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ABSTRACT
Small gates, such as AND2, XOR2 and MUX2, have been mixed
with lookup tables (LUTs) inside the programmable logic block
(PLB) to reduce area and power and increase performance in FP-
GAs. However, it is unclear whether incorporating macro-gates
with wide inputs inside PLBs is beneficial. In this paper, we first
propose a methodology to extract a small set of logic functions that
are able to implement a large portion of functions for given FPGA
applications. Assuming that the extracted logic functions are im-
plemented by macro-gates in PLBs, we then develop a complete
synthesis flow for such heterogeneous PLBs with mixed LUTs and
macro-gates. The flow includes a cut-based delay and area opti-
mized technology mapping, a mixed binary integer and linear pro-
gramming based area recovery algorithm to balance the resource
utilization of macro-gates and LUTs for area-efficient packing, and
a SAT-based packing. We finally evaluate the proposed heteroge-
neous FPGA using the newly developed flow and show that mixing
LUT and macro-gates, both with 6 inputs, improves performance
by 16.5% and reduces logic area by 30% compared to using merely
6-input LUTs.

1. INTRODUCTION
The popular island style FPGA architecture [1] consists of pro-

grammable logic blocks (PLBs) embedded in routing channels.
The logic element within the PLB can be a lookup table (LUT)
[2], programmable logic array (PLA) [3], or macro-gate (e.g. AND
gates and multiplexers) [4]. These logic elements offer a spec-
trum of trade-offs between functionality and costs in terms of area,
power and delay. For instance, a circuit can be implemented by
fewer K-input LUTs than K-input macro-gates, while a K-input
macro-gate requires smaller silicon area and has lower propagation
delay than a K-input LUT. The PLB is heterogeneous if it consists
of different types of logic elements, otherwise it is homogeneous.
In this paper, we assume that heterogeneity exists only inside a PLB
while the structures of all PLBs are identical, and study the impact
of heterogeneous PLBs.

Recent work has shown when uniform LUTs are used for the
PLB, a larger LUT size increases performance [5, 6], but it reduces
the LUT pin utilization rate. For example, mapping IWLS’05
benchmarks [7] using 6-input LUTs and the Berkeley ABC mapper
[8], we find that over 60% of the LUTs use less than five inputs.
Initial studies in the literature have suggested that mixed-sized LUTs
[5, 9, 10, 26], mixing LUTs and PLAs [11] inside the PLB, or PLBs
with hard-wired connections [27] may improve logic density. In
addition, commercial FPGAs [5] have benefited from small macro-
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gates (e.g., XOR2 and MUX2) inside the PLB. However it is unclear
whether incorporating macro-gates with wide inputs inside PLB is
beneficial. The first contribution of this paper is to propose a
methodology to extract a small set of logic functions that are able to
implement a large portion of functions for given FPGA applications.
Assuming that the extracted logic functions are implemented by
macro-gates in PLB, we design a heterogeneous PLB consisting of
both LUTs and macro-gates.

Effective and efficient synthesis tools are key enablers for the
exploration of different architecture options. There are extensive
studies (e.g., [12, 13, 14, 15, 16, 17]) on synthesis for homogeneous
PLBs, but only limited research on synthesis for heterogeneous
PLBs. [10] proposed heuristics to speedup the technology map-
ping for homogeneous PLBs and then extended them to consider
heterogeneous PLBs with mixed LUT sizes. [18, 19] integrated
Boolean Satisfiability solvers into re-synthesis to deal with macro-
gates in heterogeneous PLBs. However, the high time complexity
prohibits exploring complicated heterogeneous PLBs. The second
contribution of this work is to develop an efficient logic synthesis
flow for heterogeneous PLBs. The flow includes a cut-based delay-
optimal technology mapping, a mixed binary integer and linear
programming (MBILP) based area recovery algorithm to balance
the resource utilization of macro-gates and LUTs for area-efficient
packing, and a SAT-based packing. Using the newly developed
flow, we evaluate the proposed heterogeneous PLB, and show that
mixing LUT and macro-gates, both with 6 inputs, improves per-
formance by 16.5% and reduces logic area by 30% for IWLS’05
benchmarks [7] when compared to using 6-input LUTs.

