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Abstract— This paper solves the variation-aware on-chip decoupling
capacitance (decap) budgeting problem. Unlike previous work assuming the
worst-case current load, we develop a novel stochastic current model, which
efficiently and accurately captures operation variation such as temporal
correlation between clock cycles and logic-induced correlation between ports.
The models also considers current variation due to process variation with
spatial correlation. We then propose an iterative alternative programming
algorithm to solve the decap budgeting problem under the stochastic current
model. Experiments using industrial examples show that compared with the
baseline model which assumes maximum currents at all ports and under
the same decap area constraint, the model considering temporal correlation
reduces the noise by up to 5×, and the model considering both temporal
and logic-induced correlations reduces the noise by up to 17×. Compared
with the model using deterministic process parameters, considering process
variation (Leff variation in this paper) reduces the mean noise by up to 4×
and the 3σ noise by up to 13×. While the existing stochastic optimization has
been used mainly for process variation purpose, this paper to the best of our
knowledge is the first in-depth study on stochastic optimization taking into
account both operation and process variations for power network design. We
convincingly show that considering operation variation is highly beneficial
for power integrity optimization and this should be researched for optimizing
signal and thermal integrity as well.

I. INTRODUCTION

The continuous semiconductor technology scaling leads to growing
process variations [1], and statistical optimization has been actively
researched to cope with process variations. Recent examples include
stochastic gate sizing for power reduction [2], [3] and for yield
optimization [4], [5], stochastic buffer insertion to minimize clock
delay [6], and adaptive body biasing with post-silicon tuning [7].
However, all these papers ignore operation variation such as crosstalk
difference over input vectors, power supply noise fluctuation over
time, and processor temperature variation over workload. We argue
that a better design could be achieved by considering both operation
and process variations. As a vehicle to demonstrate this point, we
study in this paper the on-chip decoupling capacitance insertion and
sizing (or decap budgeting) problem taking into account operation
and process variations.

To solve the decap budgeting problem, most work employs a
sensitivity-based optimization technique, such as those solved by ei-
ther linear programming [8], quadratic programming [9], or conjugate
gradient method [10], [11]. At each iteration step during optimization,
sensitivities of the objective function with respect to various decaps
are obtained by running circuit simulations on the adjoint network
followed by time-domain convolution [9], [11]. Because both sim-
ulation and convolution are time-consuming operations, the overall
runtime is high and suffers from the scalability problem for large
P/G networks. To mitigate this runtime issue, different techniques
have been proposed. For example, [9] employed piecewise-linear
approximation for the time-domain waveforms so that convolution
can be carried out faster with bounded accuracy loss. [10] exploited
regular structures of P/G networks, and reduced circuit sizes by

equivalent circuit transformation (such as Y -∆ transformation). Be-
cause of the reliance on special P/G structures, the applicability of
this technique to large P/G networks is limited and the reduction
ratio is not high in general. [11] employed a divide-and-conquer
approach that partitioned a P/G network into a number of sub-
circuits so that decap budgeting can be solved efficiently for each
sub-circuit. But to consider the inter-dependence between different
sub-circuits, an artificial boundary condition has to be imposed, hence
the accuracy of the solution cannot be guaranteed. Recently, [8] used
macromodeling and linear programming based approaches to solve
the decap problem. However, same as the previous studies [9]–[11],
it assumed a maximum current load at every port to guarantee the
worst-case design scenario.

The maximum current model is over pessimistic as it ignores
operation variation. Specifically, current loads at different ports are
correlated and cannot reach the maximum at the same time due to the
inherent logic dependency for a given design, hence exhibiting logic-
induced correlation; and the current at a port also exhibits temporal
correlation, i.e., the current cannot attain maximum all the time, and
depending on the functionality being performed, the current variations
for certain periods of clock cycles are correlated.

Unfortunately, few research has been conducted on how to extract
these operation correlations. The stochastic modeling of IR drop with
respect to given correlated current loads for a P/G network was
studied in [12]. However, the paper did not discuss how to extract the
correlation of those current loads. Moreover, it is still not clear how to
use the correlation to guide the P/G network design and optimization
such as decap budgeting.

In addition, the current loads are affected by process variations.
[13] has considered process variation induced leakage variation for
power grid analysis. While the leakage power is comparable to the
dynamic power because not all components are active simultaneously
in a large system-on-chip, we believe that the dynamic peak current
is still dominant compared with the leakage current. However, how
to design a reliable P/G network in the presence of process varia-
tion (particularly Leff variation) has not been explicitly studied in
existing work [9]–[11].

