Topological Routing to Maximize Routability for Package Substrate

Speaker: Guoqiang Chen

Authors: Shenghua Liu, Guoqiang Chen, Tom Tong Jing, Lei He, Tianpei Zhang, Robby Dutta, Xian-Long Hong

- Background
- Existing work
- Problem formulation
- Algorithm
- Experimental results
- Conclusion

- Background
- Existing work
- Problem formulation
- Algorithm
- Experimental results
- Conclusion





- Package substrate
  - PGA (pin grid array)
  - BGA (ball grid array)
- Two techniques to mount the die to the substrate
  wire bonding, WB
  flip chip, FC

# **Substrate Routing (1)**

- Packaging in BGA with wire-bonding technique
  - chip is put into the cavity of substrate
  - chip I/Os are connected to bonding pads around the cavity
  - substrate routing connects bonding pads with balls
- Packaging in BGA with flip-chip technique
  - re-distribution layer, RDL, routing connects chip I/Os to bump array
  - escape routing breaks bumps out to substrate routing layer
  - break points lay on the escape boundary
  - substrate routing connects break points to balls

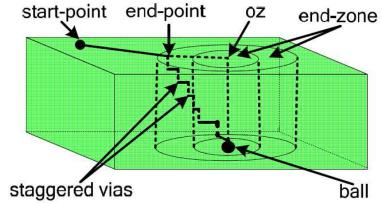
# Substrate Routing (2)

- Substrate routing usually has two steps: topological routing and detailed routing
- [W. W. Dai, DAC, 1991] discussed detailed routing
- This paper studies topological routing
- Substrate routing is preferred to be planar, even though multiple routing layers are available

- Background
- Existing work
- Problem formulation
- Algorithm
- Experimental results
- Conclusion

## **Existing work**

- [S. S. Chen, ASPDAC, 1999] [Y. Kubo, ISPD, 2005] [C. C. Tsai, IEEE Trans, 1998]
  - assumed that start-points are located side to side with respect to balls.
  - are NOT flexible enough for SiP and even some one-die packages
- [M. F. Yu, ASPDAC, 1995] [M. F. Yu, ICCAD, 1996]
  - use the minimum-cost maximum flow algorithm to solve interchangeable pin routing problem
  - however, specifying ball assignment is preferred by designers to consider constraints of PCB
- [Y. Kubo, et al, ISPD'05]
  - considered the staggered via assignment in substrate routing,
  - and well solved the two-layer substrate routing problem


#### **Our Major Contributions**

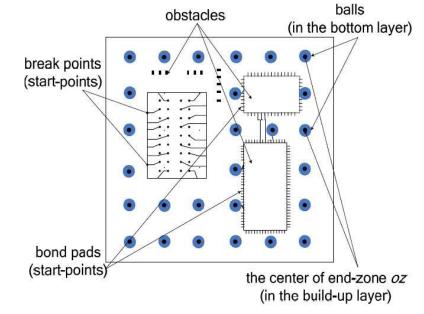
- Our algorithm honors flexible locations for start-points, instead of the existing 1.5-dimensional routing
- Our substrate router solves the specified-pin-assignment substrate routing problem
- It considers the staggered via assignment for multiple-layer substrate routing
  - end-zone model is proposed

- Background
- Existing work
- **Problem formulation**
- Algorithm
- Experimental results
- Conclusion

#### **Staggered via and end-zone**

- When dropping signal vias
  - close to the positions above assigned destination ball
  - vias need to be staggered
  - required offsets between staggered




- End-zone includes two cycles with center aligned with the ball
- Radii , and , and where and are the minimal and maximal stangered via pitch i $d_1 = \sum_i md_i$ ex i  $d_2 = \sum_i pd_i$  $md_i$   $pd_i$

## **Problem formulation**

- Given
  - start-points,
  - assigned balls (in the bottom layer),
  - netlist (dened by ball assignment),
  - and obstacles (including the escape area for escape routing, the prerouted connections, vias, and other obstacles in the layer),

#### Find

- a topological routing solution connecting each start-point to any point in the end-zone for the assigned ball
- Such that
  - routed nets are planar
  - satisfy the capacity constraints,
  - and have minimal length