The rest of this paper is organized as follows. Section 2 presents
the methodology to design heterogeneous PLBs with mixed LUTs
and macro-gates. Section 3 describes the improved technology
mapping and post-mapping area recovery algorithms to deal with
the proposed FPGA architecture. Section 4 proposes a flexible
SAT-based packing algorithm. The architecture evaluation results
are given in Section 5, and the paper is concluded in Section 6. To
the best of our knowledge, this paper is the first systematic study
of the logic synthesis flow for FPGAs consisting of heterogeneous
PLBs with wide-input macro-gates.

2. HETEROGENEOUS PLB DESIGN
The key step in designing a heterogeneous PLB is to extract

a small set of logic functions that are able to implement a large
portion of functions in given FPGA applications. In this section,
we discuss how to extract such a set of logic functions by performing
logic function ranking, and then present our macro-gate design.

2.1 Preliminaries
To rank the logic functions extracted from the training FPGA



application set, we need to identify two important relationships i.e.,
NPN-equivalence and inheritance equivalence, for every two logic
functions.

Definition 1. (NPN Equivalence) Two boolean func-
tions, F and G, belong to the same NPN-class (NPN-equivalent)
if F can be derived from G by negating (N) and permuting
(P) inputs and negating (N) the output. [20]

For example, F = ab + c and G = a′c + b are NPN-equivalent.
Although there are 224

= 65536 different 4-variable functions,
only 222 of them are NPN independent (i.e., NPN-inequivalent to
each other). In the rest of this paper, we use the term “NPN-class”
to denote a set containing only NPN-independent elements. In
this work, we limit the programmability of a macro-gate with in-
put/output negation, which provides a good trade-off between flex-
ibility and cost (performance and area). For an N -input macro-gate
with input/output negation, N +1 memory cells (i.e., configuration
bits) are needed rather than 2N memory cells for a LUT with N
inputs (LUT-N ).

Definition 2. (Inheritance Equivalence) For logic func-
tion A = F1(a1, · · · , an) and B = F2(b1, · · · , bm), where
0 ≤ m < n, A is inheritance equivalent to B iff ∃ ai s.t.
A(a1, · · · , ai = 1, · · · , an) or A(a1, · · · , ai = 0, · · · , an) and
B are NPN-equivalent.

In the other words, A and B are NPN-equivalent if we fix one
of the inputs of A as logic zero or one, i.e., B is a cofactor of
A. For example, f1(a, b, c, d) = abcd is inheritance equivalent to
f2(a, b, c) = abc by fixing input d as one. In fact, f1 is a 4-input
AND gate, which can be used to implement a 3-input AND gate
(i.e. f2). The inheritance equivalence of the full set of NPN-class
with up to N inputs can be represented by the following NPN-class
diagram (NCD).

2.2 Utilization NPN-Class Diagram (UND)
To graphically organize the logic functions and represent their

NPN Equivalence and Inheritance Equivalence relationships, we
propose the following NPN-Class Diagram (NCD).

Definition 3. NPN-Class Diagram (NCD) is a di-
rected acyclic graph (DAG) where each node in level N is
the representative1 of an N-input NPN-Class, and each edge
from node A to node B indicates that function A is inheri-
tance equivalent to B, i.e. A can implement B’s functional-
ity.

Note that Inheritance Equivalence is asymmetric, e.g., f1 is in-
heritance equivalent to f2 but the reverse is not true. Therefore,
NCD is a DAG as no edge is from lower level node to high level
node. Figure 1 shows the NCD for all 3-input functions.
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Figure 1: NCD for 3-input logic functions

1
The representative (canonical form) of a N-input NPN-Class can be

selected based on different rules, but the NCD is always applicable.

