
Exploiting Symmetry in SAT-Based Boolean Matching for
Heterogeneous FPGA Technology Mapping

Yu Hu1, Victor Shih2, Rupak Majumdar2 and Lei He1

1. Electrical Engineering Department
2. Computer Science Department

University of California, Los Angeles ∗

ABSTRACT
The Boolean matching problem is a key procedure in tech-
nology mapping for heterogeneous Field Programmable Gate
Arrays (FPGA), and SAT-based Boolean matching (SAT-
BM) provides a highly flexible solution for various FPGA
architectures. However, the computational complexity of
state-of-the-art SAT-BM prohibits its application practically.
In this paper we propose an efficient SAT-BM algorithm by
exploring function and architectural symmetries. While the
most recent work obtained up to 13x speedup, we achieve
up to 200x speedup, when both are compared to the original
SAT-BM algorithm.

1. INTRODUCTION
FPGAs are programmable logic chips that can be configured to

implement various digital circuits. FPGAs are quickly replacing
custom ASICs in many areas due to their flexibility and fast turn-
around times for product development. However, these benefits
come at the heavy cost of area, speed, and power.

The programmable logic block (PLB) is the basic element of an
FPGA design. Various programmable devices can be placed within
a PLB; a lookup table (LUT) is one such programmable device.
LUT-based FPGAs use PLBs populated with LUT components to
implement various logic functions. A K-LUT device consists of K
inputs, one output, and 2K configuration bits that serve as truth table
entries. With its 2K configuration bits programmed accordingly,
the K-LUT can implement any K-input function.

Given a logic-level design, a crucial step in the overall FPGA
computer-aided design (CAD) flow is technology mapping. This
step converts a circuit into a network of PLBs. The circuit func-
tion can be given in terms of a synthesized multi-level netlist, in-
put/output functional relationship, or other representation. Depend-
ing on the technology mapping approach, the resulting network will
exhibit direct area, delay, and power costs. Most of the existing
work for FPGA technology mapping [1, 2, 3] assumes that the only
logic elements within a PLB are K-LUTs and the resulting FPGA
is homogeneous. Since a K-LUT can implement any K-input
function, the goal of technology mapping for homogeneous FPGAs
is to find optimal K-bounded covers [3] in the subject graph; the
logic functionality of each K-bounded cover does not need to be
considered.

Alternatively, modern FPGAs such as Xilinx Virtex IV [4] and
Altera Stratix II [5] employ heterogeneous PLBs, which contain
various logic devices such as logic gates and LUTs with different
inputs. This heterogeneity allows more flexibility in FPGA designs,
∗This paper is partially supported by NSF grant CCR-
0306682. Address comments to lhe@ee.ucla.edu.

which can reduce power dissipation and area, and improve perfor-
mance. On the other hand, the extra flexibility of heterogeneous
FPGAs increases the search space of technology mapping. As an
example, suppose we map a design to an FPGA with K-input het-
erogeneous PLBs; the functionality of each K-bounded cover must
be considered explicitly during technology mapping.

Boolean matching [6, 7] is the most important sub-problem
in technology mapping for heterogeneous FPGAs. Given a target
FPGA architecture, or more specifically, a target PLB architecture
p and a Boolean function f , the Boolean matching problem either
maps function f to PLB p by describing the appropriate config-
uration bits, or concludes that PLB p cannot implement function
f . Most of the existing work for Boolean matching is based on
function decomposition [6] or on canonicity and Boolean signa-
tures [7]. These approaches are limited by the input size of the
functions they can handle. Recently, a SAT-based approach [8] has
been proposed to solve Boolean matching and was improved by [9]
with a 3x speedup, and was further improved by [10] with up to
13x speedup. While SAT-based Boolean matching offers great flex-
ibility in handling various FPGA architectures, it still suffers from
long runtimes due to high computational complexity. For example,
the Boolean matching procedure is called over 50,000 times for the
MCNC circuit i10 with less than 3000 gates, with a typical runtime
for completing one SAT-based Boolean matching [8] for a 9-input
sub-circuit at more than 20 seconds. It would appear that the run-
time for heterogeneous FPGA technology mapping is prohibitively
high due to the inefficiencies of Boolean matching.