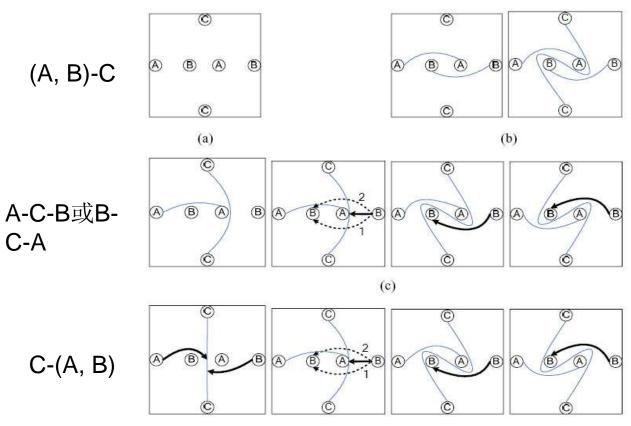
#### **Data Structure**

- The substrate routing plane (SF is triangle- meshed by constrain Delaunay triangulation (CDT)
   Start-point particles
   PCDT riangle
   the center of end-zone oz
   D-PCDT edge
  - Uniformly spreading points are added for particle-insertionbased CDT
  - Capacity • Congestion  $C_{ed} = l_e$  $\eta_{ed} = \frac{\sum_i (w_i + s_i)}{C_{ed}}$

- Background
- Existing work
- Problem formulation
- Algorithm
- Experimental results
- Conclusion

#### Framework

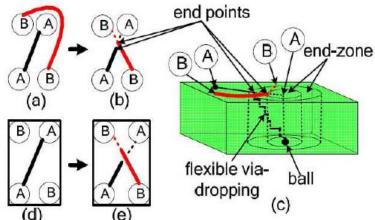
Iterative scheme is derived from [R. Nair, TCAD, 1987]


- Only one net is ripped up at a time
- Every net is ripped up and rerouted on every iteration
- During iterative scheme
  - net path search by algorithm  $DS^*$
  - reorder nets for wire length reduction, based on strategies
    - o whole reordering, and
    - o partial reordering

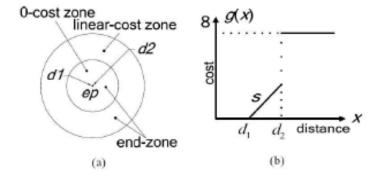
#### Net path search algorithm DS\*

- Net path search algorithm DS\*
  - based on the heap implementation of Dijstra
  - honors estimation cost
  - honors dynamic pushing
  - honors *flexible via-staggering* in a end-zone

## **Dynamic pushing methodology**


Dynamic pushing helps tackle the net ordering problem

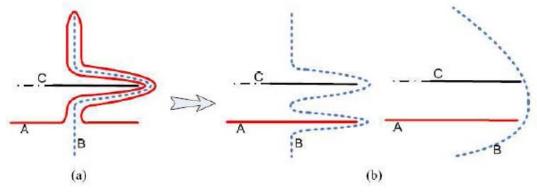



(d)

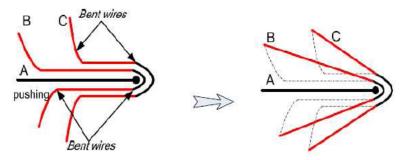
#### **Flexible via-staggering**

- Flexible via-staggering
  - reducing wire length
  - improve success ratio




Define the cost for stopping at unit 2000




#### **Reorder nets for wire length reduction**

- Reordering algorithm
  - routing nets frequently results in bent wires caused by pushing,
  - bent wires usually involve unnecessary detours and increase total wire length
  - solve this problem by designing a good order for rerouting
  - ⊙ whole reordering strategy
  - ⊙ partial reordering strategy

## **Whole/Partial reordering**



- Whole reordering--larger net length ratio first
- Net length ratio  $~~\delta = l/u$ 
  - is the net length acquired from the latest routing iteration
  - is the distance from start-point to end-point oz