In this paper, we develop a novel stochastic model for current
loads, taking into account operation variation such as temporal and
logic-induced correlations and process variations such as systematic
and random Leff variation. We propose a formal method to extract
operation variation and formulate a new decap budgeting problem us-
ing the stochastic current model. We develop an effective yet efficient
iterative alternative programming algorithm and conduct experiments
using industrial designs. We show that under the same decap area and
compared with the baseline model assuming maximum currents at all
ports, the model considering temporal correlation reduces the noise by
up to 5×, and the model considering both temporal and logic-induced
correlations reduces the noise by up to 17×. Compared with using



deterministic process parameters, considering Leff variation reduces
the mean noise by up to 4× and the 3σ noise by up to 13× when
both applying the current model with temporal and logic-induced
correlations. Therefore, we convincingly demonstrate the significance
of considering both operation and process variations and open a new
research direction for optimizing signal, power and thermal integrity
with consideration of operation variation.

The remaining of the paper is organized as follows. We introduce
the decap budgeting problem in Section II, and develop the stochastic
current model and parameterized MNA formulation in Section III. We
discuss the algorithms to solve the variation-aware decap budgeting
problem in Section IV, and present experiments in Section V. We
conclude in Section VI.

II. PROBLEM FORMULATION

The P/G network can be modeled as a linear RLC network with each
segment and pad modeled as a lumped RLC element from extraction.
The behavior of any linear RLC network with p ports of interests
is fully described by its state representation following the modified
nodal analysis (MNA)

Gx + C
dx

dt
= Bu(t), (1)

y = LT
0 x, (2)

where x is a vector of nodal voltages and inductor currents, u is a
vector of current sources at all ports, G is the conductance matrix, C
is a matrix that includes both inductance and capacitance elements,
B and L0 are port incident matrices, and y is the output voltages of
interests at the p ports.

We model the P/G network noise based upon the response y(t)
from (2). Because of the duality between power and ground networks,
in the following, we will focus our explanation on the power network
design. But it is understood that the same formulation applies to the
ground network design as well. Same as [9]–[11], [14], we model the
power network induced noise at a node as the integral of the voltage
drop below a user specified noise ceiling U over a certain period of
time:

zi =

Z

Ωi

(U − yi(t))dt, (3)

where Ωi is the time duration when voltage at port i, yi, drops below
the noise ceiling U , i.e.,

Ωi = {t|yi(t) ≤ U}. (4)

The figure of merit that measures the qualify of the whole power
network design is defined as the sum of noise at all ports of interest,
i.e.,

f =

p
X

i=1

Z

Ωi

(U − yi(t))dt. (5)

We will call the noise measurement in (5) simply as noise in the rest
of the paper.

Based upon the noise modeling above, we can formulate the decap
budgeting problem as the following optimization problem:

Formulation 1: Decap Budgeting: Given a power network mod-
eled as an RLC network with specified power pads, time-varying
current at different ports, and total available white space W for
decoupling capacitance, the DecapOpt problem determines the places
to insert decoupling capacitance and the sizes of each decoupling
capacitance, such that the noise defined in (5) is minimized, consid-
ering the time-varying current u(t) in (1) caused by logic-induced
variation, temporal variation and process variation.

TABLE I
NOTATIONS FOR STOCHASTIC CURRENT MODEL.

p total port number
L max number of clock cycles for temporal correlation
Îi
k

peak current at port k in clock cycle i

a vector of the current peaks at port k

b
j
k

sampled every L clock cycles starting from cycle j.
B

j
k

stochastic variable representing the samples in bj
k

b̃
j
k

a vector of several bj
k with different Leff

B̃
j
k

stochastic variable representing the samples in b̃j
k

rk independent stochastic variables after ICA

III. STOCHASTIC MODELING

A. Stochastic Current Modeling

In this section, we propose our stochastic current modeling for current
loads of the P/G network, i.e., u(t) in (1). Similar to the vectorless
P/G analysis in [15], we assume that the circuit is partitioned into
blocks such that different blocks are relatively independent. For each
block, there are multiple ports connected to the power network, and
each port is modeled as a time-varying current load for the power
network. We apply extensive simulation to each block independently
to get the current signatures. Because we ignore the interdependence
between blocks, the obtained current signatures are still conservative
compared with the real current profiles.

For simplicity of presentation and similar to [9] 1, we represent the
current in one clock cycle as a triangular waveform with rising time,
falling time, and peak value Î. The peak values vary in different clock
cycles and over different ports. The correlation between currents for
different ports is called logic-induced correlation. In addition, the
currents of the same port in different clock cycles are also correlated.
We call this type of correlation as temporal correlation. For example,
it might take a block several clock cycles to execute certain functions
and the current profile inside those clock cycles are dependent to each
other. For simplicity, we assume that for a given design, the clock
cycles can be divided into several trunks: the currents inside the same
trunk are correlated between different clock cycles, while there is no
correlation between the currents in clock cycles of different trunks.
We denote L as the maximum number of clock cycles within a trunk.
For example, we can choose L to be the largest number of clock
cycles to finish one instruction, and will verify the validity of this
choice later.