Inspired by a recent improvement on Boolean matching for ASIC
[11] and an enhancement on SAT reasoning [12] by exploring sym-
metries, we re-visit the SAT-based Boolean matching problem for
heterogeneous FGPAs for orders of magnitude speedup over the
existing algorithms [8, 9, 10]. We propose to leverage function and
architecture symmetries explicitly during CNF (conjunctive normal
form) encoding and dramatically reduce the SAT problem size and
the SAT reasoning runtime. The experimental results show that
the proposed algorithm obtains up to 200x speedup by considering
symmetries compared to the original algorithm [8], while the recent
papers [9, 10] obtained merely up to 13x speedup.

The rest of this paper is organized as follows: Section 2 formal-
izes the concepts involved in Boolean matching and reviews the
SAT-based encoding [8]. Section 3 presents our heuristics for im-
proving the efficiency of the SAT-based Boolean matching approach
using symmetries. Section 4 details our experimental results, and
section 5 concludes the paper. We include details of this paper in a
technical report (http://eda.ee.ucla.edu).

2. BACKGROUNDS AND PRELIMINARIES
A programmable logic block (PLB) H(P) consists of a net-

work of interconnected non-programmable and programmable logic
devices with a set P of input pins {p1, · · · , pm}. Occasionally we
may omit the set of input pins and simply use H to refer to the PLB
H(P). We consider two kinds of programmable logic devices in
this paper: the K-input LUT and the K-input multiplexer (MUX).
A K-LUT consists of K inputs, one output, and 2K configuration
bits. A K-MUX consists of K inputs, one output, and dlog Ke
configuration bits.

The Boolean matching problem takes as input a PLB H(P) and
a Boolean function f(X) over the variables X such that |X| ≤ |P |,
and determines whether the PLB H(P) can implement the function
f(X).

For the simple case where H is a K-LUT, any function f(X)
where |X| ≤ K can be implemented by the K-LUT. When H
contains multiple LUTs however, the question becomes non-trivial.

2.1 SAT Encoding for Boolean Matching
[8] presented an algorithm to encode the Boolean matching prob-

lem for heterogeneous PLBs into a Boolean function in conjunctive
normal form (CNF), which can be solved by SAT reasoning. As
a review of the algorithm, we consider the example PLB in Figure
1(b), containing a LUT-2 and an AND-2 gate.

�������

�	��
��

��

��

�� �

�

1111

1110

1101

1100

0011

1010

0001

0000

fx1x2x3

1111

1110

1101

1100

0011

1010

0001

0000

fx1x2x3 �������

����� � �!�
Figure 1: (a) Truth table for f , (b) Target PLB

To test whether function f , whose truth table is shown in Figure
1(a), can be implemented by this PLB, let X = {x1, x2, x3} be the
set of input pins. We generate a SAT instance in below steps:

1. Create CNF formulas for individual elements in PLBt.

GLUT = (x1 + x2 + ¬L1 + z)(x1 + x2 + L1 + ¬z)

(x1 + ¬x2 + ¬L2 + z)(x1 + ¬x2 + L2 + ¬z)

(¬x1 + x2 + ¬L3 + z)(¬x1 + x2 + L3 + ¬z)

(¬x1 + ¬x2 + ¬L4 + z)(¬x1 + ¬x2 + L4 + ¬z)

GAND = (z + ¬o) · (x3 + ¬o) · (¬z + ¬x3 + o) (1)

2. The characteristic function of the PLB is then formulated as:

G = GLUT · GAND (2)

Notice that the output variable is called o.

3. Replicate (2) to remove the universal quantifiers on the input
variables in X . This formulates GSAT as:

GSAT = G[X/000, o/0, z/z1] · G[X/001, o/0, z/z2] ·

G[X/010, o/1, z/z3] · G[X/011, o/0, z/z4] ·

G[X/100, o/1, z/z5] · G[X/101, o/1, z/z6] ·

G[X/110, o/1, z/z7] · G[X/111, o/1, z/z8]

(3)

A satisfiable assignment to GSAT implies that f can be imple-
mented by the PLB. In this particular case the SAT solver indicates

that this problem is unsatisfiable; therefore the Boolean function
specified by the truth table in Figure 1(a) cannot be implemented
by PLBt in Figure 1(b).

2.2 Input Permutations
An important issue in Boolean matching is input permutation,

which allows different mappings from pins in a PLB to variables of
a Boolean function. For example, function fa = x1 · (x2 +x3) and
function fb = x3 ·(x1+x2) are equivalent under input permutation,
i.e., function fa can be transferred to fb by the input permutation
τ = (3, 2, 1). However, fa cannot be implemented by PLBt in
Figure 1(b) by mapping the input variables of fa and the input pins
of PLBt in the same order, while fb can.

