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ABSTRACT
Symbolic model order reduction (SMOR) is to reduce the com-
plexity of a model with symbolic parameters. It is an important
problem in analog circuit synthesis and digital circuit modeling
with process variations. However, existing symbolic model order
reduction (SMOR) methods do not scale well with the number of
symbols or with the model order. This paper presents a scalable
SMOR algorithm, namely S2MOR. We first separate the original
multi-port multi-symbol system into a set of single-port systems
by superposition theorem, and then integrate them together to
form a lower-bordered block diagonal (LBBD) structured system.
Each block is reduced independently, with a stochastic program-
ming to distribute the given overall model order between blocks
for best accuracy. The entire system is efficiently solved by low-
rank update. Compared with existing SMOR algorithms, given
the same memory space, S2MOR improves accuracy by up to
78% at a similar reduction time. In addition, the factorization
and simulation of the reduced model by S2MOR is up to 17×
faster.

1. INTRODUCTION
Symbolic circuit techniques are playing an increasingly important role
with the advance of design technology, especially when we have entered
the nano regime. Plenty of algorithms exist in literature discussing how
to analyze and simulate those symbolic circuits [1–3]. However, all
those methods are practical only if the circuit has a moderate size. Un-
fortunately, to guarantee reasonable model accuracy, the circuits from
physical extraction usually contain millions of nodes, thus rendering
those methods inefficient. Towards this end, numerous model order
reduction (MOR) techniques have been successfully applied to the re-
duction of linear large scale circuits over the past decade ( [4, 5],etc).
There were also efforts to extend those methods to nonlinear circuits
( [6, 7], etc) and parametrized circuits ( [8, 9], etc). However, despite
their wide application, unsolved problems do exist when directly ex-
tending them to symbolic circuits.

The idea of symbolic model order reduction (SMOR) was first in-
troduced in [10], which contains three different methods: symbolic
isolation, nominal projection and first order expansion. The symbol
isolation method first removes all the symbols from the circuits, and the
nodes to which the symbols are connected are modeled as ports. As
such, the symbolic circuit becomes a symbol-free circuit with massive
ports, and can be reduced by any traditional methods [4,5,11–13]. How-
ever, the size of the reduced circuit is proportional to the port number
multiplying the number of moments to be matched. Accordingly, the
time and space complexity for the reduced model increases cubically
∗
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with the number of ports and thus the number of symbols, which renders
those methods of less practical value for circuits with many symbols.
The nominal projection method uses the nominal values of the symbols
to compute the projection matrix and is accurate only when the symbol
values slightly deviate from the nominal value. The first order expan-
sion method uses the first order expansion of the matrix inversion and
multiplication to find the projection matrix, which is first order matrix
polynomial w.r.t. all the symbols. Again, no large change is allowed
for the symbols in order for the method to be accurate.

In addition, all the above three symbolic MOR methods suffer from
the following three problems: First, they don’t scale well with the
number of symbols or with the reduced order. In literature only the
experimental results for circuits with less than ten symbols are reported.
Second, if the original circuit has no special pattern to be explored,
the reduced model is dense and therefore is still time consuming for
simulation. Third, when the values of the symbols change, it is difficult
to directly update the factorization of the reduced model instead of re-
do it from scratch, especially for the nominal projection and first order
expansion methods. A more detailed analysis of those symbolic MOR
methods are provided in Section 2.

The main contribution of our paper is as follows: A scalable SMOR
algorithm, namely S2MOR is presented. We first separate the original
multi-port multi-symbol system into a set of single-port systems by
superposition theorem, then integrate them together to form a lower-
bordered block diagonal (LBBD) structure. Each block is reduced
independently, with a stochastic programming to distribute the given
overall model order between blocks for best accuracy. And the entire
system is efficiently solved by low-rank update. Experiments using
analog designs show that S2MOR handles circuits with up to 49965
nodes and 661 symbols in 50 minutes. Compared with existing SMOR
algorithms, S2MOR improves accuracy by up to 78% at a similar
reduction time and a same memory space. In addition, the factorization
and simulation of the reduced model by S2MOR is up to 17× faster.

The remaining of the paper is organized as follows: Section 2 reviews
the existing approach for handling symbolic circuits and its disadvan-
tages. Section 3 presents our LBBD transformation and system projec-
tion algorithm. We also discuss how to fully utilize the special sparsity
pattern of the reduced model for the efficient simulation and update of
the reduced model. Experimental results are presented in Section 4 and
concluding remarks are given in Section 5.