In the following, we devise a stochastic model which can efficiently
capture the correlation from both the logic-induced variation and
temporal variation, as well as from process variation. For simplicity
of presentation, we summarize notations for the stochastic current
model in Table I.

1) Stochastic Model to Consider Current Interdependence: We
record the peak currents at port k (1 ≤ k ≤ p with p as the total port
number) at different clock cycles, and put them into vectors, i.e.,

bj
k = [Îj

k, Îj+L
k , Îj+2L

k , . . .], 1 ≤ k ≤ p, 1 ≤ j ≤ L (6)

where Îj
k is the peak currents at port k in clock cycle j, and bj

k

is the set of peak currents sampled every L clock cycles starting
from cycle j. For example, if the peak values in each clock cycle
for port 1 are [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], and for port 2 are
[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08], and we choose L = 2,

1Our noise verification in the experiment part does not depend on this
assumption.



then

b1
1 = [0.1, 0.3, 0.5, 0.7], b1

2 = [0.01, 0.03, 0.05, 0.07],

b2
1 = [0.2, 0.4, 0.6, 0.8], b2

2 = [0.02, 0.04, 0.06, 0.08]. (7)

We model the peak current at each port as a stochastic process. Then
all the elements of bj

k are the samples for the stochastic variable
Bj

k with its mean µ(Bj
k) and standard deviation σ(Bj

k). We call the
correlation between bj1

k and bj2
k as temporal correlation, and the one

between bj
k1

and bj
k2

as logic-induced correlation.
With those stochastic variables Bj

k’s and their corresponding
samples bj

k’s, we can compute the logic-induced correlation matrix
ρ(j; k1, k2) which describes the correlation between the peak currents
at any two ports k1 and k2 in clock cycle j as

ρ(j; k1, k2) =
cov(Bj

ki
,Bj

k2
)

σ(Bj
k1

)σ(Bj
k2

)
, (1 ≤ k1, k2 ≤ p), (8)

where cov(Bj
k1

,Bj
k2

) are the covariance between Bj
k1

and Bj
k2

,
and σ(Bj

k1
) and σ(Bj

k2
) are their standard deviations, respectively.

Similarly, the temporal correlation matrix ρ(j1, j2; k) which describes
the correlation between the peak currents between clock cycles j1 and
j2 of a same port k can be computed as

ρ(j1, j2; k) =
cov(Bj1

k ,Bj2
k )

σ(Bj1
k )σ(Bj2

k )
, (1 ≤ j1, j2 ≤ L). (9)

As an example, the block-diagonal structured temporal correlation
matrix in Figure 1 is extracted by our method from an industry design,
where the maximum instruction period is 10 clock cycles. We extract
the correlation matrix for 40 clock cycles. It can be seen that the
correlation matrix can be clearly divided into four trunks, and L can
be set as 10. The correlation between clock cycles in different trunks
is very small. This verifies that it is reasonable to take L as the
maximum number of clock cycles to finish one instruction.
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Fig. 1. The correlation map for peak currents between different clock cycles
of one port from an industry application.

2) Extension to Process Variation with Spatial Correlation: [16]
relates the current to the process parameters Leff , tox and Vt as

Îi
k ∼ L−0.5

eff t−0.8
ox (Vdd − Vt). (10)

As pointed out in [17], in 90nm regime the most significant
variation source is the effective channel length (Leff ), and Leff

variation can be more than 30%. Furthermore, Leff variation is
mostly spatially correlated but not random [16]. Therefore, we will
use Leff variation as an example to show how process variation can
be embedded into our stochastic modeling. It is understood that the

process variation of other parameters can be dealt with in a similar
way.

We use the variation model for Leff based on [16]:

Leff = L0 + Lprox + Lspat + ε, (11)

where L0 is the overall mean, Lprox is a discrete stochastic variable
with a distribution determined by the frequency of each gate, Lspat

corresponds to the spatial variation, and ε is the local random
variation.

From (10), with Leff variation, the sample Îj
k becomes a set of

samples
"

Îj
k

s

L̄eff,k

L1
eff,k

, Îj
k

s

L̄eff,k

L2
eff,k

, . . .

