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ABSTRACT
We present a fault-tolerant post-mapping resynthesis for FPGA-
based designs that exploits the dual-output feature of modern FPGA
architectures to improve the reliability of a mapped circuit against
faults. Emerging FPGA architectures, such as 6-LUTs in Xilinx
Virtex-5 and 8-input ALMs in Altera Stratix-III, have a secondary
LUT output that allows access to non-occupied SRAM bits. We
show that this architectural feature can be used to build redun-
dancy for fault masking with limited area and performance over-
head. Our algorithm improves reliability of a mapping by perform-
ing two basic operations: duplication (in which free configuration
bits are used to duplicate a logic function whose value is obtained
at the secondary output) and encoding (in which two copies of the
same logic function are ANDed or ORed together in the fanout of
the duplicated logic). The problem of fault tolerant post-mapping
resynthesis is then formulated as the optimal duplication and en-
coding scheme that ensures the minimal circuit fault rate w.r.t. a
stochastic single fault model. We present an ILP formulation of
this problem and an efficient algorithm based on generalized net-
work flow. On MCNC benchmarks, experimental results show that
for combinational circuits the proposed approach improves mean-
time-to-failure(MTTF) by 27% with 4% area overhead, and the
proposed approach with explicit area redundancy improves MTTF
by 113% with 36% area overhead, compared to the baseline map-
ping by ABC. This provides a viable fault tolerance solution for
non-mission critical applications compared to TMR (triple modu-
lar redundancy) which has a 5×-6× area overhead.

1. INTRODUCTION
Faults are becoming increasingly pronounced in emerging appli-

cations and technologies, from permanent faults arising from cir-
cuit processing at nanometer scales to transient soft errors arising
from high-energy particle hits. This has spurred much research on
ways to improve fault tolerance without incurring substantial area,
power, or performance penalties [1].

In this paper, we explore a new opportunity for achieving fault
tolerance with respect to a stochastic fault model by exploiting ar-
chitectural features of emerging FPGA architectures. For example,
in Xilinx’s Virtex-5 FPGA [2], the 6-input LUT has two usable out-
put pins (see Figure 1). It can implement two independent LUTs
if the total number of unique pins in each does not exceed five.
Similarly, in Altera’s Startix II FPGA [3], an ALM can implement
two independent LUTs if the total number of input pins does not
exceed 8 and constraints on input sharing and LUT sizes are met.
One use of dual-output LUTs is to map circuits that contain many
small logic functions, for example, with 2 or 3 inputs, to produce
higher logic density and reduced circuit power [4]. Unfortunately,
it is not easy to pack logic functions with 4 or 5 inputs in one dual-
output LUT. In fact, empirical observation of a wide collection
of benchmark sets shows that less than 50% of LUTs in Virtex-5
FPGAs are fully occupied, even with sophisticated “dual-output-
aware” technology mapping and an LUT merging procedure [5].

The low logic utilization rate in real designs motivates us to
utilize non-occupied SRAM bits of dual-output LUTs for fault
masking. Specifically, redundant logics can be implemented in non-
occupied SRAM bits of these LUTs and can be accessed via the
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Figure 1: Xilinx Virtex-5 dual-output LUT

secondary LUT outputs. Logic duplication can effectively mask
0 → 1 (resp. 1 → 0) single event upsets (SEUs) by ANDing (resp.
ORing) the original and the copy of a duplicated LUT. The addi-
tional AND and OR logic can be encoded into LUTs at the next logic
stage. We consider two versions of our algorithm. In the fully
masked version (FMD) we assume the duplicated LUT is encoded
in the same way (AND or OR) in all fanouts. In the partially masked
version (PMD) a duplicated LUT may be encoded differently in
different fanouts.

We make the following contributions in this paper. Assuming
a stochastic single fault model[6], we formulate the fault masking
problems for dual-output LUT-based circuits using duplication and
(full or partial) encoding as an ILP optimization problem. We show
how the structure of the ILP problem allows an efficient generalized
network flow-based algorithm. We test our algorithm on MCNC
benchmarks under two different CAD flows with and without ex-
plicit area overhead, respectively. Experimental results show that
for combinational circuits the proposed algorithm improves mean
time to failure (MTTF) by 27% with 4% area overhead. The pro-
posed approach with explicit area overhead improves MTTF by
113% with 36% area overhead, when compared to the technology
mapping obtained by [5].