2. PRELIMINARIES
In this section, we briefly review the three SMOR methods proposed
in [10], and address their disadvantages by complexity analysis w.r.t. the
reduced order q. For later comparison with our method, the complexity
for the three different methods are summarized in the first three rows of
Table 1.

2.1 Symbol Isolation
The main idea of symbol isolation is to remove all the symbols from



the circuit, and model the nodes to which the symbols are connected as
ports. Then any traditional MOR methods can be applied.

Generally speaking, a circuit with a total number of a symbols and p
ports is converted to an equivalent symbol-free circuit with p + a ports,
assuming all the symbols are two-terminal. A general reduction method
such as PRIMA [4] states that in order to match the first q moments, the
reduced model will have a size of q(p+a) with a cost of O((p+a)2q2)
for the reduction (the orthonormalization of q(p + a) vectors plus a
constant matrix factorization cost). With no special structure, the time
complexity to factorize the reduced model is O(q3(p + a)3) which
increases cubically with a, and the space complexity to store the reduced
model is O(q2(p+a)2). Moreover, to update the reduced model with a
new set of symbol values, the cost is a(p+a)2q2 by using the method of
low rank update. Therefore, such a method is useful when the circuits
contain only a few symbols.

2.2 Nominal Projection
The main idea of nominal projection method is to use the nominal values
of the symbols to compute the projection matrix. The modified nodal
analysis (MNA) equation symbolic circuit can be written as

(G0 + ∆G) + s(C0 + ∆C) = Bu, (1)

where G0 and C0 are the nominal matrices, and ∆G, ∆C contain
the stamping of the symbols. Then the nominal projection method
computes the projection matrix V such that

V ⊆ κq(A0,R0), (2)

where A = G0
−1C0 and R0 + G0

−1B, and κq(A0,R0) is the qth

order Krylov subspace spanned by A0 and R0. This method is very
efficient as the projection matrix does not depend on the number of
symbols. In order to approximately match q moments, the reduced
circuit will have a size of pq with the cost of p2q2 for the reduction (the
orthonormalization of pq vectors). Accordingly, the time complexity for
analyzing the reduced model is O(q3p3), and the space complexity for
the reduced model including the coefficient matrices for all the symbols
is O(ap2q2). Moreover, to update the reduced model with a new set of
symbol values costs O(p3q3) because it requires new factorization of
the reduced model.

As the values of the symbols deviate from the nominal values, the
projection matrix no longer contains the Krylov subspace spanned by
the circuit matrix. Accordingly, the model accuracy decreases. [10]
showed that the error of the reduced model increases dramatically even
if the value of the symbols deviates only a few percent from the nominal
value.

2.3 First Order Approximation
Similar problem exists for the first order approximation method. The
method computes the projection matrix using first order expansion, i.e.,
when computing the projection matrix, the following approximation is
used

[(G0 + ∆G)−1(C0 + ∆C)]k(G0 + ∆G)−1
B

≈ A0
k
R0 − {A0

k
G0

−1∆G −

k−1
X

i=1

A0
i
G0

−1∆GA0
k−i

+
k

X

j=0

A0
j
G0

−1∆CA0
k−j}R0. (3)

After first order expansion, the Krylov subspace is directly used without
orthonormalization to avoid the expensive cost of symbolic computation
which may render the reduced model singular. Such a method can only
work when the values of the symbols do not deviate much from the
nominal values. Similar to the nominal projection method, the reduced
circuit will have a size of pq if we approximately match q moments.

Note that the reduction cost is O(pq) because no orthonormalization is
employed. The reduce model has the same space complexity and time
complexity as the nominal projection method.

3. S2MOR ALGORITHM

3.1 Port Separation and Model Reduction
The key idea of the S2MOR algorithm is to separate the original multi-
port multi-symbol system into a set of single-port systems by superposi-
tion theorem, and then integrate them together to form a lower-bordered
block diagonal (LBBD) structure. We further show that by using the
projection matrices from each of the single-port systems, we can re-
duced such LBBD system with the structure preserved. The whole
procedure is detailed below.