To extract N -input macro-gate logic functions from the training
FPGA application set, we first map those applications by exclusive
LUT-N architecture and then analyze all logic functions that are
mapped into LUTs. Note that NCD stores all different function
categories and their relationships within a DAG, which makes it
extremely efficient to explore some interesting properties of an ap-
plication. To represent the functions implemented by each particular
application based on NCD, we present the Utilization NPN-Class
Diagram (UND), which is a sub-graph of NCD in addition to the
weights associated with each node. UND can be defined recursively
as follows.

Definition 4. (Utilization NPN-Class Diagram (UND))
For a particular application D, utilization NPN-Class dia-
gram UD of D is a sub-graph of NCD. If a function F is
implemented by at least one of the LUTs in D, the NCD
node that corresponds to the NPN-Class of F should be added
into UD. If a NCD node is present in UD, all of its fanout
nodes and edges should be added into UD recursively. Each
node is associated with a 3-tuple Φ(f, n, c), where f is the
functionality description of this NPN-Class, n and c are the
implemented frequency and implementation capability (will
be defined later), respectively.

Definition 5. (Implemented Frequency (IF)) For a
NPN-Class function f presented in a mapped application,
the implemented frequency IFf of logic function f is the
number of LUTs which implement logic function f .

Definition 6. (Implementation Capability (IC)) For
a NPN-Class function f presented in the UND of a mapped
application, the implementation capability ICf of f is cal-
culated by the following equation:

ICf =

P

∀v∈fanout cone of f
IFv

P

∀u∈UND
IFu

(1)

Intuitively, ICf of NPN-Class function f indicates the portion
(in terms of percentage) of logic functions in the application that
can be implemented by f .

Figure 2 shows the UND for a small application that is mapped by
LUT-3. There are totally 12040 functions implemented by LUTs in
this application, and only three 3-input NPN-classes are presented.
An interesting observation from Figure 2 is that the IC for function
g = ab′c+a′bc′ +a′b′c is 55% while its IF is only 1120 (less than
10% of 12040 total functions). In fact, it has a child node ab′ + a′b
whose IF is 4410 (36% of 12040 total functions), if we look into
the fanout cone (shadowed area) of node ab′c + a′bc′ + a′b′c.
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-0- / 0 / 0%

a’ / 0 / 0%
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Figure 2: An example UND

As we are interested in the minimal number of logic gates to
cover all logic functions in an application, i.e., minimal functional



covering (MFC), we propose the following theorem to calculate the
MFC very efficiently.

Theorem 1. The number of minimal functional covering
(MFC) in application D is equal to the number of all primary
input nodes (with no parent nodes) of UND for D.

The proof of this theorem is straightforward.

2.3 UND for Wide Input Functions
To explore functions with fewer than 5 inputs, we can build 4-

input NCD once and use a lookup table to store the NPN-class
of every logic function. For each of the training applications that
are mapped by LUT-4, we can find its NPN-class from the lookup
table and create or label the node in UND. However, this procedure
becomes prohibitively expensive since we cannot afford to pre-
construct NCD for more than 4-input functions by exhaustively
examining NPN-equivalence for even all 5-input functions (225

=
4294967296).

Practically, one can build a partial UND by online checking
NPN-equivalence for over-5-input functions, which can be per-
formed efficiently by the method proposed in [20]. When a new
node representing a N -input (N ≥ 5) NPN-class function is in-
serted in the partial UND, only those (N -1)-input functions that are
inheritance equivalent to it are inserted/labeled in the partial UND,
instead of performing insertion recursively. Partial UND is a good
approximation of UND and all methods for UND manipulation are
applicable for partial UND. In experiments, we find that the total
number of all 6-input NPN-classes presented in all IWLS’05 bench-
marks [7] is less than 5000 and only 167 of them are present more
than 1% out of all functions. Therefore, the size of partial UND
can be well controlled in practice.