In contrast to related fault-tolerance techniques proposed for FP-
GAs, such as triple-modular redundancy (TMR) which has a 5× to
6× area/power overhead [7], our approach is lightweight and incurs
minor area and performance overhead. In contrast to chip-wise syn-
thesis [8, 9], our generic solution has much lower test complexity.
In contrast to a recent stochastic synthesis algorithm (ROSE) [10],
our algorithm is much faster on wide input LUTs (by exploiting ar-
chitectural features) and it obtains more MTTF improvement with
slightly higher overhead. Clearly, this paper provides a new and
viable solution for the spectrum of techniques for reliability and
overhead trade off.

The rest of this paper is organized as follows. Section 2 presents
the problem formulation. Section 3 proposes our primary algorithm
for dual-output LUT-based fault masking, and this algorithm is
generalized in Section 4. The experimental results are given in
Section 5, and the paper is concluded by Section 6. To the best of
our knowledge, this paper is the first systematic study on stochas-
tic fault tolerance using the dual-output architectural feature of
modern FPGAs.
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2. PROBLEM FORMULATION

2.1 Fault Modeling
In this paper, we assume a stochastic single fault model for

faults1, i.e., there is at most one fault occurring at a time for the
entire circuit with the identical fault rate for each SRAM bit.

To quantitatively measure the sensitivity of an SRAM bit with
respect to an SEU, we first define the criticality of SRAM bit b as

cb =
1

2n
|{x | C(x) �= C(b̄)(x)}|, (1)

where b can be an SRAM bit in an LUT or a routing switch2. C
is the circuit and n is the number of primary inputs of C. x is the
primary input vector x ∈ {0, 1}n. C(x) is the value of the primary
outputs when the input vector x is applied to C. C(b̄)(x) is the
circuit which is identical to C except that the SRAM bit b is flipped.
For simplicity, a routing switch is a programmable connection in
connection boxes or switch boxes. In general, the criticality of an
SRAM bit is the percentage of the primary input vectors which
cause observable erroneous circuit outputs due to the flip of SRAM
bit b. Accordingly, the criticality cL of an LUT L is the average
criticality of its every SRAM bit:

cL =
1

2K

X
i

cLi
, (2)

where Li the ith SRAM bit of LUT L.
The full-chip fault rate of a circuit is the percentage of the pri-

mary input vectors which cause observable erroneous outputs due
to faults. Based on the single fault assumption, the full-chip fault
rate of a circuit C is calculated by the average criticality of all
SRAM bits in C, and it is defined by the following equation.

fault rate(C) =

P
L∈Luts(C) 2K · cL +

P
b∈Rout(C) cb

2K · |Luts(C)| + |Rout(C)|
· PF ,

where Luts(C) is the set of LUTs in C and Rout(C) is the set of
routing SRAM bits in C. PF is the probability that an SEU occurs
in an occupied SRAM bit. Therefore we have

PF =
2K · |Luts(C)| + |Rout(C)|

A
· γ,

where A is the total number of SRAM bits of the underlying FPGA
device and γ is a constant denoting the single SRAM bit sensitivity
to an SEU strike. Thus, the full chip fault rate can be expressed as

fault rate(C) = (
X

L∈Luts(C)

2K · cL +
X

b∈Rout(C)

cb) ·
γ

A
. (3)

The criticality of each SRAM bit in a mapped circuit can be
obtained by random simulation or other more efficient approaches,
such as the analytical models based on signal masking probability
[11] or the hardware-based emulator, which is used in this paper.
Specifically for sequential circuits, multiple clock cycles are simu-
lated in order to capture the propagation of faults in registers. The
computation of criticality needs only to be performed once. Dur-
ing the course of the optimization, criticality values can be updated
efficiently, as will be described later in the paper.