We start with the following modified nodal analysis (MNA) equation,
which represents an RLC circuit with a symbols and p ports

(G + sC)x +
a

X

i=1

Pisi ◦ (P T
i x) = Bu (4)

y = L
T x, (5)

whereG andC (∈ RN×N ) are the inductance and capacitance matrices,
B and L (∈ RN×p) are the incidence matrices for input and output,
u (∈ Rp) is the input current vector. The vector Pi (∈ RN ) is the
incidence vector for symbol i and it takes the form1

Pi =
`

0 . . . 1 . . . −1 . . . 0
´T

(6)

with 1 at the jth element (positive node) at −1 at the kth element
(negative node). si◦ is the operator corresponding to the i − v relation
of the ith symbol. Typically, for an resistive symbol, si◦ = 1/R is a
constant operator. For capacitive symbol, we have si◦ = sC and for
inductance, si◦ = 1/sL. Accordingly, the current from symbol i can
be computed as

wi = si ◦ (P T
i x), 1 ≤ i ≤ a (7)

.
Denote Bi as the ith column of B and ui as the ith element of u.

Then according to superposition theorem, Eq. (4) becomes

(G + sC)x =

p
X

i=1

Biui −
a

X

i=1

Piwi, (8)

Eq. (8) can be further divided into a set of p + a equations, with each
equation in the form of

(G + sC)x(i) =



Biui, 1 ≤ i ≤ p
Pi−pwi−p, p + 1 ≤ i ≤ p + a

, (9)

x =

p+a
X

i=0

x(i), (10)

where x(i) is the state variable for the ith equation, which corresponds
to a system with single port, and wi is the current through symbol i.

On the other hand, from Eq. (10) and Eq. (7), we have

wi = si ◦ (

p+a
X

j=1

P T
i x(j))

=

p+a
X

j=1

si ◦ (P T
i x(j)), (11)

1For simplicity of presentation, we assume that the symbol is
a two-terminal device. However, it is understood that the al-
gorithm is readily to be applied to multi-terminal devices as
well.



Table 1: Space and time complexity comparison between four different methods w.r.t. the reduced order q.
Method Mom Matched Reduced Size Space Complexity Time Complexity

Reduction Factorization Update

Symbol Isolation q (p + a)q (p + a)2q2 (p + a)2q2 (p + a)3q3 a(p + a)2q2

Nominal Projection Approx. q pq ap2q2 p2q2 p3q3 p3q3

1st Order Expansion Approx, q pq ap2q2 apq p3q3 p3q3

S2MOR q (p + a)q (p + a)q2 (p + a)q2 (p + a)q3 const

where we have used the fact that si◦ is a scalar for RLC elements. We
introduce

z =
`

x(1)T x(2)T . . . x(p+a)T
´T

(12)

and Eq. (7) becomes
wi =

`

si ◦ P T
i si ◦ P T

i . . . si ◦ P T
i

´

z, 1 ≤ i ≤ a. (13)

Therefore, Eq. (9)-Eq. (10) can be cast into a compact matrix form as

(Ĝ + sĈ)z = B̂u, (14)

where Ĝ is a lower bordered block diagonal (LBBD) matrix and Ĉ is a
block diagonal matrix as shown in Eq. (15) at the top of next page. In
addition, we have

B̂ =

0

B

B

B

B

B

B

@

B1

. . .
Bp

0 0
...

...
...

1

C

C

C

C

C

C

A

. (16)

With the augmented system, the output can be computed as

y = L̂z, (17)

where

L̂ =
`

L L . . . L
´T

. (18)

One of the advantages of the augmented system is that a symbol-free
projection matrix can be found, which can preserve the special sparse
structure of the Ĝ and Ĉ matrices as well. This is detailed in the
following theorem.

Theorem 1. If orthonormalized matrices Vi satisfies

Vi ⊆



κq{G, C, Bi} 1 ≤ i ≤ p
κq{G, C, Pi−p} p + 1 ≤ i ≤ p + a

, (19)

where κq{G, C, Bi} is the qth order Krylov subspace spanned
by G, C and Bi and κq{G, C, Pi−p} is the qth order Krylov
subspace spanned by G, C and Pi−p. Then with the projection
matrix

V =

0

B

B

B

@

V1

V2

. . .

Vp+a

1

C

C

C

A

, (20)

the first q moments of the reduced system

(Ĝr + sĈr)zr = B̂ru (21)

yr = L̂rzr (22)

and the original system are matched, where Ĝr = VT ĜV, Ĉr =
VT ĈV, B̂r = VT Br and L̂r = VT L̂.

