' � are active and inactive power densities. !)

is the area for
each circuit type. � iterates over the four circuit types. The energy dissipation
computed separately for each FUB is added up to get the total power dissipation.

The Wattch model [1], on the other hand, is a formula-based model. It
classifies components of a processor into four catalogs: array structures, fully
associative content-addressable memories, combinational logic and wires, and
clocking. For components in each catalog, formulas are used to calculate active
and inactive power. The formulas are formed based on circuit simulation of
components’ circuit designs.

2.3 PowerImpact

We integrate both empirical and formula-based power models into the IM-
PACT toolset and name the resulting new toolset as PowerImpact 1. Figure
1.2 illustrates the overall structure of PowerImpact. We develop an interface
between Lsim and the power models. In the empirical model similar to Cai-
Lim model, we partition the VLIW architecture supported by Lsim into the

1PowerImpact is available at http://eda.ece.wisc.edu/PowerImpact/.

4

FUBs in Empirical Model
FUB’s name corresponding hardware FUB’s name corresponding hardware

npclog next pc generation logic decodepla Instruction decoder
btblog BTB logic decodemisp Misprediction handling logic
btbcac BTB cache fuint Integer execution unit
rsbcac Return Stack Buffer fufp Floating point execution unit
itlbcac Instruction TLB ul2log Unified L2 cache logic
dtlbcac Data TLB ul2tag Unified L2 cache tag
il1log L1 instruction cache logic ul2cac Unified L2 cache array
il1tag L1 instruction cache tag reglog Register File logic
il1cac L1 instruction cache array reg Registers
dl1log L1 data cache logic dl1tag L1 data cache tag
dl1cac L1 data cache array biu Bus/IO buffer

decodestall Decoder stall logic pmhlog Page miss handler

Components in Formula-based Model
Array Structures L1 and L2 caches, BTB, Register file

Fully Associative CAM TLBs
Combinational Logic Functional Units

Clocking Clock buffers, clock wires

Table 1.1. Partitions in our power models.

twenty-four total Functional Unit Blocks(FUBs) shown in Table 1.1, which are
slightly different from the microarchitecture structure in the original Lsim sim-
ulator. In the formula-based model similar to the model in Wattch, the major
components include a branch predictor, register file, L1 and L2 cache, integer
and floating-point ALUs, TLB and clock, as shown in 1.1. Energy-per-cycle
values are calculated by formulas for these components. Overall, one can see
that our empirical model has a finer granularity than our formula-based model.
In the PowerImpact toolset, users can choose any of two models in their conve-
nience. PowerImpact reads the user-specified power information and the system
configuration, and then the activities and corresponding power information are
collected in every clock cycle. The PowerImpact toolset is able to simulate the
performance, average power, and step power (i.e., the power difference between
two consecutive cycles) for every functional block or component and the whole
system for given benchmark programs.

3. Clock Ramping

Clock gating is effective to reduce the dynamic power consumption of func-
tional units. Most existing papers [10, 11, 12] assume that the dynamic throttling
can be achieved instantly. However, turning on/off a functional unit in a short
time (e.g. within one clock cycle) will lead to a large surge current. A large

Power Modeling and Reduction of VLIW Processors 4 5

Cycle-accurate
Performance
Simulator (Lsim)

Power Models with
simulator interface

Power
Estimation

Performance
Estimation

Hardware
description
for IMPACT

 Power
parameters

Benchmark
compiled by
IMPACT

Figure 1.2. Overall structure of the PowerImpact

surge current requires higher design and manufacturing costs for the power
supply, reduces the circuit reliability, and limits the voltage scaling for further
power reduction.

To reduce the surge current by these clock gating technologies, Tiwari et al
[13, 14] first proposed to extend the switch on/off time by inserting "waking up"
and "going to sleep" time between the on and off states. In this case, the clock
gating takes a few cycles and can be called clock ramping, different from the
conventional clock gating approach in [10]. To avoid the performance penalty
introduced by the extra switching cycles, clock ramping with hardware prescan
(CRHP) is proposed in [15]. An extra set of fetch-and-decode logic3 is used to
prescan the incoming instructions so that the clock gated functional units can
be ramped up in time for the upcoming instructions. A superscalar architecture
is assumed in [15].