2.4 Macro-Gate Design
The logic function extraction and ranking framework proposed

above is implemented by the mix of Perl and C on the Berkeley
ABC [8] platform. Using IWLS’05 benchmarks [7] as the training
set, the following 6-input NPN-classes with the highest ranks are
found as the candidates of the macro-gates to be added into the
FPGA PLB.

g1(a, b, c, d, e, f) = abcdef (2)

g2(a, b, c, d, e, f) = ab′c′ + bcf + bc′d + b′ce (3)

g3(a, b, c, d, e, f) = ab′cd′e + bcef + def (4)

g4(a, b, c, d, e, f) = ab′ + a′cd′ + b′c′ + e′ + f ′ (5)

Combining these four gates with input/output negation, we can
implement 23% 6-input functions, 34% 5-input functions, 60% 4-
input functions, 69% 3-input functions and 98% 2-input functions
on average for IWLS’05 benchmarks. Overall 50% functions can
be implemented by this macro-gate. The structure of the macro-
gate is shown in Figure 3. In our experiments, we incorporate this
macro-gate into the FPGA PLBs and assume that there exist one
LUT and one such macro-gate in each PLB.

3. TECHNOLOGY MAPPING
Given the functions of the macro-gates to be built into FPGA

PLBs, a technology mapper is needed to make full use of these
macro-gates in terms of performance improvement and area reduc-
tion. [18] presented a general algorithm for heterogeneous FPGA
technology mapping, but it is not scalable to large macro-gates. [17]
extended the traditional cut-based technology mapping algorithm
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Figure 3: Architecture of the macro-gate

[10] (for LUT-only FPGAs) to achieve delay optimality for macro-
gate based FPGAs2 and proposed a novel concept, i.e., factor cuts,
to improve the scalability of the algorithm. In [17], the truth table of
the NPN-classes that can be implemented by the macro-gates (with
M inputs) are pre-calculated and stored in a lookup table. Then the
mapping is done in two passes. The first pass is a forward topol-
ogy traversal for enumerating all M -feasible cuts and keeping only
those that can be found in the lookup table storing the truth tables
of macro-gates. The second pass is a backward topology traver-
sal to select the best cut for every node under the delay target and
area constraints. For technology mapping to heterogeneous PLBs
with both LUTs and macro-gates, we adopt the same framework
presented in [17] by labeling cuts as macro-gates or LUTs based on
their logic functions.

After the cut-based mapping, an area recovery phase is needed for
the proposed macro-gate based heterogeneous FPGA architecture.
For the target PLB with CL LUTs and CM macro-gates, suppose
there are NL LUTs and NM macro-gates in the mapped circuit, the
logic area (i.e., the number of PLBs) after the ideal packing should
be

Φ(N, α) = max(
NM

CM

,
NL

CL

)

=
N

CL

· max(
α

β
, 1 − α)

where N = NM + NL, β = CM/CL and α = NM/N .
Since CL and β are constant for a given architecture, it is easy to

show

min
∀α

Φ(N, α) =
N

CL

·
1

1 + β
(6)

α∗ =
β

1 + β
(7)

For a given architecture, (6) provides a lower bound of the number
of PLBs for a mapped result, where parameters N and α decide the
tightness of the packing. (7) shows that the tightest packing can be
achieved when the LUT-MG ratios3 of the given architecture ( β

1+β
)

and the mapped result (α) are equal.
For example, suppose the target architecture has one LUT and

one macro-gate within a PLB, i.e., the LUT-MG ratio is 1:1. If we
can achieve the same ratio in the mapped result, a tight packing is
expected. In fact, we can adjust the area weight assigned to LUTs
and macro-gates in the technology mapper, which shows significant
impact in the LUT-MG ratio of the mapped result. Figure 4 shows
the average number of LUTs and macro-gates in the mapped results
for 20 IWLS’05 benchmarks with different area weight assignments
for a 6-input LUT and a 6-input macro-gate, i.e., 1:1, 1:0.95, 1:0.9,
2
The macro-gate in [17] was built by three LUTs (without the logic

gates) and the homogeneous PLBs were assumed.
3
LUT-MG ratio is the number of LUTs divided by the number of

macro-gates in an application.



