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ABSTRACT
The Boolean matching problem is a key procedure in field-
programmable gate array (FPGA) technology mapping. SAT-
based Boolean matching provides a flexible solution for ex-
ploring various FPGA architectures. However, the compu-
tational complexity of state-of-the-art SAT-based Boolean
matching prohibits its application practically. In this pa-
per we revisit the SAT-based Boolean matching (SAT-BM)
problem for heterogeneous FPGAs and propose a very effi-
cient algorithm by exploring function and architectural sym-
metries. While recent work obtained up to 13x speedup, our
algorithm achieves up to 200x speedup by considering the
symmetries, when compared to the original SAT-BM algo-
rithm.

1. INTRODUCTION
FPGAs are programmable logic chips that can be configured to

implement various digital circuits. FPGAs are quickly replacing
custom ASICs in many areas due to their flexibility and fast turn-
around times for product development. However, these benefits
come at the heavy cost of area, speed, and power.

The programmable logic block (PLB) is the basic element of an
FPGA design. Various programmable devices can be placed within
a PLB; a lookup table (LUT) is one such programmable device.
LUT-based FPGAs use PLBs populated with LUT components to
implement various logic functions. A K-LUT device consists of K
inputs, one output, and 2K configuration bits that serve as truth table
entries. With its 2K configuration bits programmed accordingly, the
K-LUT can implement any K-input function. For example, Figure
1 shows a simple LUT-2. By setting the configuration bits to 0, 0,
0, and 1 for L0, L1, L2, and L3, respectively, we can implement a
2-input AND gate with this LUT-2.
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Figure 1: A 2-input lookup table (a) and its imple-
mentation for a 2-input AND gate (b)

Given a logic-level design, a crucial step in the overall FPGA
computer-aided design (CAD) flow is technology mapping. This
step converts a circuit into a network of PLBs. The circuit func-
tion can be given in terms of a synthesized multi-level netlist, in-
put/output functional relationship, or other representation. Depend-
ing on the technology mapping approach, the resulting network will
exhibit direct area, delay, and power costs. Most of the existing
work for FPGA technology mapping [1, 2, 3] assumes that the only
logic elements within a PLB are K-LUTs, also referred to as ho-
mogeneous FPGAs. Since a K-LUT can implement any K-input
function, the technology mapping for homogeneous FPGAs is to
find optimal K-bounded covers [3] in the subject graph, and the
logic functionality of each K-bounded cover does not need to be
considered.

Alternatively, modern FPGAs such as Xilinx Virtex IV [4] and
Altera Stratix II [5] employ heterogeneous PLBs, which contain
various logic devices such as logic gates and LUTs with different
inputs. Figure 2 shows the PLB architecture for Altera Stratix
II ALM [5]. This heterogeneity allows more flexibility in FPGA
designs, which can result in reduced on-chip power dissipation,
reduced area overhead, and improved performance. On the other
hand, the extra flexibility of heterogeneous FPGAs increases the
search space of technology mapping. As an example, suppose
we map a design to an FPGA with K-input heterogeneous PLBs;
the functionality of each K-bounded cover must be considered
explicitly during technology mapping.

Boolean matching [6, 7] is the most important sub-problem
in technology mapping for heterogeneous FPGAs. Given a target
FPGA architecture, or more specifically, a target PLB architecture
p and a Boolean function f , the Boolean matching problem either
maps function f to PLB p by describing the appropriate config-
uration bits, or concludes that PLB p cannot implement function
f . Most of the existing work for Boolean matching is based on
function decomposition [6] or on canonicity and Boolean signa-
tures [7]. These approaches are limited by the input size of the
functions they can handle. Recently, a SAT-based approach [8] has
been proposed to solve Boolean matching and was improved by [9]
with a 3x speedup, and was further improved by [10] with up to
13x speedup. While SAT-based Boolean matching offers great flex-
ibility in handling various FPGA architectures, it still suffers from
long runtimes due to high computational complexity. For example,
the Boolean matching procedure is called over 50,000 times for the
MCNC circuit i10 with less than 3000 gates, with a typical runtime
for completing one SAT-based Boolean matching [8] for a 9-input
sub-circuit at more than 20 seconds. It would appear that the run-
time for heterogeneous FPGA technology mapping is prohibitively
high due to the inefficiencies of Boolean matching.