In this paper, we develop a new compiler optimization technology, which au-
tomatically inserts ramp-up instructions (RUI) based on hyperblock scheduling
to instruct the in-time ramping up of functional units. Therefore, no extra fetch
and decode logic used in the hardware prescan is needed. We call the new clock
ramping technology clock ramping using compiler-based prediction (CRCP).
For comparison, we also implement an improved CRHP technique for VLIW
architectures. It uses a finer clock ramping granularity to achieve more power
reduction compared to [15].

In the following subsections, we first present the improved CRHP and then
the new CRCP. Because FPUs consume about 10% of the processor power, we
use FPUs to illustrate our ideas based on SPEC benchmark simulations.

3.1 Clock Ramping with Hardware Prescan (CRHP)

The conventional floating point unit (FPU) only has two states: inactive state
and active state (see Figure 1.3(a)). When there are floating-point instructions

3We can also use a larger instruction buffer to avoid the extra set of fetch and decode logic. But the
performance in our experiment became much worse due to branches.

6

executed, the FPU is in the active state and consumes active power (���). On
the other hand, FPUs have no activity in the inactive state and dissipate leakage
power (� �), about 10% of the active power (� �), in present process technology.
When any floating-point instruction gets into the FPU, the FPU will jump up
from the inactive state to the active state in one clock cycle. This approach may
lead to a large surge current.

To reduce the surge current at the architecture level, we assume that the
power level does not change within a clock cycle, and define the step power
as the power difference between the previous and present cycles. Further, we
assume that the bigger the step power, the larger the surge current. Therefore,
the step power can be used as a figure of merit for the surge current. Then, we
can insert a few cycles between the fetch and execution stages and introduce
intermediate power consumption levels between the inactive and active states
to reduce the step power. Figure 1.3(b) illustrates the clock ramping technique
first proposed in [14, 13]. This approach may result in a big performance loss
however.

In comparison, Figure 1.3(c) shows our clock ramping with instruction pres-
can method. The coming instructions are prescanned before they are fed into
the instruction fetch (IF) stage, and the corresponding FPUs are ramped up
based on the result of prescanning.

Figure 1.3. The relationship of states.

For the microarchitecture in Lsim, there are two clock cycles from IF to EXE
stages. If we prescan a floating-point instruction � clock cycles before it gets
into the IF stage, we can have (� +2) clock cycles to gradually power up the
target FP unit to the active state, if there is no functional unit stall. We call �
the prescan time (���). Further, we define the time to ramp up a functional unit

Power Modeling and Reduction of VLIW Processors 5 7

as ramping time ��� . ��� of a functional unit is decided by the design constraints
on the surge current, and it is assumed to be independent of the pipeline stall.
When there is no pipeline stall, � � � � � ��� is required to ensure no performance
loss and is assumed in [15]. This assumption will be removed in this paper for
better performance and greater power reduction.

As in [15], we define the active waiting time (� �) as the time that an idle
FPU remains in the active state before its ramping down. It helps to exploit the
spatial and temporal locality of FP instructions.

Note that we apply clock ramping to each individual FPU. In the implemen-
tation presented in [15], all FPUs are treated as a whole floating-point block
and are ramped up and down simultaneously. Clearly, not all FPUs are used
at the same time. Figure 1.4 shows the run-time utilization rates of FPUs for
SPEC2000 FP benchmarks equake and art, with the hardware configuration of
6-issue width and total 4 FPUs. Clearly, only a small fraction of total FPUs
are required most of the time. It is easy to predict that our ramping of each
individual FPU can reduce more power compared to the ramping of the whole
FP block in [15].

Figure 1.4. Utilization rate for FPUs. This figure shows the distribution of FPU usage in terms
of different numbers of FPUs used at the same time.