Due to the space limit, the proof is omitted here. Although the projection
matrix in Eq. (19) can guarantee the matching of the first q moments,
it does not always provide the best accuracy depending on the symbol

values. Later we will show how to find an optimal projection matrix in
terms of accuracy, under the given reduced size, by changing the order
of the Krylov subspaces spanning each Vi in Eq. (20).

To match q moments, the reduced matrices Ĝr and Ĉr would have
a dimension of (p + a)q, which is the same as the that from PRIMA.
However, different from the dense reduced matrices from PRIMA, it
is easy to see that the Ĝr of the reduced system still keeps the LBBD
structure, and the Ĉr still keeps the block diagonal structure as shown
in Eq. (15). Note that for efficiency, the matrix Gr should never be
formed explicitly. Instead, it can be cast as a block diagonal matrix plus
with a rank q updates, i.e,

Ĝr = D + LHT (23)

where D (∈ R(p+a)q×(p+a)q) is a block diagonal matrix

D =

0

B

@

Gr,1

. . .
Gr,p+a

1

C

A
, (24)

and L, H (∈ R(p+a)q×a) can be written as

L =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

−P
p+1
r,1

0 . . . 0

0 −P
p+2
r,2

. . . 0

0 0

.
.
. 0

0 0 . . . −P
p+a
r,a

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (25)

H =

0

B

B

B

B

B

B

B

B

@

s1 ◦ P1T
r,1 s2 ◦ P1T

r,2 . . . sa ◦ P1T
r,a

s1 ◦ P2T
r,1 s2 ◦ P2T

r,2 . . . sa ◦ P2T
r,a

.

.

.

.

.

.

.

.

.

.

.

.

s1 ◦ P
(p+a)T
r,1

s2 ◦ P
(p+a)T
r,2

. . . sa ◦ P
(p+a)T
r,a

1

C

C

C

C

C

C

C

C

A

, (26)

where only D and L, H are stored and explicitly formed. This sparsity
structure facilitates the efficient simulation as well as update of the
reduced model, as will be discuss shortly.

The time complexity of the proposed algorithm can be decomposed
into two portions: the time to compute p + a Krylov subspaces, each
with order q; Note that the factorization of of G−1C can be shared
between different subspaces, and we need to do p + a times of vector
orthonormalization, each with q vectors. Accordingly, the time com-
plexity is O((p + a)q2).

Assuming no special structure for G and C matrices in (4), the space
needed to store the reduced matrices Ĉr is O(pq2) since it is block
diagonal. To store Ĝr , we need to store D, L and H, which cost
O((p + a)q3), O(aq) and O(a(p + a)q) respectively. Keeping the
dominant terms in q, and we can see that the total space complexity is
O((p + a)q2).

3.2 Simulation and Update of the Reduced Model
To simulate the reduced model, either in time domain for transient anal-
ysis or in frequency domain for AC analysis, we would face the problem
of efficiently factorizing a LBBD matrix. We will concentrate on the
QR factorization as it is shown to be the most stable factorization algo-
rithm [14]. We will show that instead of the general factorization cost
O((p+a)3q3) for non-structuralized matrices with dimension (p+a)q,
our special LBBD matrix can be factorized at a much lower cost. For



Ĝ =

0

B

B

B

B

B

B

B

B

B

B

@

G

. . .

G

−P1s1 ◦ P T
1 . . . . . . G − P1s1 ◦ P T

1 . . . −P1s1 ◦ P T
1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−Pasa ◦ P T
a . . . . . . . . . . . . G − Pasa ◦ P T

a

1

C

C

C

C

C

C

C

C

C

C

A

Ĉ =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

C

. . .

. . .

. . . . . .
. . . . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . . . . . . . . . . . C

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(15)

the simplicity of presentation, we will simply discuss the factorization
of Ĝr + sĈr matrix for frequency domain analysis. Similar algorithm
can be applied for the time domain analysis as the matrix structure will
remain the same.