1:0.8, 1:0.5 and 1:0.1. The LUT-MG ratio can be clearly seen in
this figure. To achieve a tight packing for the target architecture
with LUT-MG ratio 1:1, we first perform a binary search to find
the best area weight assignment which gives small N and α close
to the target LUT-MG ratio. From Figure 4, we see that the total
number of LUTs and macro-gates (N in (6)) increases dramatically
if an extremely small weight is assigned to macro-gates (see the bar
for 1:0.5 and 1:0.1) since the mapper is biased. We find that 1:0.95,
1:0.9 and 1:0.8 all give good trade-offs between N and α under the
target LUT-MG ratio but it is hard to further improve the resulting
LUT-MG ratio, β, by simply adjusting area weight.
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Figure 4: Impact of area weight on LUT-MG ratio

Given the mapped result after binary search, the total number of
LUTs and macro-gates, N , and delay target, T , are fixed. Motivated
by the timing slack budgeting [21], we can reassign macro-gates and
LUTs in such a way that the resulting LUT-MG ratio is sufficiently
close to the target LUT-MG ratio while preserving the delay target.
The combinational portion of the mapped result is represented in
a DAG G = (V, E), where ∀vj ∈ V is mapped to a LUT or a
macro-gate. Without loss of generality, we assume that the intrinsic
delay of a LUT is ∆D larger than a macro-gate. In this case, the
binary search should be able to find a LUT-MG ratio, α, which
is slightly smaller than the target LUT-MG ratio, β/(1 + β). To
balance the number of LUTs and macro-gates according to β, certain
macro-gates should be re-mapped as LUTs. For each node vj that
is mapped as a macro-gate, if its input number is not larger than
the LUT size, it can be re-mapped as a LUT without changing the
functionality. All such nodes are stored in set Vm. A binary variable
mj indicates if node vj can be re-mapped as a LUT for the given
timing slack bj . The objective is to minimize the gap between the
mapped macro-gate number

P

∀vj∈Vm(G) mj and the ideal number
1

1+β
·N . The overall problem can be formulated as a mixed binary

integer and linear programming (MBILP) as follows.

min |
P

∀vj∈Vm(G) mj −
1

1+β
· N | (8)

s.t. mj ≤
bj

∆D
, ∀vi ∈ Vm(G) (9)

mj ∈ {0, 1}, ∀vi ∈ Vm(G) (10)

ai + dj + bj ≤ aj , ∀e(i, j) ∈ E(G) (11)

bi ≥ 0, ∀vi ∈ V (G) (12)

ai ≤ T, ∀vi ∈ V (G) (13)

where ai and dj are the arrival time and intrinsic delay for node
vi, respectively. All the other variables have been explained above.
Note that the absolute operator in the objective function can be easily
transformed into linear form by introducing an auxiliary variable t

as follows.

min t (14)

s.t.
P

∀vj∈Vm(G) mj −
1

1+β
· N ≤ t

P

∀vj∈Vm(G) mj −
1

1+β
· N ≥ −t

t ≥ 0 (15)

4. SAT BASED FLEXIBLE PLB PACKER
Given the mapped application, the following step is to pack the

logic elements, such as LUTs, FFs and macro-gates, into FPGA
PLBs. The typical existing packing tools such as T-VPack [1]
hard-codes the architecture specification of a PLB, a step requiring
rewriting from scratch if the PLB architecture changes. This is time
consuming and needs to be debugged carefully to avoid bugs. The
flow proposed in [18] and [19] tries to solve technology mapping
and packing simultaneously. It is extremely flexible but impractical
for typical applications due to its high computational cost.

In contrast to the existing work, we solve the problem of vali-
dating PLB packing as a local place and route problem at the PLB
level. This can be considered a placement problem since multiple
compatible sites may be present for each logic element in the clus-
ter4. Also, for the chosen placement, all interconnections within
the cluster must be routed in the PLB and all external connections
must be connected to appropriate PLB input/output pins. We use
a satisfiability (SAT) solver to carry out this PLB packing valida-
tion. The tool takes a netlist description of the target PLB, the user
netlist, and the netlist elements clustered into the PLB to generate a
set of Boolean equations such that each solution to these equations
represents a valid packing. Then a SAT-solver can be used to find a
solution to this set of equations. If a solution exists, the PLB pack-
ing is valid and an assignment of the netlist elements to locations
in the PLB and PLB input or output pins to nets is produced. If no
solution exists, the packing is invalid.