In practice, input permutation must be considered in FPGA de-
sign during Boolean matching in order to maximize the number of
implementable instances. However, the number of permutations for
a K-input Boolean function is K! which grows extremely quickly.
In order to consider input permutations in the SAT formulation, [8]
proposed to add programmable MUXs before each primary input
of the target PLB (see Figure 2). All possible permutations are
encoded by these MUXs. For each of these programmable MUXs,
dlog ne+ 1 additional variables are needed to represent the config-
uration bits (e.g., L11, L12, L21, L22, L31, L32 in Figure 2) and the
intermediate pins (e.g., z1, z2, z3), and O(n2) additional clauses are
needed as well. Thus, considering input permutations adds O(n3)
clauses and n · (dlog ne + 1) variables to the original formulation.
In practice, the size of a LUT is usually less than six, so adding
these MUXs can double the size of the SAT problem if n is a large
(i.e., greater than six) and the computational cost will be increased
significantly.

Figure 2: Considering input permutations with ad-
ditional MUXs

3. SPEEDUP BY SYMMETRIES
By considering symmetries in the SAT encoding, the permutation

MUXs can be eliminated and the computational cost can be reduced.

3.1 Symmetries in Boolean Functions
Variable xi and xj of Boolean function f(x1, · · · , xn) are sym-

metric if the truth table of f remains the same when xi and xj are
swapped, i.e., if f(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .).
We can consider only distinct permutations by observing the
variable symmetries exhibited in a Boolean function, making the
programmable MUXs added in subsection 2.2 unnecessary.

Given an n-input Boolean function f(x1, · · · , xn), we first test
the symmetries of every input pair (xi, xj) by comparing the truth
tables before and after swapping variables xi and xj . Using the

symmetric relationships between every variable pair, we can con-
struct an undirected graph with nodes representing each variable,
and an edge connecting each pair of symmetric variables. For ex-
ample, consider a 9-input Boolean function having four symmetries
(0, 1, 6, 8), (3, 4, 5), (2), and (7) as shown in Figure 3. For any
two permutations τ1 and τ2, if the only difference between them
is within the same symmetry cluster ((0, 1, 6, 8) or (3, 4, 5), in
this example), we have τ1 = τ2 and only one of them needs to be
tested during Boolean matching. Therefore the number of distinct
permutations under such symmetry is 9!/(4!×3!×1!×1!) = 2520,
reducing the number of permutations to consider by a factor of 144.

0

1

8

6

3

5

4

2 7

Figure 3: Symmetries in a 9-input Boolean function

Note that the time required to identify symmetries of an n-input
function using the above algorithm is O(n2 · 2n). Although more
sophisticated algorithms [13] can be used to detect symmetries, we
find that the computational cost for symmetry detection is negligible
compared to the Boolean matching time in our experiments. Taking
advantage of the symmetries exhibited by a Boolean function allows
us to significantly reduce the number of permutations to be tested.

3.2 Symmetries in PLB Architecture
Most commercial PLB architectures exhibit symmetries with re-

spect to their input pins. Additional architectural symmetries may
also exist and can be discovered by considering deeper logic levels
of the circuit. Formally, we define first order and second order
architectural symmetries as follows:

Definition 1. First Order Architectural Symmetry:
Any two input pins xi, xj connected directly to the same
LUT are symmetric under the permutation (xi, xj).

Definition 2. Second Order Architectural Symme-

try: The inputs x1, · · · , xk and inputs y1, · · · , yk for two
k-input LUTs Lx and Ly, respectively, are symmetric un-
der permutation π(yi1 , · · · , yik

, xj1 , · · · , xjk
) if the outputs

x and y of these two LUTs are symmetric.

For example, in the PLB shown in Figure 4, the inputs x1 and
x2 are symmetric, as are the inputs x3 and x4, which means that
ignoring the input permutations where they are swapped will not
affect the decision of whether a certain Boolean function can be
implemented by this PLB. The symmetries between x1 and x2

and between x3 and x4 are first order architectural symmetries.
Furthermore, since the outputs of both LUTs feed into a 2-input
AND gate whose inputs are symmetric, ignoring the configurations
where two groups of pins (x1, x2) and (x3, x4) are swapped under
the permutation π = (x3, x4, x1, x2), π = (x3, x4, x2, x1), π =
(x4, x3, x1, x2) will not affect the Boolean matching decision. This
is a second order architectural symmetry.