#

, (12)

where Li
eff,k with different i are the samples of Leff,k for the circuit

block corresponding to port k with the nominal value L̄eff,k , and Îj
k

are the peak current sample for Bj
k in the deterministic case without

Leff variation in (6). In other words, if we have n samples for Leff,k

(L1
eff,k, L2

eff,k, . . . , Ln
eff,k), then every current sample Ij

k becomes
n samples. Therefore, the sample vector bj

k becomes n times longer
in the presence of Leff variation, and we denote this new vector as
b̃j
k. In addition, we denote the stochastic variable representing the set

of b̃j
k as B̃j

k. In this case, the temporal correlation (8) becomes

ρ̃(j; k1, k2) =
cov(B̃j

ki
, B̃j

k2
)

σ(B̃j
k1

)σ(B̃j
k2

)
, (1 ≤ k1, k2 ≤ p), (13)

and the logic-induced correlation (9) becomes

ρ̃(j1, j2; k) =
cov(B̃j1

k , B̃j2
k )

σ(B̃j1
k )σ(B̃j2

k )
, (1 ≤ j1, j2 ≤ L). (14)

B. Parameterized Problem Formulation

1) Parameterized Current via ICA: Directly considering the tem-
poral and logic-induced correlation including process variation as
formulated in (13) and (14) is difficult for optimization. Therefore,
we propose to remove the correlation between B̃j

k’s and build a
parameterized current model in the following.

If all those variable B̃j
k’s are Gaussian, we can apply principal

component analysis (PCA) to each cluster to remove the interde-
pendence between the stochastic variables B̃j

k’s. However, this is
not the case for our stochastic current model. Therefore, we use
independent component analysis (ICA) that is applicable to non-
Gaussian distribution [18]. The input to ICA is the samples b̃j

k as
well as their correlation matrices (13) and (14), and the output are
a set of independent stochastic variables ri and their corresponding
coefficients ai(j, k) to reconstruct each B̃j

k, i.e.

B̃j
k =

q
X

i=1

ai(j, k)ri. (15)

The order q is determined for each design such that the relative error
between the original currents and model predicted currents is less
than 5%. The probability density function (PDF) for each ri is also
given in the output of ICA as a one-dimensional lookup table, based
on which we can bound the range of ri as

ri ≤ ri ≤ ri, (16)

where ri and ri can be related to ri’s mean (µ) and variance (σ2).
For example, we can take ri as µ − 4σ and ri as µ + 4σ.

Therefore, assuming uniform rising and falling times across the
chip for the triangular current waveform within a clock cycle 2,

2This uniform assumption does not affect the results in our experiments.



together with ai(j, k) which represents the i-th component of the
peak current at port k in clock cycle j, we have all the neces-
sary information to obtain the i-th time-varying current waveform
component ui(t; j, k). If we denote T as the clock period, then
jT ≤ t ≤ (j + 1)T . Put those ui(t; j, k) at all ports in clock cycle
j together as

ui(t; j) =

0

B

B

B

@

ui(t; j, 1)
ui(t; j, 2)
...
ui(t; j, p)

1

C

C

C

A

, jT ≤ t ≤ (j + 1)T, (17)

and then combine all the ui(t; j) in different clock cycles, we can get
ui(t) with 0 ≤ t ≤ LT . Finally, according to superposition theorem,
we have

u(t) =

q
X

i=1

ui(t)ri, 0 ≤ t ≤ LT. (18)

As an illustration, Figure 2 shows the procedure for L = 3, T = 1
and p = 1. We call (18) as parameterized current load model.

2) Parameterized MNA for Decap Budgeting: Considering the
inherent parasitics, we model the decap similarly to [19] as an
equivalent series capacitor (ESC), and equivalent series resistor (ESR)
and an equivalent series inductor (ESL). When a decap with size wi

is inserted into the power network at a given location, its impact can
be considered by adjusting matrices G and C in (1) based on the
location at the network and the size of the decap. Mathematically, it
can be represented as

G = G0 +
M

X

i=1

wi · Gw,i, (19)

C = C0 +

M
X

i=1

wi · Cw,i, (20)

where G0 and C0 are the original matrices for the power network
without decap, M is the total number of decaps, and Gw,i and Cw,i

provide the stamping of a unit width decap at the i-th location. Due
to the placement constraint, wi has an upper bound, i.e.,

0 ≤ wi ≤ wi. (21)

The MNA equation of (1) with G given by (19), C given by (20),
and u given by (18) can be written as follows

(G0 +
M

X

i=1

wi · Gw,i)x + (C0 +
M

X

i=1

wi · Cw,i)
dx

dt

= B

q
X

i=1

ui(t)ri, (22)

where 0 ≤ t ≤ LT and ri is a stochastic variable with ri ≤ ri ≤ ri.
We call this MNA equation as parameterized MNA formulation
for decap budgeting. One of the major advantages in using this
parameterized MNA formulation is that it enables us to implicitly
compute sensitivities efficiently and accurately, which will become
clearer in the later part of this paper.