3.2 Clock Ramping with Compiler-based Prediction
(CRCP)

As an alternative to hardware-based prediction, the compiler can be used to
predict incoming FP instructions. In our compiler-based clock ramping method,
the compiler decides when and how many FPUs are needed by the incoming
floating-point instruction. Such decisions can be coded into a special type of
instruction called a ramp-up instructions (RUI), which can be inserted into the
instruction sequence. When RUIs are fetched, the hardware will ramp up as
many FPUs as needed. We call this method clock ramping based on compiler
prediction (CRCP). Note that the ramping down is still decided by the hardware,
same as for CRHP.

8

In VLIW architectures, instructions are grouped into bundles. An interesting
observation is that bundles are not full most of the time. Figure 1.5 shows the
utilization rates of bundles for SPEC2000 floating-point benchmark programs
equake and art. Clearly only a small faction of bundles are full. Therefore,
RUIs can be inserted into empty bundle slots. The basic CRCP algorithms and
a variety of improvement will be discussed below.

Figure 1.5. Distribution of instruction numbers in bundles, with maximum bundle width = 6.
The numbers 1 to 6 indicate how many instructions are in one bundle.

3.2.1 Basic CRCP Algorithm. We chose hyperblock [16] as the basic
structures in our CRCP algorithm. A hyperblock is a set of predicated basic
blocks in which control may only enter from the top, but may exit from one or
more locations. The motivation behind using hyperblocks is to group a number
of basic blocks from different control flow paths into a single manageable block
for compiler optimization and scheduling [16].

We first define two concepts for the ease of description: (1) the latency of a
bundle as the maximum latency of the instructions in the bundle; (2) the distance
between two bundles A and B as the sum of the latencies of all bundles between
A and B, including the latency of bundle A.

We apply our CRCP algorithm as an extra back-end compiler optimization
after the compiler finishes performance-related optimization and scheduling.
Our algorithm searches each hyperblock for floating-point instructions (FPI).
During our search, once we find a bundle with FP instructions, called FP bun-
dles, we go upstream with distance D and reach the bundle called the target
bundle. If we succeed in inserting a RUI into the target bundle, the distance D is
called prediction time � � . It is the counterpart of the prescan time � � in CRHP,
so we use the same symbol to represent them. When there is no pipeline stall,
� � � �

= ��� is required to prevent performance loss. Figure 1.6(a) illustrates
how we choose the target bundle. In this figure, bundle B is the FP bundle and
bundle A is the target bundle. The distance between A and B is � � . In this
case, the RUI contains only the number of FPUs needed by the correspondent
FP bundle.

Power Modeling and Reduction of VLIW Processors 6 9

FP bundle

Target Bundle
Tp

FP bundle

Dp

(a) (b)

Tp

Target Bundle

(A)

(B)

(A)

(B)

Figure 1.6. Insert ramp-up instructions

Issue width 6
BTB size 1024 entries 2-way associative
Memory page size 4096 bytes, latency 30 cycles

Memory bus bandwidth 8 bytes/cycle

Functional Unit number Latency
Integer Unit 4 1

FPU 4 2 for FP add and FP
multiply, 15 for FP division

Cache number of sets block size associativity Replace Policy
L2 Cache 4096 256 1 LRU

L1 Instruction Cache 1024 64 2 LRU
L1 Data Cache 512 64 4 LRU

Table 1.2. System configuration for experiments

It is possible that the target bundle is full, meaning there is no slot to insert
RUI into this bundle. In this case, we choose to continue going upstream until
we find a bundle with one empty slot to insert the RUI. However, in this case
� � � �

> ��� , which means the hardware will ramp up FPUs too early and cause
unnecessary power consumption. To avoid this, we record the distance � � (as
shown in Figure 1.6) between the ideal location for the RUI and the first feasible
location for the RUI. The hardware will not ramp up FPUs right after it fetches
an RUI, but ramps up FPUs � � cycles later.

Further, if we reach the head of the entrance point of a hyperblock, we should
consider each branch, except those off-trace branches, to this block and continue
searching upstream on each branch point. Figure 1.7 shows this case. Clearly,
it may introduce extra RUIs and increase power consumption. But such RUIs
are necessary to improve performance.