To detect symmetries exhibited in the PLB architecture, we ex-
tend the structural analysis algorithm presented in [14] to consider
programmable logic devices in the circuit. Interested readers should
refer to [15] for details. Architectural symmetry detection can be

Figure 4: A second order symmetric PLB

Symmetry detection

B ool ea n f u nction

P ru ning b y a rch itectu re

s ymmetries

A rch itectu re s ymmetry

inf orma tion

T a rg et a rch itectu re

G enera ted

ch a ra cteris tic f u nction

D u p l ica te l og ics f or

p rop a g a ting don' t ca res

P re- ca l cu l a te

a rch itectu re s ymmetries

p a tterns

Non- redu nda nt

p ermu ta tion s et (NP S)

I f NP S emp ty?

P op a p ermu ta tion p

SA T ?

E x it

N

Y

Y

N

P re- p roces s f or ta rg et

a rch itectu re, one- time cos t

R ep l ica te C NF s b y

i m pl i c a n t t a b l e of p

Sol v e th e SA T p rob l em

R etu rn imp l ementa b l e

Figure 5: The flow of the overall algorithm

done in the pre-process before re-synthesis. Since PLB sizes are
typically small, runtime cost is not an issue.

3.3 Overall Algorithm
Figure 5 shows the flow of our overall algorithm. We first pre-

process the architecture of the target PLB by extracting its archi-
tectural symmetry information (using the algorithm in Section 3.2)
and generate a template of the characteristic function for the PLB.
For each Boolean function to be tested, we first detect the func-
tion symmetries (using the algorithm in Section 3.1) and prune the
redundant permutations based on both architectural and function
symmetries. Then each distinct permutation is tested individually
by replication of the characteristic function. Given each permuta-
tion p, a SAT problem is generated by replicating the characteristic
function based on the implicant table of p (the SAT encoding by
implicant table was proposed in [10] and is summarized in the ap-
pendix). If any permutation gives rise to a satisfiable solution, then
the Boolean function can be implemented by the target PLB. If
instead none of the SAT instances are satisfiable, then the function
cannot be implemented by the target PLB.

4. EXPERIMENTS
Our algorithm implementation is in C++ and Perl. The SAT

solver used is miniSAT1.14 [16]. The implicant table-based SAT
encoding [10] has been implemented and integrated into our al-
gorithm as shown in Figure 5. To show the effectiveness of our
improvement to the SAT-based Boolean matching algorithm, we
extract over 10k fanout-free cones (FFCs) with 5-9 inputs from
MCNC benchmarks based on the method presented in [3] as the
Boolean functions. The target PLB architecture is similar to the
PLB in Figure 4 except that the two input LUTs have four inputs
and the output logic is a 3-input LUT instead of a 2-input AND
gate. All experimental data are collected on a Linux server with a
1.9GHz Xeon CPU and 2GB memory.

For a nine-input PLB the total number of input permutations is
9! = 362, 880. In our experiments we observe that the number
of distinct permutations to consider is typically reduced by over
two orders of magnitude (100x) when employing Boolean function
symmetries, and by another two orders of magnitude (100x) when
considering architectural symmetries.

Table 1 compares the runtime of the original algorithm SAT-
BM presented in [8] and our improved algorithm (SAT-IP). The
runtime for producing SAT instances is not considered in the table.
The average SAT instance sizes and runtimes of both algorithms
are shown in the table. As the number of inputs in the Boolean
function increases, the SAT instance size increases exponentially
for SAT-BM. On the other hand, the size of each sub-SAT instance
for our SAT-IP algorithm remains nearly the same regardless of
the number of inputs in the Boolean function, and the number of
unique permutations grows slowly. Compared to SAT-BM, SAT-IP
achieves up to 400x overall speedup, where 200x speedup of SAT-
IP is due to the consideration of symmetries and 2x more speedup
is due to the integration of implicant table-based SAT-encoding.
More significant speedup is expected if Boolean functions with
wider inputs are considered. Note that two recent improvements on
the SAT-based Boolean matching problem, [9] and [10] obtained
up to 13x speedup compared to [8].