With the parameterized MNA, the variation-aware decap budgeting

problem can be mathematically represented as follows:

(P1) min
wi

sup
rk

f =

p
X

i=1

Z

Ωi

(U − yi(wi, rk; t))dt (23)

s.t. 0 ≤ wi ≤ wi, 1 ≤ i ≤ M (24)
M

X

i=1

wi ≤ W (25)

rk ≤ rk ≤ rk, 1 ≤ k ≤ q (26)

where voltage yi is a function of wi, rk, and time t and can be solved
from (22) and (2).

Problem (P1) is a constrained min-max optimization problem. The
sup operation over all random variables rk is to find the worst-
case noise violation measures for a given power network design.
This operation guarantees that all P/G network designs satisfy the
given design constrains while considering the temporal and logic-
induced correlations as well as Leff variation among ports. This is
of particular use for ASIC-style designs, where the worst-case design
performance has to be ensured for sign-off. The min operation over
all decap sizes wi is to find the optimal decap budgeting solution so
that the worst-case noise violation is minimized.

IV. ALGORITHMS

A. Iterative Alternative Programming with Guaranteed Convergence

Because there exists no general technique to solve the constrained
min-max problem (P1) optimally, we resort to an effective iterative
optimization strategy, which we call iterative alternative program-
ming (IAP). That is, instead of solving the min-max problem (P1)
directly, we solve it by iteratively solving the following two sub-
problems alternatively.

The first sub-problem assumes that all decaps’ sizes wi are known,
hence the worst-case noise can be obtained by solving the following
optimization problem

(P2) max
rk

f =

p
X

i=1

Z

Ωi

(U − yi(wi, rk; t))dt (27)

s.t. rk ≤ rk ≤ rk, 1 ≤ k ≤ q (28)

The second sub-problem assumes that all random variables rk have
fixed values, hence the decap sizes to achieve the minimum noise can
be obtained by solving the following optimization problem

(P3) min
wi

f =

p
X

i=1

Z

Ωi

(U − yi(wi, rk; t))dt (29)

s.t. 0 ≤ wi ≤ wi, 1 ≤ i ≤ M (30)
M

X

i=1

wi ≤ W, (31)

where W is the total white space available. Problem (P3) is exactly
the deterministic version of the original problem formulation (P1).

We illustrate our idea in Figure 3 and the overall algorithm can be
described in Algorithm 1, where iter is the current iteration number
and ε determines the stop criteria of the optimization procedure. For
each iteration, we increase the available white space by ∆W if the
stopping criteria has not been met yet, which means the current white
space is not enough.

The algorithm terminates when the change of objective function
|∆f | is sufficiently small, or we have used up all the white space.
The first case corresponding to the situation where we have reduced
noise below the bound before all the white space are used up, while
the second case indicates that we have used up all the white space.



a1(0, 1)
a1(0, 1)

a1(1, 1)
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u1(t;1)
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Fig. 2. An example to construct u1(t) for L = 3, T = 1 and p = 1 by aligning independent current components according to the time sequence.

In either case, the algorithm will terminates and the convergence of
our algorithm is guaranteed. As shown in Figure 4, the choice of
∆W reflects a tradeoff between the runtime and the solution quality.
Smaller ∆W can result in smaller noise under the same decap area
but the runtime is increased as well. Setting ∆W = 0.004W gives
a good balance in our experiment.

Find the optimal 
decap budgeting for 
the given max 
droop/bounce 

update the max droop/bounce 

update the decap budgeting 

Find the input corresponding 
to the max. droop/bounce for 
the given decap budgeting 

Fig. 3. Solve the min-max problem by iteratively solve two sub-problems.

Algorithm 1 Iterative alternative programming.
INPUT: initial wi , rk , current white space W̄ ;
OUTPUT: final solution wi to problem (P1);
Initialize: The current white space available W = 0;
for iter = 0; |∆f | ≤ ε and W ≤ W̄ ; iter + + do

W = W + ∆W ;
wi = solve-P3(iter, wi , rk , W);
rk = solve-P2(iter, wi , rk , W);
Compute objective function with new rk and wi;

end for

B. Efficient Sequential Programming

Both problems (P2) or (P3) are constrained nonlinear optimization
problems, and there exits no general technique to solve them effi-
ciently. Because the constraints in both problems are linear, if we
can approximate the objective function f by a first-order linear
function, the original problems would become linear programming
(LP) problems3 . Because efficient solvers exist for LP problems, we
can solve the approximated problems more efficiently than solving the
original problems directly. Therefore, we propose to solve the original
(P2) or (P3) problem via sequential linear programming (sLP).