When a RUI is fetched, the hardware obtains the � � and the number of FPUs
that are needed by the incoming FP bundle. After � � cycles, the hardware
checks the states of all FPUs, then ramps up as many FPUs as needed. For
example, if the incoming FP bundle has four FP instructions as indicated by
RUI and there are already two FPUs in the active state, then only two extra FPUs

10

will be ramped up. It is easy to see that in our CRCP approach, the hardware
is much simpler than that in CRHP. No extra set of fetch or decode logic is
needed.

After an FPU is used, it is kept in the active state for the length of the active
waiting time. This is the same as in CRHP. The rest of this subsection describes
improvements over the basic algorithm.

FP bundle

 ramp-up
Instruction

 ramp-up
Instruction

Figure 1.7. Insertion of ramp-up instructions beyond the current Hyperblock

3.2.2 Reduction of Redundant Ramp-up Instructions. Inside each
block, if the distance between two FP bundles is smaller than the active waiting
time, and the latter FP bundle has no more FPIs than previous one, then we
can simply skip the latter FP bundle and do not need to insert an RUI for it.
Because the two bundles are in the same block, it is very possible (but not
definite because we chose hyperblock, not basic block) that the previous FP
bundle is executed before the latter one. So within the active waiting time, if
the latter one has fewer FP instructions, its requirement will be met for sure.
For this reason, we avoid inserting RUI for the latter FP bundle so that we can
eliminate redundant RUIs and save power.

3.2.3 Control Flow. If we confront a procedure call instruction when
searching upstream, we find the return instructions of the procedure and con-
tinue searching upstream from the return instruction.

Also, when we move out of a block while searching upstream, we should
check if this is the head of a procedure. If so, we need to search the whole pro-
gram, find every procedure call to the current procedure, and continue searching
upstream from every procedure call instruction.

Power Modeling and Reduction of VLIW Processors 7 11

3.2.4 Load Instructions. Load instructions have pre-defined latencies
in IMPACT. However, the actual run-time latencies for load instructions can be
much larger than the pre-defined value when cache misses happen. Because the
ramping of FPUs does not stall when the pipeline is stalled, if the load latency
becomes larger than the sum of the FPU ramp-up time and active waiting time,
the FPU will ramp down before the instruction arrives at the execute stage,
which may causes a large performance loss.

To reduce the performance loss, we apply the following simple amendment.
If we detect a data hazard due to a load instruction during the decode stage,
we simply pick one active FPU and keep it in the active state until the load
instruction finishes. Because an FP bundle is most likely to contain one FP
instruction (see Figure 1.4), keeping one FPU in the active state can prevent a
large performance loss with small power consumption overhead as shown by
experiment results in section 4.

4. Experiment Results

In this section, SPEC2000 FP benchmark programs equake and art are used
to study the performance and power impacts of various power reduction tech-
niques. We measure performance in IPC, and compare our performance and
power to those without any dynamic throttling. The system configuration used
in our experiment is summarized in Table 1.2.

Figures 1.8-1.11 show the performance loss and power reduction achieved
by the CRHP and CRCP approaches for the benchmark programs equake and
art, respectively. The two parameters in the figures are the active waiting time
� � and prediction/prescan time � � . We assume that the ramping time is � �

�����

in all experiments in this paper.

(CRHP) (CRCP)

Figure 1.8. Performance loss (in percentage as the Z-axis variable) of CRHP and CRCP ap-
proaches for equake.

According to these figures, the longer the active waiting time, the better the
performance. Further, one can easily see that ��� �����

can satisfy the bounded

12

(CRHP) (CRCP)

Figure 1.9. Power reduction (in percentage as the Z-axis variable) of CRHP and CRCP ap-
proaches for equake.

(CRHP) (CRCP)

Figure 1.10. Performance loss (in percentage as the Z-axis variable) of CRHP and CRCP
approaches for art.

(CRHP) (CRCP)

Figure 1.11. Power reduction (in percentage as the Z-axis variable) of CRHP and CRCP ap-
proaches for art.

performance loss of 1%. Therefore, we will assume � �
�����

in the rest of this
paper.

Moreover, there exists an optimal � � for the given active waiting time. In
general, a � � that is too small or too large is not beneficial for performance
because it does not ramp FPUs in time, contributing to the performance loss.
However, a large ��� degrades performance less than a small � � does. This is due

Power Modeling and Reduction of VLIW Processors 8 13

to the fact that the FPU is kept active for the active waiting time and therefore
the performance loss by a ramping that is too early can be compensated.