Inspired by a recent improvement on Boolean matching for ASIC
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Figure 2: PLB Architecture for Stratix II (from Altera Inc.)

[11] and an enhancement on SAT reasoning [12] by exploring sym-
metries, we revist the SAT-based Boolean matching problem for
heterogeneous FGPAs. Our proposed algorithm targets orders of
magnitude speedup over the existing algorithms [8, 9, 10]. The
major contribution of this paper is to significantly improve the effi-
ciency of the SAT-based Boolean matching by exploring the sym-
metries exhibited in both the Boolean function and the target PLB
architecture. Considering function and architecture symmetries ex-
plicitly during CNF encoding, the SAT problem size and the SAT
reasoning runtime are dramatically reduced. The experimental re-
sults show that the proposed algorithm obtains up to 200x speedup
by considering symmetries compared to the original algorithm [8],
while the recent papers [9, 10] obtained up to 13x speedup.

The rest of this paper is organized as follows: Section 2 formal-
izes the concepts involved in Boolean matching and reviews the
SAT-based encoding [8]. Section 3 presents our heuristics for im-
proving the efficiency of the SAT-based Boolean matching approach
using symmetries. Section 4 details our experimental results, and
section 5 concludes the paper.

2. BACKGROUNDS AND PRELIMINARIES
A programmable logic block (PLB) H(P ) consists of a net-

work of interconnected non-programmable and programmable logic
devices with a set P of input pins {p1, · · · , pm}. We sometimes
omit the set of input pins and write H to refer to the PLB H(P ). We
consider the mix of two kinds of programmable logic devices in this
paper: the K-input LUT and the K-input multiplexer (MUX). A
K-LUT consists of K inputs, one output, and 2K configuration bits.
A K-MUX consists of K inputs, one MUX output, and dlog Ke
configuration bits.

The Boolean matching problem takes as input a PLB H(P ) and
a boolean function f(X) over the variables X such that |X| ≤ |P |,
and asks if the PLB H(P ) can implement the function f(X).

For the simple case where H is a K-LUT, any function f(X)
where |X| ≤ K can be implemented by the K-LUT. When H
contains multiple LUTs however, the question becomes non-trivial.

2.1 From PLBs to CNF

Figure 3: Example encoding for non-programmable
devices

For non-programmable devices (e.g., combinational gates) in a
PLB, we can describe the logic of the device as a Boolean formula
in conjunctive normal form (CNF) relating the inputs and outputs.
For example, a 2-input AND gate with inputs x1, x2 and output z
can be expressed as

(x1 · x2 ↔ z) (1)

which in CNF becomes

(x1 + ¬z) · (x2 + ¬z) · (¬x1 + ¬x2 + z) (2)

For networks comprised of multiple non-programmable devices,
we add intermediate variables for the output of each device and
encode the relationship between the inputs and outputs of each
device as CNF formulas in terms of those intermediate variables.
Figure 3 shows an example of a non-programmable device network,
where an AND-2 gate and an OR-2 gate compose a 3-input logic
function g(x1, x2, x3). The corresponding CNF, fall , is constructed
as follows:

fAND2 = (x1 + ¬z) · (x2 + ¬z) · (¬x1 + ¬x2 + z) (3)

fOR2 = (¬x3 + g) · (¬z + g) · (x3 + z + ¬g) (4)

fall = fAND2 · fOR2 (5)