Suppose we want to solve

(Ĝr + s0Ĉr)x = B̂ru (27)

for any input u and frequency s0 . To start with, from the matrix inversion
lemma we know that

(Ĝr + s0Ĉr)
−1 = (D + s0Ĉr + LHT )−1

= (D + s0Ĉr)
−1 − (D + s0Ĉr)

−1L
“

I + HT (D + s0Ĉr)
−1L

”−1

HT (D + s0Ĉr)
−1 (28)

Accordingly, an efficient factorization method can be obtained by first
factorizing E = D+s0Ĉr, which is block diagonal, and then factorizing
M = I + HT (D + s0Ĉr)L (M ∈ Ra×a). Then for any input u, we
can first solve

Ex′ = Bru, (29)

and then solve

Mx′′ = x′. (30)

Finally, solve

Ex′′′ = Lx′′ (31)

and the solution can be obtained as

x = x′ − x′′′ (32)

The main cost for such an algorithm lies in the factorization of E andM,
which is O((p+a)q3) and O(a3). Keeping the dominant term in q, we
get that the overall time complexity for factorization is O((p + a)q3).
Moreover, each time the values of the symbols are changed, we only
need to re-factorize M, the cost of which is O(a3) and does not depend
on q.

The comparison of complexity between the symbol isolation method,
the nominal projection method, the first order expansion method as well
as the S2MOR method is presented in Table 1. The reduced circuits
from the four methods all match or approximately match the first q
moments of the original circuit. The best of the four method is shown in
bold. From the table we can see that the S2MOR method outperforms
the other three methods in almost all the complexity comparisons. For
the same number of moments to be matched, the S2MOR algorithm has
the lowest space and time complexity.

3.3 Min-max Programming based Projection Or-
der Decision

Theorem 1 provides a method of computing the projection matrix which
can match the first q moments of the original circuit with a reduced size
of d = (p + a)q. It would also be interesting to note the following
problem: If we are given the overall reduced size d, how to distribute
it between each Vi in (20), such that the reduced model has the best

accuracy. We will show that uniform distribution between the blocks as
in Theorem 1 does not necessarily provide the best accuracy.

Specifically, the freedom of choosing the projection matrix lies in
the order of the Krylov subspace for each Vi in (19). If we choose
a Krylov subspace with order qi, then the error introduced due to the
mismatching of the (qi + 1)th moment can be computed from Eq. (4).
If 1 ≤ i ≤ p, then

∆i = |
X

m

LT
m(G−1

C)qi+1
G

−1Bi|

= |
X

m

LT
mA0

qi+1Ri|, (33)

where A0 = G−1C, Ri = G−1Bi and Lm is the mth column of L.
If p + 1 ≤ i ≤ p + a, then

∆i =

˛

˛

˛

˛

˛

X

m

LT
m((G + Pi−psi−p ◦ P T

i−p)
−1

C)qi+1

(G + Pi−psi−p ◦ P T
i−p)

−1Pi−p

˛

˛

˛ . (34)

We can expand (34) to the first order by letting ∆G = Pisi ◦ P T
i and

k = qi + 1 in (35), i.e.,

∆i =

˛

˛

˛

˛

˛

X

m

LT
m((G + Pi−psi−p ◦ P T

i−p)−1
C)qi+1(G

+Pi−psi−p ◦ P T
i−p)

−1Pi−p

˛

˛

˛

≈

˛

˛

˛

˛

˛

X

m

LT
m

`

Ai
qi+1R̄i−p − (Ai

qi+1F (si◦)

−

qi
X

j=1

Ai
jF (si◦)Ai

qi+1−j)R̄i−p

!˛

˛

˛

˛

˛

, (35)

where F (si◦) = G−1Pi−psi−p ◦ P T
i−p and R̄i−p = G−1Pi−p. Ac-

cordingly, the total error is

f =

p
X

i=1

˛

˛

˛

˛

˛

X

m

LT
mA0

qi+1Ri

˛

˛

˛

˛

˛

+

p+a
X

i=p+1

˛

˛

˛

˛

˛

X

m

LT
m

`

Ai
qi+1R̄i−p−

(Ai
qi+1F (si◦) −

qi
X

j=1

Ai
jF (si◦)Ai

qi+1−j)R̄i−p

!˛

˛

˛

˛

˛

, (36)

which is a function of qi (1 ≤ i ≤ p + a) and si◦ (1 ≤ i ≤ a).
Since we know the reduced size is d, we have the constraint

p+a
X

i=1

qi = d (37)

and they must be non-negative integer

qi ∈ Z+ ∪ {0}, 1 ≤ i ≤ p + a (38)



Moreover, assume we have the statistical description for the symbols,
i.e.,

si◦ ∈ ωi, (39)

where ωi is some statistical description for si. Then we need to solve
the following statistical optimization problem

minq1,...qp+a
f(q1 . . . , qp+a; s1◦, . . . sa◦) (40)

s.t.