Figure 1.12. Performance loss (in percentage) for ��� = 10 and ��� = 16

Figure 1.12 shows the performance for CRCP and CRHP when � � = 16
for benchmark ����� 	
	 � (�� � has a similar trend). Clearly, the performance of
CRCP is a convex curve with the single local optimal � � = 9. However, the
performance of CRHP is not a convex curve, and has a few local optimal � �
values. Therefore in the theoretic sense, an exhaustive enumeration of � � is
needed to find the best ��� for CRHP while the best ��� for CRCP can be easily
found as a local optimal value without exhaustive enumeration.

Figure 1.13. Power reduction (in percentage) for � � = 10 and � � = 16

Figure 1.13 shows the power reduction for CRCP and CRHP when � � =
16 for benchmark �
��� 	�	 � (again, 	�� � has a similar trend). When � ��� ���

14

cycles, CRCP consumes less power than CRHP. With respect to the best � � =
6 for CRHP and the best � � ���

for CRCP, the energy consumed by FPUs
can be reduced by 31% and 37% for CRHP and CRCP, respectively, while
the performance loss is negligible at 0.2% and 0.1% for CRHP and CRCP
respectively. It is worthwhile to point out that we do not consider the power
dissipation and cache misses for hardware prescan. So the actual power and
performance by CRHP will be worse than those in Figure 1.8 and 1.12.

However, when ����� ���
cycles, CRCP consumes more power than CRHP.

The reason is that whenever the compiler moves out of a block when searching
upstream, RUIs will be inserted in every block that could possible branch to
the current block. This increases the number of RUIs and leads to unnecessary
hardware ramping. As ��� increases, the chance for the latter situation to occur
also increases, which will eventually outweigh the benefit brought by reducing
redundant RUIs at a certain point. Therefore, CRCP might result in worse
power reduction than CRHP.

It is worthwhile to point out that we believe that, in practice, � � should be
less than 10 cycles, especially when the number of stages between fetch and
execution becomes large, for example, there are five stages between the initial
fetch stage and execution stage in the Intel Itanium processor [17]. Given that � �
is less than 10 cycles in practice and CRCP has a higher performance and uses
less energy, the compiler-based CRCP is recommended for VLIW processors.

We have considered our load amendment in Figures 1.8-1.11. To appreciate
the contribution of this amendment, we show in Figure 1.14 the performance
before and after our amendment for the CRCP approach. Benchmark art is
used as it has a relatively low cache hit rate for load instructions. Surprisingly,
this simple amendment can reduce the performance loss from over 6% to less
than 1%.

5. Conclusions and Discussions

In this paper we first present PowerImpact, a cycle-accurate power simulator
based on the IMPACT infrastructure for VLIW processors. We then use Pow-
erImpact to study the following power reduction techniques with a bounded
performance loss of 1%, compared to the cases without any dynamic throttling:
(i) clock ramping with hardware-based prescan (CRHP), and (ii) clock ramp-
ing with compiler-based prediction (CRCP). Experiments using SPEC2000
floating-point benchmarks show that the power consumed by floating-point
units can be reduced by up to 31% and 37% for the CRCP approach and CRHP
approach, respectively.

A limitation of our work was that IMPACT is designed originally as a C
compiler. There are only a few SPEC FP benchmarks written in C, while most
SPEC FP benchmarks are written in Fortran. As far as we know the Fortran

Power Modeling and Reduction of VLIW Processors 9 15

Figure 1.14. Performance Loss (in percentage) before and after the amendment for load in-
struction, for � � = 10, � � = 16 and ��� = 9.

front-end for IMPACT is under development and will be available soon. More
floating-point benchmarks will be tested then.

Our recent work considers the leakage power modeling and reduction. We
study leakage power reduction using power gating in the forms of Virtual
power/ground Rails Clamp (

�����
) and Multi-threshold CMOS (� � � ����).