(a) (b)

Figure 5: (a) Architecture of a FPGA PLB, (b) Sub-
circuit to be packed

Now we briefly sketch the problem formulation with an example.
Assume that we are attempting to fit the fragment described in
Figure 5 (b) into the simplified Xilinx Spartan3-like PLB in Figure
5 (a). We have variables X@A, X@B encoding placement of LUT
X at either the site A or B. Now we generate the exclusivity
constraint and presence constraint as follows.

(¬X@A) ∨ (¬X@B) (16)

X@A ∨ X@B (17)

Constraint (16) implies that if X is placed at A then it cannot be
placed at B and vice versa. Constraint (17) means that X must be
4
For instance in Xilinx Spartan3 [4] PLB there are two LUTs.



placed at at least one of the sites A and B. The two equations above
guarantee that X will be placed at exactly one location. Similar
constraints would be generated for the flip-flop Z and the possible
locations D and E.

Nets are treated like logic element sites, which are encoded as
Boolean variables, Ui@Nj (∀i ∈ {1 · · · 8}, j ∈ {0 · · · 15}). The
mutual exclusion conditions apply to nets as well, so that distinct
nets in the user netlist cannot be present at any one net in the PLB.

We also have input and output constraints for all logic ele-
ments. One such output constraint would be

X@A → U5@N10, (18)

which guarantees that if X is placed at location A in the PLB, then
the N10 net in the PLB carries the U5 signal. Input constraints are
also be generated in an analogous fashion.

For routing multiplexers (like G and H) which are controlled by
configuration logic we have variables that determine which input
drives the output. So for G, we would have the variables, G0→out
and G1→out, and we need to add exclusive driver constraints
(19) so that no output is driven by two inputs. We also need to add
routing constraints (20) so that if a net is present at an input to
a routing multiplexer and the appropriate control bit is active, the
output has the correct net.

G0→out → (¬G1→out) (19)

(G0→out ∧ U5@N10) → U5@N12 (20)

Finally, extra variables are needed to encode the choice that some
logic elements can act as route-throughs. An example of such an
element is a lookup table. It can be programmed to pass one of
its inputs out to the output and thus act like a routing multiplexer
if it is not being used. This increases the routing flexibility if we
need it. Corresponding to these extra variables, route-through
constraints are generated. For example, some of the constraints
generated for taking into consideration that LUT B might be used
as a route-through are

(RTB ∧ B0→out) → (¬B1→out) (21)

(RTB ∧ B0→out ∧ U8@N5) → U8@N11 (22)

where RTB encodes the choice as to whether LUT B is used as a
route-through. Constraint (21) maintains that inputs 0 and 1 cannot
drive the output simultaneously. There will be other constraints cor-
responding to mutual exclusion of every pair of inputs. Constraint
(22) specifies that if input 0 does drive the output and if net N5 is
at input 0, then it would also appear at the output. Note that con-
straint (21) is just a representative constraint and other constraints
related to the other input pins and to other possible nets will also be
generated as needed.

Certain input pins of logic elements are swappable, i.e., they
may be interchanged if doing so helps in producing a valid PLB.
Variables are introduced to encode the choice of equivalent pins that
have been swapped and equivalent pin constraints corresponding
to these are added.