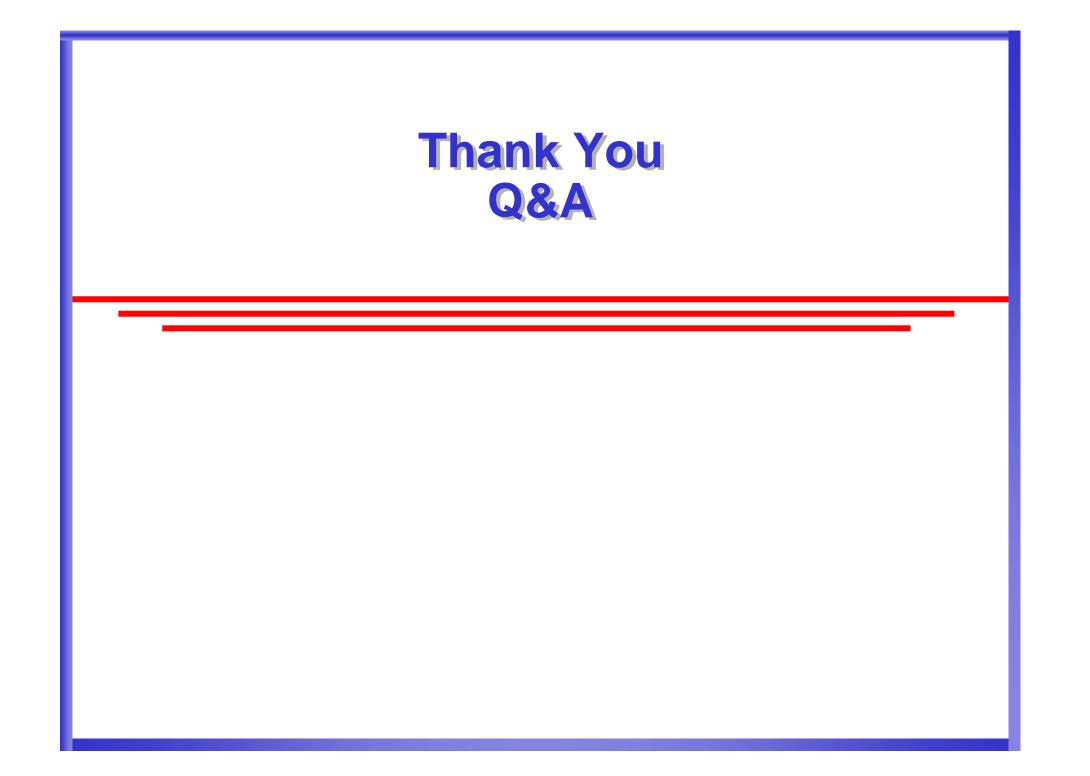
Partial reordering--according to pushing order C-B-A

- Background
- Existing work
- Problem formulation
- Algorithm
- Experimental results
- Conclusion

## **Experimental results**

| Name of | Package |                      |                                                                                           | Number  | # of failed nets |     | Runtime(s) |        | Average WL $(\mu m)$ |                  |
|---------|---------|----------------------|-------------------------------------------------------------------------------------------|---------|------------------|-----|------------|--------|----------------------|------------------|
| circuit | type    | Package size*        | $Die(s) size^*$                                                                           | of nets | BKM              | new | BKM        | new    | BKM                  | new              |
| case 1  | 2-2-2   | $35000 \times 35000$ | $14000 \times 15000$                                                                      | 474     | 52               | 16  | 2.06       | 11.33  | 9.10E + 03           | 8.49E + 03       |
| case 2  | 2-2-2   | $30000 \times 30000$ | $9000 \times 10500$                                                                       | 543     | 10               | 0   | 1.90       | 5.34   | 8.24E + 03           | 7.99E + 03       |
| case 3  | 3-1-3   | $40000 \times 40000$ | $9300 \times 9300$                                                                        | 800     | 306              | 49  | 13.81      | 16.86  | 1.65E + 03           | 1.37E + 03       |
| case 4  | 3-2-3   | $35000 \times 35000$ | $12000 \times 12000$                                                                      | 506     | 82               | 6   | 6.90       | 8.46   | 2.29E+04             | 1.78E + 04       |
| case 5  | 3-2-3   | $40000 \times 40000$ | $20000 \times 22000$                                                                      | 891     | 98               | 45  | 2.60       | 13.65  | 5.93E + 03           | 5.27E + 03       |
| case 6  | 4-2-4   | $40000 \times 40000$ | $20000 \times 23000$                                                                      | 990     | 198              | 51  | 9.95       | 26.62  | 9.10E + 03           | 7.93E + 03       |
| case 7  | 4-2-4   | $45000 \times 45000$ | $20000 \times 19000$                                                                      | 1009    | 100              | 14  | 5.91       | 26.14  | 2.31E + 04           | 1.89E + 04       |
| case 8  | 1-0-1   | $12000 \times 12000$ | $3900 \times 6700 \\ 4400 \times 5700 \\ 3200 \times 4400$                                | 349     | 60               | 22  | 15.24      | 1.51   | 1.83E+03             | 1.73E + 03       |
| case 9  | 2-2-2   | $37500\times37500$   | $\begin{array}{r} 11000 \times 10000 \\ 4700 \times 3800 \\ 4600 \times 5500 \end{array}$ | 538     | 30               | 9   | 95.17      | 110.93 | 9.78E+03             | 9.38E + 03       |
| total   |         | _                    |                                                                                           | 6100    | 936              | 212 |            |        |                      |                  |
| average |         |                      | _                                                                                         |         |                  |     | _          |        | 1.02E + 04           | 8.76E+03(-13.9%) |