We apply power gating to three circuit component types: memory-based units,
datapath components, and control logic. Using power and timing models de-
rived from detailed circuit designs and a microarchitecture-level power simu-
lator, we further study the leakage power modeling and reduction at the system
level for modern high-performance VLIW processors. We show that the leak-
age power can be over 60% of the total power for such processors. Moreover,
we propose compiler-based scheduling of MTCMOS to reduce power up to
81.7% for integer and floating-point units, and propose time-out scheduling
of VRC to reduce power up to 94.9% for L2 cache. Such power savings is
equivalent to more than 50% total power reduction for the VLIW processors
we study. Details about the recent progress and the PowerImpact tool can be
found at http://eda.ece.wisc.edu/PowerImpact/.

6. Acknowledgement

The authors would like to thank Dr. George Cai at Intel and Mr. Joe Basile
at the University of Wisconsin-Madison for the useful discussions with them.

References

[1] D.Brooks, V.Tiwari, and M.Martonosi, “Wattch: A framework for
architectural-level power analysis optimization,” in ISCA, 2000.

[2] W.Ye, N.Vijaykrishnan, M.Kandemir, and M.J.Irwin, “The design and use
of simplepower: a cycle-accurate energy estimation tool,” in DAC, 2000.

[3] A. Dhodapkar, C. Lim, G. Cai, and W. Daasch, “Te � ��' � est: A ther-
mal enabled multi-model power/performance estimator,” in Workshop on
Power-Aware Computer Systems, in conjuction with the Ninth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, November 2000.

[4] V. Tiwari, D. Singh, S. Rajgopal, and G. Mehta, “Reducing power in
high-performance microprocessors,” in DAC, 1998.

[5] R. Maro, Y. Bai, and R. Bahar, “Dynamically reconfiguring processor re-
sources to reduce power consumption in high-performance processors,”
in Workshop on Power-Aware Computer Systems, in conjuction with the
Ninth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, November 2000.

[6] G. Cai and C. Lim, “Architectural level power/performance optimization
and dynamic power estimation,” in Cool Chips Tutorial colocated with
MICRO32, November 1999.

[7] S. Ghiasi and D. Grunwald, “A comparison of two architectural power
models,” in Workshop on Power-Aware Computer Systems, in conjuction
with the Ninth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, November 2000.

[8] P. Chang, S. Mahlke, W. Chen, N. Warter, and W. Hwu, “Impact: An ar-
chitectural framework for multiple-instruction-issue processors,” in Pro-
ceedings of the 18th ISCA, May 1991.

17

18

[9] D. August, D. Connors, and e. a. S.A. Mahlke, “Integrated predicated and
sepculative execution in the impact epic architecture,” in Proceedings of
the 25th ISCA, July 1998.

[10] S.Manne, A.Klauser, and D.Grunwald, “Pipeline gating: Speculation con-
trol for energy reduction,” in ISCA, 1998.

[11] N.Vijaykrishnan, M.Kandemir, M.J.Irwin, and H.S.Kim, “Energy-driven
integrated hardware-software optimization using simplepower,” in ISCA,
2000.

[12] E.Musoll, “Predicting the usefulness of a block result: a micro-
architectural technique for high-performance low-power processors,” in
32nd Annual International Symposium on Microarchitecture, November
1999.

[13] M. Pant, P. Pant, D. Wills, and V.Tiwari, “An architectural solution for the
inductive noise problem due to clock-gating,” in Proc. Int. Symp. on Low
Power Electronics and Design, pp. 255–257, 1999.

[14] M. Pant, P. Pant, D. Wills, and V. Tiwari, “Inductive noise reduction at the
architectural level,” in International Conference on VLSI Design, pp. 162–
167, 2000.

[15] Z. Tang, N. Chang, S. Lin, W. Xie, S. Nakagawa, and L. He, “Ramp
up/down floating point unit to reduce inductive noise,” in Workshop on
Power-Aware Computer Systems, in conjuction with the Ninth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, November 2000.

[16] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann, “Effective
compiler support for predicated execution using the hyperblock,” in Proc.
of Micro 25, pp. 45–54, 1992.

[17] Intel Inc., “Intel Itanium Processor”, http://www.intel.com/itanium/,
2001.