p+a
X

i=1

qi = d (41)

qi ∈ Z+ ∪ {0}, 1 ≤ i ≤ p + a, (42)

si◦ ∈ ωi, 1 ≤ i ≤ a (43)

Note that the objective function in Eq. (43) is statistical, and we
try to minimize its worst case value for all possible values of the sym-
bols, which gives the following constrained min-max mixed integer
optimization problem

min
q1,...qp+a

max
s1◦,...sa◦

f(q1, . . . qp+a; s1◦, . . . sa◦) (44)

s.t.

p+a
X

i=1

qi = d (45)

qi ∈ Z+ ∪ {0}, 1 ≤ i ≤ p + a, (46)

si◦ ∈ ωi, 1 ≤ i ≤ a (47)

Generally the min-max problem is very hard to solve, especially
the above problem is mixed-integer based and is nonlinear. Below we
propose an efficient heuristic algorithm to approximate solve it, based on
the key observation that the constraints for si◦ and qi can be separated
(i.e., there are no cross terms). Accordingly, we separate the min-max
problems into the following two sub-problems. Similar algorithm has
been used in [15] for decoupling capacitance budgeting problem.

(P1 :) min
q1,...qp+a

f(q1, . . . qp+a; s1◦, . . . sa◦) (48)

s.t.

p+a
X

i=1

qi = d (49)

qi ∈ Z+ ∪ {0}, 1 ≤ i ≤ p + a, (50)

which is a integer-minimization problem for fixed s1◦, . . ., sa◦, and

(P2 :) max
s1◦,...,sa◦

f(q1, . . . , qp+a; s1◦, . . . sa◦) (51)

s.t. si◦ ∈ ωi, (52)

which is a maximization problem for fixed q1, . . ., qp+a. Efficient
algorithms exist to solve the above two sub-problems [16] and is beyond
the scope of this paper.

We iteratively solve (P1) and (P2) until the solution converges.
In certain cases, the solution may fail to converge, and we force the
algorithm to exit after certain iterations to guarantee the convergence.

This heuristic algorithm can provide optimal solution only in the case
that (P1) is convex and (P2) is concave. Otherwise, the optimality
is not guaranteed. However, experimental results show that significant
accuracy improvement is achieved by such heuristic.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results for runtime and accuracy
comparison between the S2MOR method and the symbol isolation, the
nominal projection and the first order expansion methods. All the
methods are implemented in C++. We use the CSparse as the sparse
matrix package [17]. We run experiments on a UNIX workstation with
Pentium IV 2.66G CPU and 1G RAM. Finally, we use MOSEK as the
linear/quadratic programming solver [18] for optimal projection order
decision.

4.1 Algorithm Verification
Fig. 1 illustrates the sparsity of the reduced matrices from the S2MOR
method. The original circuit is a low-noise amplifier (LNA) design
with parasitics, which contains 4920 nodes, 8 ports 10 symbols. The
circuit is reduced to order 76 by the S2NMOR method. From the figure
we can see that although there is no special structure for the original
matrices, the reduced Ĝr and Ĉr from the S2MOR method has LBBD
structure with sparsity 34% and block diagonal structure with sparsity
7.7% respecitvely.
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Figure 1: Sparsity pattern for the matrices Ĝr and Ĉr after

reduction from S2MOR.

Next we verify the effectiveness of our optimal projection order de-
cision. We perform Monte Carlo simulation on the symbol values for
10, 000 runs on the same LNA circuit, and compare the error between
uniform projection order decision, assuming the same projection order
for all symbols, and our stochastic programming based projection order
decision. The error is defined as the integral of the absolute differ-
ence between the original time domain waveform and the one of the
reduced circuit. The error distributions for both methods are shown
in Fig. 2. From the figure we can see that by our method the mean
error is reduced by approximately 30% and the 3σ error by 50%, which
verifies the effectiveness of the proposed stochastic programming based
approach.
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Figure 2: Accuracy Comparison between uniform pro-

jection order and our stochastic programming based ap-

proach based on the Monte Carlo simulation.