Finally, boundary constraints forcing input (or output) nets to
be assigned to at least one of the input (or output) pins are added.
An example of such a constraint is

U6@N13 ∨ U6@N14 ∨ U6@N15 (23)

Once all the constraints are automatically generated from a topo-
logical description of the PLB graph and the logic elements in the
user’s netlist that we wish to pack into a PLB, we use a SAT-solver to
check if they can all be satisfied simultaneously. If they are all satis-
fied, we can generate a valid placement and route from the solution

that the SAT solver gives us. Translating the solution to an assign-
ment of netlist elements to PLB locations, PLB input pins to nets
and control bits in the routing multiplexers is easy. We construct the
PLB based on all the variables that are TRUE in the satisfying as-
signment. In our example, one satisfying assignment would have the
following variables be TRUE: U1@N0, U2@N1, · · · , X@A, RTB ,
where U1@N0 means that the net U1 is at the PLB input N0, X@A
means that LUT X is placed at location A and RTB means that
LUT B is used as a route-through.

5. ARCHITECTURE EVALUATION

5.1 Area and Delay Modeling
Suggested in [3], a LUT-4 can be implemented by 16 1-bit SRAM,

4 inverters (INV1) and 15 2:1MUXes which are 16 × 6 + 4 × 2 +
15 × 4 = 164 transistors, and a LUT-6 can be implemented by
64 1-bit SRM, 6 inverters and 63 2:1MUXes, which are 64 × 6 +
6 × 2 + 63 × 4 = 648 transistors. The macro-gate in Figure 3
can be implemented by 9 1-bit SRM, 7 inverters, 3 2:1MUXes
and 84 transistors (for implementing the macro-gate5), which are
9 × 6 + 7 × 2 + 3 × 4 + 84 = 164 transistors. The logic delay
is modeled by the square root of the logic area. The area and delay
models used in our experiments are summarized in Table 2.

LUT-4 macro-gate LUT-6
transistor number 164 164 648
normalized area 1.00 1.00 3.95
normalized delay 1.00 1.00 1.98

Table 2: Summary of the area and delay models

5.2 Experimental Results
We implement the improved mapping algorithms in the Berkeley

ABC platform [8] with C language and the SAT-based packer with
LISP language, and test them on IWLS’05 benchmarks [7]. The
MBILP and SAT problem are solved by mosek [24] and miniSAT
[25], respectively.

In our technology mapping, the combinational portion of an ap-
plication is first mapped to LUTs and macro-gates, and the sequen-
tial elements are added back to the mapped sub-circuit. The mapped
application is then packed by our SAT-based packer. After the pack-
ing, the logic cost is evaluated based on the aforementioned area and
delay model. Note that the placement and routing are not performed
because this work is focused on logic delay and area evaluation for
the proposed macro-gate based heterogeneous FPGA architecture.
The interconnect cost of such architecture is not considered here
and will instead be evaluated in our future work.

Table 1 compares four architectures, i.e., a PLB containing a
LUT-4 (column “LUT4”), the mix of a LUT-4 and a macro-gate
in Figure 3 (column “LUT4+MG”), a LUT-6 (column “LUT6”),
and the mix of a LUT-6 and a macro-gate (column “LUT6+MG”),
respectively. The logic depth, number of PLBs, estimated delay
and area6 of the circuits with different architectures are shown in
the table. Compared to LUT-4 only architecture, the mix of LUT-
4 and macro-gates reduces both logic depth and logic delay by
9.2%, and reduces logic area by 12.9%. Compared to LUT-6 only
architecture, the mix of LUT-6 and macro-gates reduces logic delay
and logic area by 16.5% and 30%, respectively, while it increases
5
The embedded logic gates g1 · · · g4 of the macro-gate in Figure 3

are synthesized by SIS 1.2 [22] with batch command script.rugged
followed by read library mcnc.genlib; map -m 0, and their schematics
are omitted due to the space limit
6
Given areas in Table 2, the area ratio between these four PLBs is

1.00:(1.00+1.00):3.98:(3.98+1.00).



circuit Logic depth Estimated delay (normalized) PLB# Estimated area (normalized)
LUT4 LUT4 LUT6 LUT6 LUT4 LUT4 LUT6 LUT6 LUT4 LUT4 LUT6 LUT6 LUT4 LUT4 LUT6 LUT6

