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Package (2)

Package

® Package substrate

® PGA (pin grid array)
® BGA (ball grid array)

® Two techniques to mount the die to the substrate

® wire bonding, WB
® flip chip, FC




Substrate Routing (1)

® Packaging in BGA with wire-bonding technique
® chip is put into the cavity of substrate
® chip I/Os are connected to bonding pads around the cavity
® substrate routing connects bonding pads with balls

® Packaging in BGA with flip-chip technique
re-distribution layer, RDL, routing connects chip I/Os to bump array

break points lay on the escape boundary

®
® escape routing breaks bumps out to substrate routing layer
®
® substrate routing connects break points to balls




Substrate Routing (2)

® Substrate routing usually has two steps: topological routing
and detailed routing

® [W.W. Dai, DAC, 1991] discussed detailed routing
® This paper studies topological routing

Substrate routing is preferred to be planar, even though
multiple routing layers are available
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Existing work

® [S. S. Chen, ASPDAC, 1999] [Y. Kubo, ISPD, 2005] [C. C.
Tsal, IEEE Trans, 1998]

® assumed that start-points are located side to side with respect
to balls.

are NOT flexible enough for SiP and even some one-die
packages

.F. Yu, ASPDAC, 1995] [M. F. Yu, ICCAD, 1996]

use the minimum-cost maximum flow algorithm to solve
iInterchangeable pin routing problem

however, specifying ball assignment is preferred by designers to
consider constraints of PCB

. Kubo, et al, ISPD’05]
considered the staggered via assignment in substrate routing,
and well solved the two-layer substrate routing problem




Our Major Contributions

® Our algorithm honors flexible locations for start-points, instead
of the existing 1.5-dimensional routing

® Our substrate router solves the specified-pin-assignment
substrate routing problem

It considers the staggered via assignment for multiple-layer
substrate routing

® end-zone model is proposed
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Staggered via and end-zone

® \When dropping signal vias stertgoint endpelt 0z engzone
® close to the positions above e T e
assigned destination ball
® vias need to be staggered
® required offsets between staggered

staggered vias

® End-zone includes two cycles with center aligned with the ball

® Radii , and
® Where and aro fhe minimel and mavimal cfangered Via

pitchicdi = Z,ﬁ. mdexi dg — Z% pdi
, pdi




Problem formulation

® Given
® start-points,
assigned balls (in the bottom layer),
netlist (dened by ball assignment),

and obstacles (including the escape area for escape routing, the pre-
routed connections, vias, and other obstacles in the layer),

® Find

® a topological routing solution connecting each start-point to any point in
the end-zone for the assigned ball

o SUCh that obs‘?\des (in the b?)atgvsm layer)
® routed nets are planar break paints 3 k ¢
® satisfy the capacity constraints, 2P — @
® and have minimal length =04

bond pads " e ® \

(start-pointsy”

the center of end-zone oz
(in the build-up layer)




Data Structure

® The substrate routing plane (SF Str-R2Int

IS triangle- meshed by constrail particle ?
Delaunay triangulation (CDT)

the center of
end-zone oz D-PCDT edge

® Uniformly spreading points are added for particle-insertion-
based CDT

® Capacity .

i=le

® Congestion

Tled =
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Framework

® |[terative scheme is derived from [R. Nair, TCAD, 1987]
® Only one net is ripped up at a time
® Every net is ripped up and rerouted on every iteration

® During iterative scheme
® net path search by algorithm DS*

® reorder nets for wire length reduction, based on strategies
o whole reordering, and
o partial reordering




Net path search algorithm DS*

® Net path search algorithm DS*

based on the heap implementation of Dijstra
honors estimation cost

honors dynamic pushing

honors flexible via-staggering in a end-zone
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Dynamic pushing methodology

® Dynamic pushing helps tackle the net ordering problem
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Flexible via-staggering

® Flexible via-staggering

® reducing wire length

end points

e
|

(A B) -
BA B) "end-zone

® Improve success ratio

® Define the cost for stopping at ot

D-cost zone
. linear-costzone 8%

y

i .-.’}“x-‘.h d, o, distance
end-zone -

(k)

flexible via- |
dropping
(€}




Reorder nets for wire length reduction

® Reordering algorithm
routing nets frequently results in bent wires caused by pushing,

bent wires usually involve unnecessary detours and increase
total wire length

solve this problem by designing a good order for rerouting
whole reordering strategy
partial reordering strategy




Whole/Partial reordering

(a)
® \Whole reordering--larger net length ratio first
® Netlengthratio O = l/u

® is the net length acquired from the latest routing iteration
® Is the distance from start-point to end-point 0z

B C Bent wires

%

Benl wires

® Partial reordering--according to pushing order C-B-A
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Experimental results

Table 1: TEST CASES AND EXPERIMENTAL RESULTS

{*: Package size and Die (=) =ize are given by width = length {um) in rectangle.)
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® Comparing with a best know method (BKM) in an industrial
design tool, our routing algorithm

©

® reduces the average wire length by 13.9%

leaves 212 failed, a 4.5-times unrouted net number reduction
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Conclusion

® Considering high density packaging, we have developed a planar
topological router.

® Compared with one current industrial router, Our algorithm
® does not limit start-point locations
® allows the routing to finish in a zone or at fixed locations
® honors the ball assignment specified for start-points.

® A 4.5x unrouted net number reduction and practically more design
time reduction
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PGA and BGA

® Comparing with PGA substrate, BGA substrate has the
advantages of

® higher integrity,
higher reliability,
lower coupling,
cheaper cost, and
lower thermal-resistance




An example of flip-chip BGA

Buffer Location

Die Interconnect

Silicon < = _— . Die Redistribution

Die Bump Location

Bump Location
on Package
Flip-chup Escape
Routing

Package <
——— Substrate Routing

Ball Assignment on
Package

Ball Assignment on
Board

(Cadence)




Cost function

Initial NN\ ’.‘}“ ASNANNANY
w = wo + Sp \‘i\‘.t’.‘;‘i\‘i\‘i\‘
CRENNRERENE

rc = pg X w ANEAVEAN AN EANEAN

oo — { (ho —da) X w4+ (d2 — dy) X min(s,w), ho > do

(ho — d1) X min(s, w), di < hg < ds

Recursive equations

e — w—l—QZ(wi + 54)

rex = re+ Ap X w *

- (h —do) X w™ + (do — di) X min(s, w™),
cc= (h — d1) X min(s, w™), di < h <ds




