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1. INTRODUCTION
During the course of physical design and optimization for

VLSI circuits and systems, it is highly useful to know how
certain geometry parameters influence the circuit metrics of
interest. For example, in decoupling capacitor (decap) bud-
geting, people are interested in the relationship between the
voltage droop/bounce at the observation ports and the lo-
cation/size of decaps [1]. Other examples include, but are
not limited to, thermal via sizing [2], interconnection spac-
ing in the parallel interconnect structure design [3], buffer
and wire sizing in clock tree optimization, etc. In those
problems, the sensitivities w.r.t the physical parameters are
essential for the optimization.

Parameterized model order reduction not only reduces
the circuits to a much smaller size, but also keeps the pa-
rameters of design (POD) and thus the sensitivity informa-
tion. [3] extended the Arnoldi method used in [4] to match
the POD moments. Nevertheless, the reduced circuit size
is constrained by the number of parameters: the parameter
number cannot be too large to ensure a reasonable model
size after reduction, which makes it impractical for real ap-
plications to match more frequency domain moments. For
better accuracy, CORE [5] was proposed to use implicit mo-
ment matching for frequency domain moments and explicit
moment matching for the POD moments.

However, problems still exist: First of all, when the pa-
rameter number is very large, even simply matching the first
order of the POD moments can still result in a very large
reduced system. Second, not all the PODs are of the same
importance. The objective is usually more sensitive to some
parameters than to others. This is discussed in more de-
tail in Section 2. Accordingly, we need to obtain a higher
accuracy for those moments associated with more impor-
tant PODs. However, CORE can only evenly match the
moments of each POD. Finally, matching only the first or
second order of POD moments are not necessarily accurate.
For example, in Figure 1 we study a bus consists of 16 paral-
lel wires (equivalent to an RC circuit with 5270 nodes), with
the spacing between the first and second wire as the design
parameter. At reduced orders q=30,50,70, we plot the time
domain output integral w.r.t. different spacing ranging from
1µm to 10µm. As we can see, the reduced model cannot
match the original when q < 70. However, when we try to
match high order POD moments, CORE becomes unstable
due to the explicit moment matching method it uses.
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Figure 1: The output integral w.r.t. the wire spacing

at different reduced order q. The reduced model cannot

matches the origin well when q < 70. This shows only

matching the first or second order POD moments is far

from enough.

In this paper we propose an efficient yet more accurate
model order reduction method EMPIRE for physical design
with multiple parameters. It uses implicit moment match-
ing, which is more efficient yet more accurate than the im-
plicit/explicit moment matching used in CORE. In addition,
it can match the moments of different PODs with different
accuracy levels according to their influences on the design
objective. Experimental results show that compared with
CORE and [3], EMPIRE results in 47.8X improved accu-
racy at a similar runtime.

2. ALGORITHM

2.1 Preliminaries and Overview
We start with the following first order canonical form of a

parameterized system, where si (1 ≤ i ≤ t) are the variables,
and Ei are their corresponding constant coefficient matrices.

(E0 + E1s1 + E2s2 + ... + Etst)x = Bu

y = LT x, (1)

In [3], V is computed such that

colspan(V ) = span{∪
mq

m=0 ∪
m−(kp+...+k3)

k2=0 ... ∪m
kp=0

F m
k2,...,kp

(M1, ..., Mp)BM}, (2)

where BM = E−1
0 B, and F m

k2,...,kp
(M1, ..., Mp) is calculated

recursively as discussed in [3]. It is proved that projecting
using the obtained V can match the first mq moments of
each POD.
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Figure 2: The overall flow for EMPIRE algorithm.

Once the projection matrix V is found, the reduced system
can be obtained as

(Ẽ0 + Ẽ1s1 + Ẽ2s2 + ... + Ẽtst)x̃ = B̃u

ỹ = L̃T x̃, (3)

where Ẽi = V T EiV , B̃ = V T B and L̃ = V T L.
The size of the reduced circuit, i.e., the number of columns

in the projection matrix V , is proportional to the parameter
number t. When the parameter number is huge, which is
usually the case in VLSI/ULSI design, the reduced system
is still very large. In addition, numerical error is also a
concern when the projection matrix is too large.

In the following, we will propose the EMPIRE algorithm
to reduce (2) to a projection matrix V with a much small
column number. To deal with large number of parameters,
EMPIRE is composed of three steps: parameter number re-
duction, projection space collapse and frequency domain mo-
ment expansion. The key idea of the first step is to pick the
parameters with relative small perturbation on the original
system according to the norms of their coefficient matrices.
The key idea of the second step is to construct a projection
matrix for the reduced parameters from step 1 and collapse
it into a much smaller one with minimal error. This step has
three sub-algorithms to select from according to the prob-
lem size. The key idea of the last step is to expand the
collapsed projection matrix to match high order frequency
domain moments. The main flow of the EMPIRE algorithm
is shown in Figure 2.

Note that for the simplicity of presentation, the algorithm
is described for the circuits with single port. It also works
for circuits with multiple ports by minor changes.