For now, let us assume that we know how to compute the first-
order sensitivities of the objective function f with respect to changing

3We can also extend our technique to approximate the objective function f by a
second-order quadratic function, then the problem would become a quadratic program-
ming (QP) problem. Our initial experimental results show that compared with LP, QP can
further reduce the noise by 19% with the same decap area at the cost of 3X increased
runtime. This will be reported in detail in the future.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
Delta W / W %

N
o
rm

a
li
z
e
d
 R

u
n
ti
m

e

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
z
e
d
 N

o
is

e

Normalized Runtime Normalized Noise

Fig. 4. The normalized runtime and noise w.r.t different ∆W
W̄

.

variables, which will be discussed in Section 4.3. Therefore, we can
easily obtain the linear approximation of the objective function. For
example, for the objective function in problem (P3), the changing
variables are all ∆wi. Therefore, we have the following linear
approximation for the objective function

f ≈ f0 +
M

X

i=1

∂f

∂wi

∆wi, (32)

where f0 is the current value of the objective function, and ∂f

∂wi
are

the first-order sensitivities of f . Apparently, (32) is a linear function
of ∆wi. By replacing (27) with (32), we obtain an approximated LP
formulation for (P3).

A high-level description of the sequential programming algorithm
to solve either problem (P2) or (P3) is shown in Algorithm 2, where
iter2 is the current iteration number, ITER2 is the maximum iteration
bound. The iterations stop when the change of objective function
|∆f | is smaller than ε2, which is dynamically adjusted according to
the iteration number iter in the outer-loop of Algorithm 1. We employ
an exponential decreasing function to adjust ε2 in this work. The idea
is that when the out-loop iteration is small (or we are far from the
optimal solution), we can have an early termination of the inner-loop
optimization procedure as shown in Algorithm 2 early. But when
the outer-loop iteration becomes large enough (or we are close to
the optimal solution), we should spend more time in each inner-loop
optimization to find a better global optimal solution. Parameter η is
used to control the efforts that we should spend in the inner-loop’s
optimization.

C. Sensitivity Computation

To solve (P2) and (P3) via sLP, we need to compute the sensitivities
of the objective function f with respect to the design variables, i.e.,



Algorithm 2 Sequential linear programming for solving (P2) and
(P3).

INPUT: iter, wi, ri, W ;
OUTPUT: updated wi for (P3) or ri for (P2);
ε2 = exp(-η·iter);
for iter2=0; |∆f | ≤ ε2 or iter2 ≤ ITER2; iter2++ do

Compute the first-order sensitivities of f ;
Formulate (P2) or (P3) as an LP problem;
Call LP solver to solve the above problem;
Compute objective function with new wi (P2) or ri (P3);

end for

either wi or ri. Because this computation is similar for both (P2)
and (P3), we will focus our discussion on (P3) in the following.

The first-order sensitivities of the objective function f of problem
(P3) are defined as

∂f

∂wi

= −

p
X

i=1

Z

Ωi

∂yi

∂wi

dt = −

p
X

i=1

Z

Ωi

LT
0i

∂x

∂wi

dt, (33)

For simplicity of presentation, we have loosely applied the derivative
notation on a vector for component-wise derivative. To compute the
sensitivity of f w.r.t. wi, all we need to know is the sensitivity of
the state vector x with respect to wi. We use Taylor expansion to
express x as follows

x = x0 +
M

X

i=1

αi∆wi + . . . , (34)

where αi is the first-order sensitivity of x w.r.t. random variable wi,
i.e., we have

∂x

∂wi

= αi. (35)

To compute these sensitivities, we recognize that x also satisfies the
differential equation given by the parameterized MNA formulation
(22). By Laplace transformation, we re-write (22) as follows

(G +
M

X

i=1

∆wi · Gw,i)x + s(C +
M

X

i=1

∆wi · Cw,i)x = Bu. (36)

By plugging (34) into (36), we obtain terms of ∆wi with different
orders. By equating the zero-order terms of ∆wi from both left and
right hand sides in (36), we obtain a set of equations as follows

(G + sC)x0 = Bu. (37)

By equating the first-order terms of ∆wi, we obtain sets of equations
as follows for all 1 ≤ i ≤ M

(G + sC)αi = −(Gw,i + sCw,i)x0. (38)

By applying the Backward Euler integration formula and assuming
the time step as h, we can re-write (37) and (38) as follows

(G +
C

h
)x0(t + h) = Bu(t + h) + x0(t)

C

h
, (39)

(G +
C

h
)αi(t + h) = −(Gw,i +

Cw,i

h
)x0(t + h)

+
x0(t)Cw,i + αi(t)C

h
. (40)

Because all equations in (39) and (40) share the same left-hand
side matrix, (G + C/h), we only need to perform LU-factorization
once, and then reuse the same factorization to solve for x0 and αi

sequentially at each time step. This computation is efficient because
it only involves some matrix-vector multiplications, and backward
and forward substitutions.