A similar encoding can be performed for programmable devices
(LUTs and MUXs) in a PLB. For a K-input LUT, we introduce
2K additional variables, L1, · · · , L2K , to represent every possible
setting of the configuration bits. For example, the 2-input LUT with
inputs x1, x2 and output z1 shown in Figure 1(a) can be encoded as
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Figure 4: A 4-input programmable MUX
follows:

(x1 + x2 + ¬L1 + z1) · (x1 + x2 + L1 + ¬z1) ·

(x1 + ¬x2 + ¬L2 + z1) · (x1 + ¬x2 + L2 + ¬z1) ·

(¬x1 + x2 + ¬L3 + z1) · (¬x1 + x2 + L3 + ¬z1) ·

(¬x1 + ¬x2 + ¬L4 + z1) · (¬x1 + ¬x2 + L4 + ¬z1)

For a K-input programmable MUX, we have dlog Ke configu-
ration bits, so we introduce dlog Ke additional variables. Figure
4 shows a 4-input programmable MUX with inputs x1, x2, and
output z, where L1, L2 are the variables corresponding to the con-
figuration bits. The derivation of the CNF encoding for this 4-input
programmable MUX is shown as follows:

z = ite(L2, ite(L1, x4, x3), ite(L1, x2, x1))

where ite(x, y, z) is the Boolean function x∧ y ∨ ¬x∧ z. That is,
when x is true, y is selected; when x is false, z is selected. When
encoded in CNF, this becomes:

(L1 + L2 + ¬x1 + z) · (L1 + L2 + x1 + ¬z) ·

(L1 + ¬L2 + ¬x2 + z) · (L1 + ¬L2 + x2 + ¬z) ·

(¬L1 + L2 + ¬x3 + z) · (¬L1 + L2 + x3 + ¬z) ·

(¬L1 + ¬L2 + ¬x4 + z) · (¬L1 + ¬L2 + x4 + ¬z)

(6)

2.2 From Boolean Matching to SAT
Let G(x1, · · · , xn, L1, · · · , Lm, z1, · · · , zl, o)be a Boolean func-

tion in CNF representing a PLB, where variables x1, . . . , xn repre-
sent the input signals, variables L1, . . . , Lm represent configuration
bits, and variables z1, . . . , zl represent the intermediate circuit sig-
nals, and o represents the output function of the configuration. Let
F (x1, . . . , xn, f) represent a Boolean function over the variables
x1, . . . , xn with output signal f . We assume F is represented in
CNF, for example, by computing a CNF formula from a truth table
representation of the function. The Boolean matching problem then
asks if there is some setting of the configuration signals L1, . . . , Lm

such that for all input variables x1, . . . , xn there are valuations of
the intermediate signals such that the output o of the PLB is equiva-
lent to the output of the function f . Formally, the Boolean matching
problem is formulated as the following quantified Boolean satisfia-
bility (QSAT) problem:

∃L1, · · · , Lm∀x1, · · · , xn∃z1, · · · , zl, o, f.

G(x1, · · · , xn, L1, · · · , Lm, z1, · · · , zl, o)

F (x1, · · · , xn, f) ∧ (o ≡ f) (7)
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Figure 5: (a) Truth table for a function f , (b) An
example PLB
As in [8], the universal quantifiers in (7) can be removed by enu-
merating the truth table of the function F (x1, · · · , xn). Therefore,
(7) can be solved with SAT, where a satisfying assignment implies
that the function can be realized by the configuration.

The QSAT formulation uses O(k · 2N + 2n) clauses, O(k · 2N )
existential variables, and O(n) universal variables, where k is the
number of LUTs in the PLB, N is the number of inputs in the
largest LUT in the PLB, and n is the number of inputs in the
Boolean function. When expanded to the SAT-based formulation,
the number of clauses and variables are O(k · 2N · 2n) and O(k ·
2N + 2n), respectively.