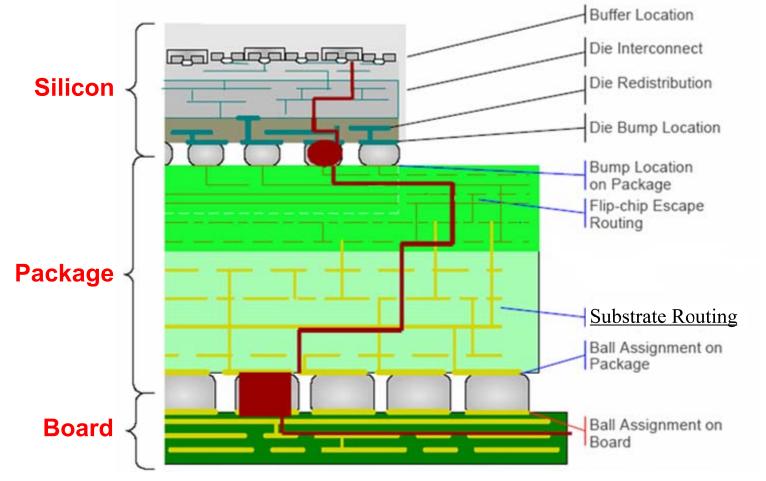
Table 1: TEST CASES AND EXPERIMENTAL RESULTS


(\*: Package size and Die (s) size are given by width  $\times$  length ( $\mu m$ ) in rectangle.)

- Comparing with a best know method (BKM) in an industrial design tool, our routing algorithm
  - leaves 212 failed, a 4.5-times unrouted net number reduction
  - reduces the average wire length by 13.9%

- Background
- Existing work
- Problem formulation
- Algorithm
- Experimental results
- Conclusion

#### Conclusion


- Considering high density packaging, we have developed a planar topological router.
- Compared with one current industrial router, Our algorithm
  - does not limit start-point locations
  - allows the routing to finish in a zone or at fixed locations
  - honors the ball assignment specified for start-points.
- A 4.5x unrouted net number reduction and practically more design time reduction

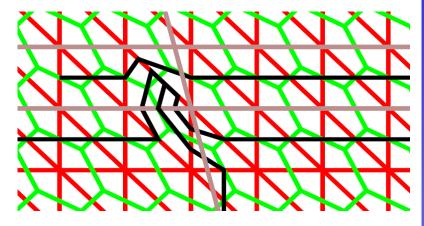


## **PGA and BGA**

- Comparing with PGA substrate, BGA substrate has the advantages of
  - higher integrity,
  - higher reliability,
  - lower coupling,
  - cheaper cost, and
  - lower thermal-resistance

# An example of flip-chip BGA




(Cadence)

# **Cost function**

Initial

$$w = w_0 + s_0$$

$$rc = p_0 \times w$$



$$ec = \begin{cases} (h_0 - d_2) \times w + (d_2 - d_1) \times \min(s, w), & h_0 > d_2 \\ (h_0 - d_1) \times \min(s, w), & d_1 \le h_0 \le d_2 \end{cases}$$
(8)

**Recursive equations** 

$$w^{*} = w + 2\sum_{i} (w_{i} + s_{i})$$
(5)

$$rc* = rc + \Delta p \times w *$$

$$ec^* = \begin{cases} (h - d_2) \times w^* + (d_2 - d_1) \times \min(s, w^*), & h > d_2 \\ (h - d_1) \times \min(s, w^*), & d_1 \le h \le d_2 \end{cases}$$
(9)