The integral interval Ωi for port i is decided by x0. Once x0 is
solved, we have y = LT

0 x0, and then the corresponding interval
can be decided from (4). By doing so we have assumed that
the incremental δwi is relatively small in each step and will not
significantly influence the integral interval. In summary, we can
compute the first-order sensitivities of the objective function f of
problem (P3) by following the Algorithm 3.

Algorithm 3 Sensitivity computation for (P3).
INPUT: wi , rk , h, T ;
OUTPUT: f and αi ;
factorization: LU factorize G + C/h;
for t = 0; t + h ≤ T ; t = t + h do

Solve (39) for x0(t + h);
end for
for i = 1; i ≤ p; i + + do

Use (4) to compute Ωi from y(t) = LT
0 x0(t);

end for
for t = 0; t + h ≤ T ; t = t + h do

Solve (40) for αi(t + h);
Solve ∂f

∂wi
from (33);

end for

V. EXPERIMENTAL RESULTS

In this section, we present experiments using four industrial P/G
network designs. For each benchmark, we randomly select 20% of
total nodes as candidate nodes for decap insertion, i.e., M = 20%N .
For fair comparison, when comparing the runtime and noise, the same
white space is used up for different methods. We run experiments on
a LINUX workstation with Pentium IV 2.66G CPU and 1G RAM.
We partition the circuits according to the method in [15]. We use the
package FASTICA [20] to perform ICA. Finally, we use MOSEK as
the linear/quadratic programming solver [21] and random walk based
simulator [22] with detailed (not triangular) input current waveform
to obtain the noise reported in this section.

A. Decap Budgeting without Leff variation

We compare three current models as shown in Table II: maximum
currents at all ports (model 1), stochastic model (model 2) with
logic-induced correlation only (L = 1), and stochastic model (model
3) with both logic-induced and temporal correlation. For temporal
correlation, we always use L = 4 since all circuits tested take at most
four clock cycles to complete any one instruction. Table II reports the
noise and runtime for the four benchmarks with different number of
nodes. Compared with the baseline model with maximum currents at
all ports 4, the model considering temporal correlation reduces noise
by up to 5×; and the model considering both temporal and logic-
induced correlations reduces noise by up to 17× (see bold in Table
II). This is because the first two models cannot model the currents
effectively and lead to inserting unnecessarily large decaps in some
regions. Thus, they result in more noise in the other regions since the
total decap area is given. As for the runtime, model 2 needs about
1.5× more time than model 1, while model 3 needs about 2.3× more.
The runtime overhead is the price we have to pay in order to achieve
better designs.

In Fig. 5, we plot the time-domain responses at one randomly
selected port for two optimization iterations by alternatively solving
the problem (P3) and (P2). The benchmark has 1284 nodes. The
initial waveform is denoted by “A0:initial”. After performing decap
sizing once by solving problem (P3) with a fixed choice of random
variables rk, we obtain the new waveform as denoted by “A1:(P3)”.

4We solve it by iteratively solving (P3) without altering to (P2).



TABLE II
NOISE AND RUNTIME COMPARISON BETWEEN THE THREE MODELS.

Model 1 maximum currents at all ports
Model 2 stochastic model with logic-induced correlation
Model 3 Model 2 + temporal correlation

Node # Port # noise (V*s) runtime (s)
model model model model model model

1 2 3 1 2 3
1284 426 6.33e-7 1.28e-7 4.10e-8 104.2 161.2 282.3
10490 3398 5.21e-5 1.09e-5 4.80e-6 973.2 1430 2199
42280 13327 7.92e-4 5.38e-4 9.13e-5 2732 3823 5238

166380 42146 1.34e-2 5.37e-3 2.28e-3 3625 5798 7821
avg 1 1/3× 1/9× 1 1.50× 2.26×

We then switch to solve problem (P2) by varying the values of
those random variables rk, but with fixed decap sizes wi. We see
that the waveform of the final worst-case voltage drop becomes
worse compared to the deterministic solution; hence we obtain a
new voltage drop waveform as denoted by “A2:(P2)”. We then
switch back to solve the decap sizing problem (P3) with fixed but
newly updated choice of random variables rk. At the end of this
optimization, we arrive at a new voltage waveform as denoted by
“A3:(P3)”. Apparently, compared to “A1:(P3)”, the new solution
has smaller voltage drop. If we continue the same procedures by
following the IAP algorithm given in Fig. 1, similar sequences of
time domain voltage drop waveforms would repeat as we have shown
in Fig. (5) until we converge to an optimal solution. Also, the voltage
drop is reduced mostly in the first optimization iteration denoted
as “A1:(P3)”. Afterward, the voltage drop reduction is relatively
small. This observation is in agreement with the common knowledge
about any sensitivity-based optimization techniques. In this particular
example, we find that the first two iterations reduces the noise by
51.4%.