Testcases func size 5.00 6.00 7.00 8.00 9.00
problem# 1398 1981 2263 2172 2134

variable# 867 1571 2979 5795 11427
SAT-BM clause# 6945 13889 27777 55553 111105

[8] runtime (s) 0.47 2.22 2.39 27.53 173.59

variable#/inst 367 442 358 405 454
clause#/inst 1509 1850 1466 1683 1906

SAT-IP unique perm# 4.30 17.73 30.90 26.6 161.47
(ours) runtime (s) 0.01 0.05 0.07 0.07 0.43

speedup 45x 48x 32x 409x 403x

Table 1: SAT-BM vs. SAT-IP

To break down the effectiveness of each components in SAT-IP,
we compare the runtimes of: the SAT-BM algorithm, the SAT-
IP algorithm with truth table replication while considering only
Boolean function symmetries, the SAT-IP algorithm with truth ta-
ble replication while considering Boolean function symmetries and
architectural symmetries and, the final SAT-IP algorithm with im-
plicant table replication while considering all symmetries. The
results (refer to [15] for detailed data) show that although Boolean
function symmetry itself cannot bring significant speedup, com-
bined with architectural symmetry optimizations, two orders of
magnitude speedup can be attained compared to the original SAT
formulation. With the integration of implicant table-based replica-
tion, an additional 2x speedup can be achieved. This is different
from the 3-13x speedup reported in [10] and is due to the overlap
in techniques for runtime reduction.

5. CONCLUSION
Targeting orders of magnitude speedup over the existing algo-

rithms for SAT-based Boolean matching [8, 9, 10], we have pre-
sented an algorithm to significantly improve the efficiency of SAT-
based Boolean matching by exploring the symmetries exhibited in
both the Boolean function and the target PLB architecture. Consid-
ering function and architecture symmetries explicitly during CNF
encoding, the SAT problem size and the SAT reasoning runtime
are dramatically reduced. The experimental results show that the
proposed algorithm obtains up to 200x speedup by considering sym-
metries compared to the original algorithm [8], while recent work
[9, 10] obtained up to 13x speedup. Our future plans entail integrat-
ing our algorithm into technology mapping for FPGA architecture
exploration.

6. REFERENCES
[1] J. Cong and Y. Ding, “Flowmap: An optimal technology

mapping algorithm for delay optimization in lookup-table
based fpga designs,” in TCAD, 1994.

[2] “Abc: A system for sequential synthesis and verification,” in
http://www.eecs.berkeley.edu/ alumni/abc/.

[3] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning:
Enabling a general and efficient fpga mapping solution,” in
FPGA, 1999.

[4] “Xilinx product datasheets,” in
http://www.xilinx.com/literature.

[5] D. Lewis and et al, “The stratix ii routing and logic
architecture,” in FPGA, Feb 2005.

[6] J. Cong and Y.-Y. Hwang, “Boolean matching for lut-based
logic blocks with applications to architecture evaluation and
technology mapping,” 2001.

[7] L. Benini and G. D. Micheli, “A survey of Boolean matching
techniques for library binding,” TODAES, vol. 2, no. 3,
pp. 193–226, 1997.

[8] A. Ling, D. Singh, and S. Brown, “FPGA technology mapping:
a study of optimality,” in DAC, 2005.

[9] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, “Efficient
sat based boolean matching for fpga technology mapping,” in
DAC, 2006.

[10] J. Cong and K. Minkovich, “Improved sat-based boolean
matching using implicants for lut-based fpgas,” in FPGA, 2007.

[11] Z. Wei, D. Chai, A. Kuehlmann, and A. R. Newton, “Fast
boolean matching with dont cares,” in ISQED, 2006.

[12] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Solving
difficult instances of boolean satisfiability in the presence of
symmetry,” in TCAD, 2003.

[13] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R.
Burch, “Generalized symmetries in boolean functions: Fast
computation and application to boolean matching,” in IWLS,
2004.

[14] J. S. Zhang, A. Mishchenko, R. Brayton, and
M. Chrzanowska-Jeske, “Symmetry detection for large boolean
functions using circuit representation, simulation and
satisfiability,” in DAC, 2006.

[15] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting
Symmetry in SATBased Boolean Matching for Heterogeneous
FPGA Technology Mapping,” in Technical Report UCLA Engr
07-265, 2007

[16] N. Een and N. Sorensso,
http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/MiniSat.html.

[17] E. M. Sentovich et. al., “SIS: A system for sequential circuit
systhesis,” in Department of Electrical Engineering and
Computer Science, Berkeley, CA 94720, 1992.