2.3 Example
Consider the example PLB shown in Figure 5(b), which contains

a LUT-2 and an AND-2 gate. We want to test if function f , whose
truth table is shown in Figure 5(a), can be implemented by this PLB.
Let X = {x1, x2, x3} be the set of input pins. We generate a SAT
instance with the following steps:

1. Create CNF formulas for individual elements in the PLB.

GLUT = (x1 + x2 + ¬L1 + z)(x1 + x2 + L1 + ¬z)

(x1 + ¬x2 + ¬L2 + z)(x1 + ¬x2 + L2 + ¬z)

(¬x1 + x2 + ¬L3 + z)(¬x1 + x2 + L3 + ¬z)

(¬x1 + ¬x2 + ¬L4 + z)(¬x1 + ¬x2 + L4 + ¬z)

GAND = (z + ¬o) · (x3 + ¬o) · (¬z + ¬x3 + o) (8)

2. The characteristic function of the PLB is then obtained as:

G = GLUT · GAND (9)

Notice that the output variable is called o.

3. Decide on either a QSAT-based formulation or a SAT-based
formulation.

(A) QSAT-based formulation. For the QSAT-based
formulation, write the CNF for the truth table of the Boolean
function f as follows:

Gf = (¬x1 + ¬x2 + ¬x3 + f) · (¬x1 + ¬x2 + x3 + f) ·

(¬x1 + x2 + ¬x3 + f) · (¬x1 + x2 + x3 + f) ·

(x1 + ¬x2 + ¬x3 + ¬f) · (x1 + ¬x2 + x3 + f) ·

(x1 + x2 + ¬x3 + ¬f) · (x1 + x2 + x3 + ¬f)

(10)

The QSAT formulation can then be expressed as follows:

∃L1∃L2∃L3∃L4∀x1∀x2∀x3∃z, o, f.

(G · Gf · (o ∨ ¬f) · (¬o ∨ f)) (11)
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Figure 6: (a) Truth table of fa = x1 · (x2 + x3), (b)
Truth table of fb = x3 · (x1 + x2)

A satisfiable assignment to the above QSAT instance implies
that f can be implemented by the PLB.

(B) SAT-based formulation. For the SAT-based for-
mulation, we replicate (9) to remove the universal quantifiers
on the input variables in X . This formulates GSAT :

GSAT = G[X/000, o/0, z/z1] · G[X/001, o/0, z/z2] ·

G[X/010, o/1, z/z3] · G[X/011, o/0, z/z4] ·

G[X/100, o/1, z/z5] · G[X/101, o/1, z/z6] ·

G[X/110, o/1, z/z7] · G[X/111, o/1, z/z8]

(12)

A satisfiable assignment to GSAT implies f can be imple-
mented by the PLB. Based on the SAT solver, this SAT prob-
lem is unsatisfiable, meaning that the Boolean function shown
in Figure 5(a) cannot be implemented by the PLB shown in
Figure 5(b).

2.4 Input Permutations
An important issue in Boolean matching is input permutation,

which allows different mappings from pins in a PLB to variables of
a Boolean function. Figure 6 shows two Boolean functions which
are equivalent under input permutation, i.e., function fa can be
transferred to fb by the input permutation τ = (3, 2, 1). However,
fa cannot be implemented by the PLB shown in Figure 5(b), while
fb can.

In practice, input permutation is allowed in FPGA designs and
must be considered during Boolean matching to maximize the num-
ber of implementable instances. However, the number of permuta-
tions for a K-input Boolean function is K! which grows extremely
quickly. In order to consider input permutations in the SAT formula-
tion, [8] proposed to add programmable MUXs before each primary
input of the target PLB (see Figure 7). All possible permutations
are encoded by these MUXs. For each of these programmable
MUXs, dlog ne+1 additional variables are needed to represent the
configuration bits (e.g., L11, L12, L21, L22, L31, L32 in Figure 7)
and the intermediate pins (e.g., z1, z2, z3), and O(n2) additional
clauses are needed, as well. Thus, considering input permutations
adds O(n3) clauses and n · (dlog ne + 1) variables to the original
formulation. In practice, the size of a LUT is usually less than
six, so adding these MUXs can double the size of the SAT/QSAT
problem if n is a large (i.e., greater than 6).