Fig. 5. Time domain waveforms at one port after sLP for different iterations.

B. Leff Variation Aware Decap Budgeting

In the presence of process variation, we want to minimize the worst-
case noise for Leff variation. We solve this via the proposed IAP
technique in Algorithm 1. We denote our Leff variation aware
approach as sLP + Leff and the counterpart as sLP . Before we
quantitatively compare the two methods, we first use Figure 6 and
Figure 7 to demonstrate the effectiveness of Leff variation aware
decap budgeting. In Figure 6 we use the sLP approach and design
for the deterministic case without process variation. We plot the noise
map over different ports. The same circuit is used in plot (a) and plot
(b), but plot (a) has no Leff variation while plot (b) has 15% Leff

variation. As we can see, the noise map changes significantly from

(a) to (b). The noise of (a) is 1.44× 10−4 V ∗ s, while that of (b) is
5.9 × 10−4 V ∗ s (4× increase). which may lead to noise violation
in (b). In contrast, Figure 7 uses the same circuit optimized by the
sLP + Leff approach. For the noise maps, plot (a) considers no
variation, and plot (b) has 15% Leff variation. We can see that the
two noise maps have little difference. The noise of (a) is 1.17×10−4

V ∗ s, and that of (b) is 1.24 × 10−4 V ∗ s (1.06× increase), which
means that the design in Figure 7 is robust. Comparing Figure 6
and Figure 7, one can clearly see that the noise in Figure 7 is much
smaller than that in Figure 6, although both have the same decap area
constraints.

Fig. 6. The noise maps for the an industry power mesh with decap budgeting
using sLP . The circuits in (a) and (b) are the same but (b) considers 15%
Leff variation.

Fig. 7. The noise maps for the same power mesh with decap budgeting using
sLP +Leff . The circuits in (a) and (b) are the same but (b) considers 15%
Leff variation.

Next we compare the mean value µ and 3σ value of the noise dis-
tribution with 10% Leff variation based on Monte Carlo simulation
with 10,000 runs, and the results are reported in Table III. Compared



TABLE III
THE MEAN VALUE µ, 3σ VARIANCE OF THE NOISE AND RUNTIME (RT)
COMPARISON BETWEEN sLP + Leff AND sLP WITH 10% INTRA-DIE

Leff VARIATION.

Node # Port # sLP sLP + Leff
µ 3σ RT µ 3σ RT

(V*s) (V*s) (s) (V*s) (V*s) (s)
1284 426 9.28e-7 3.97e-7 184.2 6.14e-7 1.38e-7 332.8 (1.81×)
10490 3398 1.03e-4 4.79e-5 1121 7.22e-5 1.23e-5 3429 (3.06×)
42280 13327 2.29e-3 9.72e-4 2236 8.23e-4 1.01e-4 6924 (3.10×)
166380 42146 2.06e-2 9.91e-3 3824 5.31e-3 8.32e-4 11224 (2.93×)

avg 1 1 1 1/2× 1/5× 2.73×

with using deterministic Leff , considering Leff variation reduces
the mean noise by up to 4× and 3σ noise by up to 13× (see bold
in Table III), when both applying the current model with temporal
and logic-induced correlations. As for the runtime between sLP and
sLP +Leff , the latter needs about 2.7× more time than the former
on average.

VI. CONCLUSIONS AND FUTURE WORK

As an example of optimization for both operation and process
variations, this paper has solved the on-chip decoupling capacitance
(decap) budgeting problem to minimize time-domain power noise
integral (in short, noise) subject to a given decap area constraint. We
have developed a novel stochastic current model to efficiently and
accurately capture operation variation such as temporal correlation
between clock cycles, and logic-induced correlation between ports.
The model also considers process (Leff ) variation with spatial cor-
relation. We have also proposed an iterative alternative programming
algorithm to solve the decap budgeting problem under the stochastic
current model, and conducted experiments using industrial examples.
We have shown that compared with the baseline model assuming
maximum currents at all ports and under the same decap area
constraint, the model considering temporal correlation reduces the
noise by up to 5×, and the model considering both temporal and
logic-induced correlations reduces the noise by up to 17×. Compared
with the model using deterministic process parameters, considering
Leff variation reduces the mean noise by up to 4× and the 3σ noise
by up to 13×.

Different from the existing stochastic optimization used mainly for
process variation, this paper to the best of our knowledge is the first
in-depth study on stochastic optimization taking into account both
operation and process variations for power network design. This paper
convincingly demonstrates that stochastic optimization considering
operation variation is highly beneficial for power integrity. Because
operation variation affects signal and power integrity, this paper opens
a new direction for future research to optimize signal and thermal
integrity.
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