MG MG MG MG MG MG MG MG
ac97 ctrl 4 4 3 4 4 4 6 4 4010 1739 2898 1523 4599 3733 13132 8424
aes core 8 7 6 9 8 7 12 10 8959 4147 3912 2932 10275 8903 17727 16218
des area 10 10 7 10 10 10 14 11 2153 1004 968 674 2469 2154 4386 3728
des perf 6 6 4 7 6 6 8 7 32371 15652 6872 4863 37125 33601 31140 26900
ethernet 10 9 7 9 10 9 14 12 5047 2438 3953 2215 5788 5234 17913 12252

i2c 5 4 4 4 5 4 8 6 392 188 265 144 450 404 1201 794
mem ctrl 11 9 8 9 11 9 16 12 3687 1731 2892 1413 4228 3715 13105 7813

pci bridge32 9 8 7 8 9 8 14 11 6596 3156 5413 2911 7565 6774 24529 16102
pci spoci ctrl 6 5 5 5 6 5 10 7 372 173 251 137 427 370 1137 755

sasc 3 3 2 4 3 3 4 4 206 87 147 85 236 186 666 470
simple spi 4 4 3 4 4 4 6 4 295 121 200 113 338 259 906 625

spi 10 9 7 9 10 9 14 11 1315 601 913 440 1508 1289 4137 2431
ss pcm 3 3 2 3 3 3 4 3 124 61 102 48 142 131 462 266

systemcaes 11 11 8 13 11 11 16 16 2948 1470 1926 1158 3381 3155 8728 6405
systemcdes 9 8 5 9 9 8 10 10 1125 580 608 351 1290 1245 2755 1942

tv80 17 15 11 15 17 15 22 20 2963 1404 2132 1129 3398 3013 9661 6245
usb funct 9 9 6 9 9 9 12 10 4906 2227 3408 1775 5626 4781 15443 9816
usb phy 4 3 2 3 4 3 4 4 188 89 145 60 216 190 657 332
vga lcd 7 7 6 7 7 7 12 9 40814 18145 28791 16561 46808 38954 130466 91604

wb conmax 9 7 6 7 9 7 12 10 14580 6966 11003 5895 16721 14954 49860 32608
wb dma 10 9 6 9 10 9 12 11 1469 711 1129 579 1685 1525 5116 3200
average 7.86 7.14 5.48 7.48 7.86 7.14 10.95 9.14 6406 2985 3711 2142 7346 6408 16816 11849

Table 1: Delay and area comparisons among different architectures

the logic depth by 36.5%. The average logic depth of mixing LUT-6
and macro-gate is larger than that for mixing LUT-4 macro-gates
because our technology mapper sets the delay weight of a LUT-6
and a macro-gate as 1.98:1.00 based on Table 2. The experimental
results show that the logic area is reduced by 5% due to the MBILP
based area recovery algorithm (Subsection 3).

6. CONCLUSIONS AND FUTURE WORK
Targeting macro-gate based heterogeneous FPGAs, a methodol-

ogy has been proposed to extract a small set of logic functions that
are able to implement a large portion of functions for given FPGA
applications. Assuming that the extracted logic functions are im-
plemented by macro-gates in PLBs, a complete synthesis flow has
been developed for such heterogeneous PLBs with mixed LUTs and
macro-gates. The flow includes a cut-based delay-optimal technol-
ogy mapping, a mixed binary integer and linear programming based
area recovery algorithm to balance the resource utilization of macro-
gates and LUTs for area-efficient packing, and a SAT-based packing.
The proposed heterogeneous FPGA design has been evaluated us-
ing the newly developed flow. The experimental results show that
mixing LUT and macro-gates, both with 6 inputs, improves perfor-
mance by 16.5% and reduces logic area by 30% compared to using
6-input LUTs.

In the future, we will investigate more complicated macro-gate
based heterogeneous PLBs architectures by the proposed synthesis
flow, and consider area, delay and power optimization during the
technology mapping and packing processes. We will also connect
our synthesis flow with the back-end tools such as placement and
routing for even more accurate architecture evaluation considering
both logic and routing cost.
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