3. SPEEDUP BY SYMMETRIES
We present an efficient algorithm which eliminates the need for

permutation MUXs by explicitly considering symmetry in the SAT

Figure 7: Considering input permutations with ad-
ditional MUXs

formulation.

3.1 Symmetries in Boolean Functions
Variable xi and xj of Boolean function f(x1, · · · , xn) are sym-

metric if the truth table of f remains the same when xi and xj are
swapped, i.e., if f(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .).
We can consider only distinct permutations by observing the
variable symmetries exhibited in a Boolean function, making the
programmable MUXs added in subsection 2.4 unnecessary.

Given an n-input Boolean function f(x1, · · · , xn), we can first
test the symmetries of every input pair (xi, xj) by comparing the
truth tables before and after swapping variables xi and xj . After
building the symmetric relationships between every variable pair,
we can find the connected components in this undirected graph,
with each node representing a variable and each edge connecting
two symmetric variables. For example, consider a 9-input Boolean
function having four symmetries (0, 1, 6, 8), (3, 4, 5), (2), and
(7) as shown in Figure 8. For any two permutations τ1 and τ2,
if the only difference between them is within the same symmetry
cluster ((0, 1, 6, 8) or (3, 4, 5), in this example), we have τ1 = τ2

and only one of them needs to be tested in Boolean matching. In
fact the number of distinct permutations under such a symmetry is
9!/(4!×3!×1!×1!) = 2520, reducing the number of permutations
to consider by a factor of 144.
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Figure 8: Symmetries in a 9-input Boolean function

Note that the time required to identify symmetries of an n-input
function using the above algorithm is O(n2 · 2n). However, this
computational cost is negligible in practice compared to the Boolean
matching time, as n is usually less than nine. Taking advantage
of the symmetries exhibited by a Boolean function allows us to
significantly reduce the number of permutations to be tested. In



addition, symmetries can be detected efficiently using sophisticated
algorithms [13].

3.2 Symmetries in PLB Architecture
Most commercial PLB architectures exhibit symmetries with re-

spect to their input pins. Symmetries can also be propagated, al-
lowing us to discover more symmetries if more logical levels are
considered. Formally, we define first order and second order
architectural symmetries as follows.

Definition 1. First Order Architectural Symmetry:
Any two input pins xi, xj connected directly to the same k-
input LUT are symmetric under the permutation (xi, xj).

Definition 2. Second Order Architectural Symme-

try: The inputs x1, · · · , xk and inputs y1, · · · , yk for two
k-input LUTs Lx and Ly, respectively, are symmetric un-
der permutation π(yi1 , · · · , yik

, xj1 , · · · , xjk
) if the outputs

x and y of these two LUTs are symmetric.

For example, in the PLB shown in Figure 9, the inputs x1 and x2

are symmetric, as are the inputs x3 and x4, which means that ignor-
ing the configurations where they are swapped will not affect the
decision of whether a certain Boolean function can be implemented
by this PLB. The symmetries between x1 and x2 and between x3

and x4 are called first order architectural symmetries. Furthermore,
since the outputs of both LUTs feed into a 2-input AND gate whose
inputs are symmetric, ignoring the configurations where two groups
of pins (x1, x2) and (x3, x4) are swapped under the permutation
π = (x3, x4, x1, x2), π = (x3, x4, x2, x1), π = (x4, x3, x1, x2)
will not affect the Boolean matching decision. This is an example
of a second order architectural symmetry.