2.2 Parameter Number Reduction
To start with, we have the following definition:

Definition 1. We define the significance of a parameter
si w.r.t. its coefficient matrix Ei as

SIG(si) = ||Ei||2esi, (4)

where ||Ei||2 is the square-norm of Ei
1, and esi is an estima-

tion of si. esi does not need to be very accurate, for example

1
The 2-norm of a vector is defined as the square root of the el-

ements’ square sum, while the 2-norm of a matrix A is defined as

supx6=0

||Ax||2
||x||2

either the expectation or the maximum value of si can be
used. Practically, they are known prior to optimization.

The algorithm for Parameter Number Reduction is out-
lined in Algorithm 1. It computes Aver, the average of the
significance for all the parameters. Those parameters that
have coefficient matrices with norm smaller than ε × Aver
are removed when constructing the projection matrix. Here
ε is user-specified: a smaller ε results in a smaller parameter
number with less accuracy.

Algorithm 1 Parameter Number Reduction
INPUT: Total parameter number t and the coefficient matrices Ei

(1 ≤ i ≤ t) for each parameter;
OUTPUT: Total parameter number w after parameter number
reduction and the parameters ŝ1,...,ŝw ;
INITIALIZATION: Sum=0, j=0;;
for i=1; i ≤ t; i++ do

Sum=Sum+SIG(si);
end for

Aver=Sum/t;
for i=1; i ≤ t; i++ do

if ||Ei||2 ≥ ε × Aver then

ŝj = si;
j + +;

end if

end for

w = j;

The correctness of this algorithm is guaranteed by the
following theorem:

Theorem 1. Let µ be any eigenvalue of E0+Eisi(E0, Ei ∈
RN×N ) and λ be the eigenvalues of E0. We have

min
λ∈λ(E0)

|λ − µ| ≤ k||Ei||2si ∝ SIG(si), (5)

where k is a constant.

Theorem 1 indicates that the distance between any eigen-
value of E0 and E0 + Eisi is proportional to SIG(si). Since
eigenvalues explicitly decide the behavior (such as time con-
stant) of the circuit, it is natural that parameters with smaller
significance have smaller impact on the circuit performance.
Theorem 1 also indicates that the perturbation on the eigen-
values caused by the variation of a parameter is proportional
to the norm of that parameter’s coefficient matrix.

2.3 Projection Space Collapse
After the parameters with the large significance are se-

lected, we can construct a projection matrix V based upon
the reduced parameters. A method similar to that in [3] is
used to construct this projection matrix. Usually V still has
a large column number. By Projection Space Collapse, we
reduce the column number of V (∈ RN×p) by finding a ma-

trix V̂ (∈ RN×q0 ) which has much smaller column number
than V (i.e.,q0 � p), while they are as “close” as possible.

To quantitatively measure how “close” two matrices are,
we have the following definitions:

Definition 2. The distance from a vector r to the space
spanned by the column vectors of V̂ , colspan(V̂ ), is defined
as

d(r, V̂ ) = min
∀v̂∈colspan(V̂ )

||r − v̂||2, (6)

where v̂ is any vector in colspan(V̂ )



Algorithm NP sLS sBA
Runtime Slow Medium Fast
Accuracy High Medium Low

Table 1: Runtime and accuracy comparison between

nonlinear programming, sequential Least Square and se-

quential Barycenter Allocation.

Definition 3. The weighted distance between colspan(V )

and colspan(V̂ ), colspan(V̂ ), is defined as

D(V, V̂ ) =

pX

i=1

Wid(V (i, :), V̂ ), (7)

where V (i, :) is the i-th column in V , and Wi are the weights.

Note that the weights in Definition 3 are used to reflect
the significance difference between PODs as well as the dif-
ference between different moment orders, i.e.,

W (ŝ1, ŝ2, ..., ŝk, i) = (

kX

j=1

SIG(sj)/(k ∗ i), (8)

where W (s1, s2, ..., sk, i) is the weight for the i-th joint mo-
ment of any k parameters s1, s2, ..., sk. For example, the
weight for the 1st moment of p1, M1Bm, is simply SIG(s1),
and the weight for the 2nd joint moment of (p1, p2), (M1M2+
M2M1)Bm, is (SIG(s1) + SIG(s2))/4. We do not use the
arithmetic average here because the lower order moments
are more critical in terms of accuracy, and thus should have
heavier weights. The weights can also be user-defined, re-
flecting the importance of the corresponding parameter.

Along with the definitions, in order to minimize the total
error caused by the Projection Space Collapse, the following
optimization problem needs to be solved:

Formulation 1. Find an orthonormalized matrix V̂ (∈

N × q0), such that D(V, V̂ ) is minimized.

We proposed three methods to solve the problem: an ex-
act algorithm via nonlinear programming (NP); a greedy
algorithm via sequential least square (sLS); and a greedy
algorithm via sequential Barycenter Allocation (sBA). The
three methods offer a spectrum of tradeoffs between runtime
and accuracy, as shown in Table 1. For detailed algorithms,
please see [6].