4.2 Accuracy Comparison
In this section, we compare the accuracy of the three existing methods
and the S2MOR method on some real industrial designs. For fair com-
parison, we reduce the circuit to different orders for different methods
such that the reduced models require the same memory space. This



Table 2: Testbench information.
ckt name node # port # symbol #

LNA1 1392 14 6
LNA2 5573 33 14
LNA3 11380 79 137
LNA4 49965 147 661

Table 3: Accuracy comparison between symbol isolation (S.I.),

nominal projection (N.P.), first order expansion (F.E) and the

S2MOR with different variation amount (var) of symbol values.

All the errors are in the unit of V*ns.
ckt name var S.I. N.P. F.E S2MOR

LNA1 10% 1.2 0.7 0.9 0.6 (-24%)
30% 1.2 8.4 6.8 0.6 (-50%)

LNA2 10% 3.7 1.1 1.9 0.8 (-27%)
30% 3.6 11.6 17.8 0.8 (-78%)

LNA3 10% 4.2 3.7 3.9 0.9 (-76%)
30% 4.2 13.7 19.8 1.0 (-76%)

LNA4 10% 5.2 6.7 N.A. 1.6 (-69%)
30% 5.2 28.4 N.A. 1.6 (-69%)

implies that the three existing methods have the same reduced order
because they are all dense, while the S2MOR method can have a much
higher reduced order due to its sparsity for the same memory space.

We ompare the accuracy between the four different methods on differ-
ent benchmarks, and the results are shown in Table 3. The information
of the testbenches we used is shown in Table 2. They are all LNA’s from
extraction. From Table 3 we can see that for different circuits and for
different variation amount, the S2MOR method always have the small-
est error compared with the other three methods. Specifically, when the
variation amount is 10%, compared with the best one of the other three
methods shown in bold, the S2MOR method reduces the error by up to
76%; When the variation amount is 30%, the S2MOR method reduces
the error by up to 78%. Also note that the first order expansion method
cannot finish the testbench LNA4 due to its singularity. This is a direct
result from the lack of orthonormalization procedure for the projection
matrix.

4.3 Runtime Comparison
In Table 4, we report the runtime for reduction, factorization, and update
for the reduced model on different testbenches. All the circuits are
reduced to a different size such that the reduced circuits from different
methods requires the same memory space. From the table we can see
that the reduction time is almost the same for all the methods. The
factorization time is reduced by up to 9.4× for the S2MOR method on
the largest testbench, although the reduced circuit size of the S2MOR
method is almost 3× larger. This speedup comes from the efficient
factorization algorithm based on the LBBD structure of the reduced
circuit. Finally, the factorization update time for symbol value changes
is reduced by 17× for our method compared with the symbol isolation
method, which uses low rank update. This is because we only need to
refactorize a matrix with size equal to the number of symbols. All the
above results further verify the correctness of our conclusion in Table
1.

5. CONCLUSIONS
Symbolic model order reduction (SMOR) is to reduce the complexity of
a model with symbolic parameters. It is an important problem in analog
circuit synthesis and digital circuit modeling with process variations.
However, existing symbolic model order reduction (SMOR) methods
do not scale well with the number of symbols or with the model order.
The literature only reports experimental results for circuits with fewer
than ten symbols. This paper presents a scalable SMOR algorithm,
namely S2MOR, which handles circuits with up to 49965 nodes and
661 symbols in 50 minutes from experimental results. Compared with

Table 4: Runtime comparison between symbol isolation (S.I.),

nominal projection (N.P.), first order expansion (F.E.) and the

S2MOR method. The reduced sizes are also reported (size). All

units are in seconds.
ckt name method size reduce factor update

LNA1 S.I. 300 427 43.7 13.6
N.P. 300 421 43.7 43.6
F.E. 300 374 43.7 43.7

S2MOR 930 484 7.6 1.5
LNA2 S.I. 420 835 86.4 38.4

N.P. 420 816 86.5 86.9
F.E. 420 741 86.4 86.5

S2MOR 1340 975 11.3 2.2
LNA3 S.I. 480 1124 91.5 47.6

N.P. 480 1190 91.4 91.2
F.E. 480 1011 91.6 91.5

S2MOR 1440 1238 12.3 2.9
LNA4 S.I. 500 2977 123.6 61.2

N.P. 500 2918 123.6 123.5
F.E. 500 2715 123.6 123.6

S2MOR 1610 3020 13.1 3.6

existing SMOR algorithms, given the same memory space, S2MOR
improves accuracy by up to 78% at a similar reduction time. In addition,
the factorization and simulation of the reduced model by S2MOR is up
to 17× faster.
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