Figure 9: A second order symmetric PLB

To detect symmetries exhibited in the PLB architecture, we ex-
tend the structural analysis algorithm presented in [14] to consider
programmable logic devices in the circuit. As shown in Figure
10(A), given a target PLB architecture, we first rewrite all the non-
programmable logic into an AND-inverter graph (AIG), leaving the
programmable logic (i.e., LUTs) unchanged. For AIGs, an impli-
cation supergate rooted at node n is a multi-input AND gate created
by expanding the AND gate rooted at node n until either a pri-
mary input, or a complemented edge, or a programmable device is
reached. Figure 10(B) shows the result of generating implication
supergates for the AIG in 10(A).

Architectural symmetries can be detected by propagating the
symmetry information of the implication supergates in topological
order from the primary inputs to the primary outputs. We can
examine higher order symmetries in the target PLB architecture by
applying our treatment of second order symmetries to higher order

logic levels. In the example shown in Figure 10, since the fanins of
the 3-input AND gate f are symmetric, the inputs of the two LUTs
are symmetric under permutation π(y, d, a, x), π(y, d, x, a). We
conclude that a and d are symmetric since x ≡ y = b · c.

LUT1 LUT2

LUT1 LUT2

Figure 10: Illustration of architectural symmetry
detection

Architectural symmetry detection can be done in the pre-process
before re-synthesis. Since PLB sizes are typically small, runtime
cost is not an issue.

3.3 Overall Algorithm
Figure 11 shows the flow of our overall algorithm. We first pre-

process the architecture of the target PLB by extracting its archi-
tectural symmetry information (using the algorithm in Section 3.2)
and generate a template of the characteristic function for the PLB.
For each Boolean function to be tested, we first detect the func-
tion symmetries (using the algorithm in Section 3.1) and prune the
redundant permutations based on both architectural and function
symmetries. Then each distinct permutation is tested individually
by replication of the characteristic function. Given each permuta-
tion p, a SAT problem is generated by replicating the characteristic
function based on the implicant table of p (the SAT encoding by
implicant table was proposed in [10] and will be summarized in
Appendix). If any permutation gives rise to a satisfiable solution,
then the Boolean function can be implemented by the target PLB. If
instead none of the SAT instances are satisfiable, then the function
cannot be implemented by the target PLB.

3.4 Implementation Issues
Our algorithm can be extended to handle the output don’t cares

of a Boolean function. Since the point of including sub-expression
G(X/Xvalue, o/ovalue, z/zvalue) in the replication form (12) is
to ensure that the configuration of PLB which is programmed in
correspondence with the satisfying assignment of (12) will produce
ovalue when Xvalue is on its inputs, the replication corresponding
to the don’t cares term DC can be removed from (12) because we
do not care about the output value when the input values are DC.
For instance, if the truth value for inputs (x1, x2, x3) = (1, 0, 1)
is a don’t care, the sub-expression G(X/101, o/DC, z/z6) can
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Figure 11: The flow of the overall algorithm

be removed from the replicated SAT encodes. And the replicated
characteristic function (12) can be re-expressed as the following:

GSAT = G[X/000, o/0, z/z1] · G[X/001, o/0, z/z2] ·

G[X/010, o/1, z/z3] · G[X/011, o/0, z/z4] ·

G[X/100, o/1, z/z5] ·

G[X/110, o/1, z/z7] · G[X/111, o/1, z/z8]

(13)

Since we consider each unique permutation explicitly in our al-
gorithm, we need to solve multiple SAT instances sequentially, one
for each permutation. In fact this procedure is able to take advan-
tage of the incremental SAT reasoning in miniSAT2.0 [15]. All
of these SAT instances share the same characteristic function (7),
while the difference between two SAT instances for two different
permutations is the truth table (or implicant table). Therefore two
SAT instances will share a large portion of clauses, which we call
core clauses. The distinct clauses related to the output values we
call soft clauses. In this sense the sequential SAT reasoning pro-
cedure can be performed incrementally as follows. We divide the
clauses of a SAT instance into core clauses and soft clauses. The
core clauses are processed first, and the resulting state Σ of the
SAT solver is recorded. For each SAT instance, we incrementally
insert new clauses from the soft clauses set. After solving the ag-
gregated problem, we remove the soft clauses, reestablish state Σ
and proceed with the next SAT instance.