2.4 Frequency Domain Moment Expansion and
Projection

After Projection Space Collapse, a projection matrix V̂ (∈
RN×q0 ) is obtained with small column number. In this step,
we try to improve the accuracy by matching more moments
in frequency domain.

The algorithm is outlined in Algorithm 2. The key step
in it is from the following theorem:

Theorem 2. The projection matrix V obtained in Algo-
rithm 2 can match up to the q-th order of the frequency do-
main moments.

Furthermore, we choose to match only the q-th order fre-
quency domain moments, instead of other q-th order joint
frequency-POD moments due to the following theorem:

Theorem 3. Among all the q-th order moments si1
1 si2

2 ....
(i1 + i2+, ... = q), the frequency domain moments sq

j (sj is
the frequency variable) has the maximum influence on the
output accuracy.

Algorithm 2 Frequency domain moment expansion

INPUT: Projection matrix V̂ ∈ RN×q0 , reduced order q, and Es,
the coefficient matrix for the frequency variable s;
OUTPUT: Projection matrix V (∈ RN×q);

INITIALIZATION: V = V̂, R = BM ;
for i=0;i¡q;i++ do

R = E
−1

0
EsR;

R0=orthogonormalize R w.r.t. V;
V = [V R′];

end for

After the final projection matrix V is obtained, we can use
(3) to project the original system into a much smaller one.

3. EXPERIMENTAL RESULTS
In this section, we present numerical experiments to demon-

strate the efficiency and accuracy of the EMPIRE algorithm.
All the algorithms are implemented in MATLAB, and run on
a Linux workstation (P4 2.66G CPU and 2G RAM). We use
different sizes of extracted RC meshes from industrial appli-
cations and compare our hybrid algorithm with the method
in [3] and CORE [5].

For EMPIRE, we set the threshold ε = 0.5 and compute
the projection matrix V to match the parameters to their
6-th order moments. Then we collapse it to q0 = w, where
w is the reduced parameter number. The column number q
of the final projection matrix V varies in the experiments.
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Figure 3: The time domain waveform comparison be-

tween EMPIRE, CORE and [3]. EMPIRE is identical to

the original.

Figure 3 and Figure 4 show the time and frequency do-
main responses for a power grid with 20, 000 nodes and 5000
parameters. The pitch widths are the parameters of design
and the attenuated sine waveforms are applied at the input
ports. For [3], we match all the moments up to the second
order. For CORE and EMPIRE, we match the parameter
moments up to 4th order, and the frequency domain mo-
ments up to q = 200. As we can see from the figures, EM-
PIRE matches the original well, better than both CORE
and [3].

Figure 5 shows the output response v.s. a randomly se-
lected pitch width with 30% variation around the nominal
value 100µm. As we can see from the figure, EMPIRE ex-
actly matches the original, better than CORE and [3] do.

Table 2 compares the runtime between the three methods
on RC meshes of different scales. EMPIRE has a similar



Node # P # Reduced Size model reduction time (s) simulation time (s)
[3] CORE EMPIRE [3] CORE EMPIRE [3] CORE EMPIRE

1400 600 940 40 40 1262 196 202 982.4 64 64
2450 1000 1880 60 60 9766 424 518 7832.1 129 128
5800 2600 N/A 80 80 N/A 1426 1577 N/A 224 226
7930 4800 N/A 100 100 N/A 2292 2784 N/A 312 311
12500 8400 N/A 120 120 N/A 4213 4910 N/A 471 471

Table 2: Runtime comparison between [3], CORE and EMPIRE.
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Figure 4: The frequency domain response comparison

between EMPIRE, CORE and [3]. EMPIRE is identical

to the original.
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Figure 5: The output response v.s. a randomly selected

pitch width. EMPIRE is close to the original.
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Figure 6: The runtime for EMPIRE w.r.t. different
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Figure 7: The accuracy comparison between EMPIRE

and CORE on different reduction size.

runtime compared with CORE, and is 18.3X faster than [3]
for model reduction time and 61.2X faster for simulation
time. In addition, [3] cannot finish large examples.

Figure 6 plots the runtime w.r.t. original circuit size for
EMPIRE. The parameter number for each circuit is equal
to 60% of the node number. All the circuits are reduced
to the same size q = 60. Clearly the runtime for EMPIRE
can be divided into three regimes, corresponding to the three
different projection space collapse methods NP (A), sLS (B)
and sBA (C). In regime A, the runtime increases rapidly
with the original circuit size, with the gain of high accuracy;
and in regime C the runtime increases slowly, at the cost of
low accuracy.

Finally, we study the scalability for the EMPIRE algo-
rithm. We use an RC mesh with 10000 nodes and 5000
parameters, and reduce it to different sizes from 100 to 1000
by EMPIRE and CORE. [3] is not included here because
the reduced size is not controllable. Figure 7 shows the time
domain waveform relative error for EMPIRE and CORE,
respectively. EMPIRE always has the minimum waveform
error. At order q = 600, EMPIRE is 47.8X more accurate
than CORE. This should be fully credited to the higher mo-
ment matching accuracy as well as the numerical stability
from the implicit moment matching.
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