4. EXPERIMENTS
We implement our algorithms in C++ and Perl. The SAT prob-

lems are solved by miniSAT2.0 [15]. The implicant table-based

SAT encoding [10] (see Appendix) has been implemented and in-
tegrated into our algorithm as shown in Figure 11. To show the
effectiveness of our improvement to the SAT-based Boolean match-
ing algorithm (shown in Figure 11), we extract over 10k fanout-free
cones (FFCs) with 5-9 inputs from MCNC benchmarks based on
the method presented in [3] as the Boolean functions. The target
PLB architecture is similar to the PLB in Figure 9 except that the
two input LUTs have four inputs and the output logic is a 2-input
LUT instead of a 2-input AND gate. All experimental data are
collected in a Linux Server with a 1.9GHz CPU and 2GB memory.

We first randomly select 30 9-input Boolean functions from the 9-
input cut set, and calculate the number of unique permutations con-
sidering symmetries as shown in Figure 12. Compared to the total
number of unique permutations (9! = 362, 880), we reduced com-
putation by over two orders of magnitude by employing Boolean
function symmetries, and by another two orders of magnitude by
considering architectural symmetries.

Number of distinct permutations (for 9-input Boolean functions)

1

10

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Test case

N
u

m
b

er
 o

f 
d

is
ti

n
ct

 p
er

m
u

ta
ti

o
n

s

Per#F_symm Per#Arch_symm

Figure 12: Number of permutations using Boolean
function symmetries (F symm) and using a combi-
nation of Boolean function symmetries and architec-
ture symmetries (Arch symm)

Table 1 compares the original algorithm SAT-BM presented in [8]
and our improved algorithm (SAT-IP). The average SAT instance
sizes and runtime of both algorithms are shown in the table. As
the number of inputs in the Boolean function increases, the SAT
instance size increases exponentially for SAT-BM. On the other
hand, the size of each sub-SAT instance for our SAT-IP algorithm
remains virtually the same regardless of the number of inputs in the
Boolean function, and the number of unique permutations grows
slowly. Compared to SAT-BM, SAT-IP achieves up to 400x overall
speedup, where 200x speedup of SAT-IP is due to the consideration
of symmetries and 2x more speedup is due to the integration of
implicant table-based SAT-encoding (shown in Figure 13). More
significant speedup is expected if Boolean functions with wider
inputs are considered. Note that two recent improvements on the
SAT-based Boolean matching problem, [9] and [10] obtained up to
13x speedup compared to [8]. The substantial speedup obtained by
SAT-IP makes it possible to integrate the SAT-based Boolean match-
ing algorithm within technology mapping and logic optimization
during heterogeneous FGPA synthesis.

To break down the effectiveness of each components in SAT-IP,
Figure 13 compares the runtimes of the SAT-BM algorithm (SAT-
BM ), the SAT-IP algorithm with truth table replication but con-
sidering only Boolean function symmetries (F symm SAT-IP ),
the SAT-IP algorithm with truth table replication and considering
both Boolean function symmetries and architectural symmetries
(Arch symm SAT-IP ), and the final SAT-IP algorithm with im-



Testcases func size 5.00 6.00 7.00 8.00 9.00
problem# 1398 1981 2263 2172 2134

variable# 867 1571 2979 5795 11427
SAT-BM clause# 6945 13889 27777 55553 111105

runtime (s) 0.47 2.22 2.39 27.53 173.59

variable#/inst 367 442 358 405 454
clause#/inst 1509 1850 1466 1683 1906

SAT-IP unique perm# 4.30 17.73 30.90 26.6 161.47
runtime (s) 0.01 0.05 0.07 0.07 0.43

speedup 45x 48x 32x 409x 403x

Table 1: Comparison between SAT-BM and our im-
proved algorithm (SAT-IP)

plicant table replication and considering all symmetries (SAT-IP ).
This demonstrates that Boolean function symmetry itself cannot
bring significant speedup, but combined with architectural symme-
try optimizations, two orders of magnitude speedup can be attained
compared to the original SAT formulation. With the integration of
implicant table-based replication, an additional 2x speedup can be
achieved. This is different from the 3-13x speedup reported in [10]
and is due to the overlap in techniques for runtime reduction.

Effectiveness of considering symmetries and implicant table
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Figure 13: Runtime (seconds) of matching 30 9-
input functions to the target PLB under symmetries
and implicant table

5. CONCLUSION
Targeting orders of magnitude speedup over the existing algo-

rithms for SAT-based Boolean matching [8, 9, 10], we have pre-
sented an algorithm to significantly improve the efficiency of SAT-
based Boolean matching by exploring the symmetries exhibited in
both the Boolean function and the target PLB architecture. Consid-
ering function and architecture symmetries explicitly during CNF
encoding, the SAT problem size and the SAT reasoning runtime
are dramatically reduced. The experimental results show that the
proposed algorithm obtains up to 200x speedup by considering sym-
metries compared to the original algorithm [8], while recent work
[9, 10] obtained up to 13x speedup. This improvement of SAT-
based Boolean matching makes it practical for application during
synthesis and optimization for heterogeneous FPGAs. Our future
plans entail integrating our algorithm into technology mapping for
FPGA architecture exploration.
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Appendix: Implicant Based SAT encoding
Instead of representing a Boolean function by its truth table, we can
use its implicant table, which can be calculated efficiently in SIS
[16]. Considering the truth table shown in Figure 15, where “-”
represents a don’t care input, it is clear that the number of rows in
the implicant table is less than those in the truth table. In fact for
a typical real circuit, the size of the implicant table for its Boolean
function is usually linear to the number of inputs of the function.
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Figure 15: (a) Truth table, (b) Implicant table

[10] applied the above idea of considering the don’t care terms in
the implicant table for a LUT explicitly. The idea can be extended



Figure 14: Duplication for the PLB shown in Figure 9

to handle general logic elements (e.g., an AND gate), not just LUTs.
A logic element with k inputs must be duplicated 2k times. The
input variables are set by (14) and (15) below,

x′

i =



0, if xi = “-”
xi, otherwise (14)

x′′

i =



1, if xi = “-”
xi, otherwise (15)

During the replication of the characteristic function (7), for any
input xi of a logic element, inputs x′

i and x′′

i are generated to
facilitate propagating don’t care terms. If xi is set to 0 (or 1), then
x′

i and x′′

i are likewise both set to 0 (or 1). But if xi is a don’t care
(“-”), then x′

i is set to 0 while x′′

i is set to 1.
The duplication of the logic element enables the propagation of

don’t care terms in the implicant table. Figure 14 shows an example
of this duplication for the PLB from Figure 9. The first LUT (with
inputs x1 and x2) in Figure 9 is duplicated as four LUT-2s whose

outputs are hooked to a 4-input AND gate (with output z1) and a
4-input OR gate (with output z′

1), respectively. Similarly the second
LUT (with inputs x3 and x4) in Figure 9 is duplicated as another
four LUT-2s whose outputs are hooked to a 4-input AND gate (with
output z2) and a 4-input OR gate (with output z′

2), respectively.
The 2-input AND gate in Figure 9 is duplicated to four 2-input
AND gates. Since the AND gate is the primary output of PLB B,
we hook up all outputs of its duplicated counterpart in Figure 14,
which enforces that all duplicated outputs produce the same logic
level.

Intuitively, the above logic duplication procedure considers input
don’t care terms explicitly by enumerating all possibilities of the
don’t care input combinations. The following theorem has been
proven in [10].

Theorem 1. The decision of mapping a Boolean function
(represented by its implicant table) to this duplicated PLB is
equivalent to mapping the function to the original PLB.