2.2 Design Freedom
In our optimization, we shall use two atomic operations: duplica-

tion and encoding. Duplication computes the same function twice
in an LUT, such that the two outputs produce two independently
copied versions of the function. Encoding takes the two outputs
(representing two independently computed versions of the same
logic function) from a dual-output LUT and computes their AND or
OR in the fanout nodes. One of the two different encoding schemes,
i.e., AND-encoding and OR-encoding, is applied to the fanout LUTs
of a duplicated LUT based on the logic masking effectiveness. As

1
As shown in [6], simultaneous multiple SRAM flips almost never occur, and

therefore the single fault is a valid assumption in practice.
2

An SRAM bit flips in a routing switch may cause a short/open/bridging fault.
In this paper, we model these faults as the logic value flipping. In addition, we do
not consider multiple errors caused by the single SEU-induced bridging fault.

shown in Figure 2, any 0→1 fault that occurs in LUT A can be
masked. In this way, any 0→1 fault that occurs in intermediate
wire zorg or zcpy can also be masked. It is important to note
that the proposed duplication/encoding scheme can be performed
spanning through the register boundary. Consider Figure 2 again,
and image z is now a register driven by LUT A. The duplication of
both LUT A and register z prevent the propagation of 0→1 fault in
the next clock cycle, and therefore the fault will not be observable
before it reaches primary outputs. A nice feature of this approach
is that it preserves the logic depth as well as the number of LUTs,
which controls the area and performance overhead due to the fault
masking insertion.

A B

(a) Original logic block

Aorg

Acpy

B

z zorg

zcpy

(b) Duplicated logic block

Figure 2: LUT duplication (LUT A) and AND-encoding of
its fanout (LUT B)

Given an LUT L with duplication, if the same encoding (AND or
OR) is applied to encode all its fanout LUTs, LUT L is called fully
masked. Otherwise, LUT L is called partially masked. In this pa-
per, the duplication scheme in which all duplicated LUTs are fully
masked is called fully masking-based duplication (FMD); otherwise
it is called partially masking-based duplication (PMD). FMD is a
special case of PMD, and therefore FMD can be solved more effi-
ciently but will result in a lower quality of fault tolerance, as will
be shown later. In general, the duplication-based fault tolerance
problem can be formulated as follows.

Formulation 1. Given a circuit, perform duplication and en-
coding on LUTs (if possible), such that the full-chip fault rate (de-
fined in (3)) is minimized.

3. FMD ALGORITHM

3.1 Criticality Update in FMD
After the FMD of an LUT, the following lemmas show that

the criticalities of this LUT, its fanout SRAM bits in the routing
switches, and its fanout LUTs can be updated efficiently. In addi-
tion, the update of the criticality of one duplication is independent
of that of the other duplication. Therefore the FMD of the full-chip
can be performed optimally via a mathematical formulation.

Lemma 1. The criticality of LUT L after a duplication is 2 ·
(
P

Li∈OnSet cLi
)/2K (resp. 2 · (

P
Li∈OffSet cLi

)/2K) if all

fanouts of LUT L are AND-encoded (resp. OR-encoded) assuming
the single fault model.

Proof. Suppose LUT L is AND (resp. OR)-encoded, all 0 → 1
(resp. 1 → 0) flips due to SEU can be masked by its fanout AND

(resp. OR) gate, and therefore the criticality of Li ∈ OffSet (resp.
OnSet) is cLi

= 0, where Li ∈ OffSet (resp. OnSet) means Li = 0
(resp. Li = 1).

Lemma 2. The encoding operation preserves the criticality of
LUT L assuming the single fault model.

Proof. Suppose the Boolean function implemented by LUT L
is f(i1, · · · , im), where m is the number of occupied inputs of LUT
L before encoding, and the criticality of configuration bit Li is cLi

.
Without loss of the generality, the Boolean function after encoding
can be expressed as f(ii, · · · , im � im+1), where im+1 is a newly
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occupied input pin due to the addition of � logic (AND or OR). The
criticality of the encoded LUT, Le, is

1

2K
· (

X
Le

i
∈{im �=im+1}

cLe
i

+
X

Le
i
∈{im≡im+1}

cLe
i
),

where {im �= im+1} (resp. {im ≡ im+1}) is the set of min-terms
where LUT pins im and im+1 have the different (resp. same) logic
values. Assuming the single fault, any fault occurring in LUT L
indicates that no faults occur in its fanin LUTs and therefore we
always have im ≡ im+1. As a result, we have cLi

= 0 for all
Li ∈ {im �= im+1}, and therefore the criticality of the encoded
LUT L is

1

2K
·

X
Le

i
∈{im≡im+1}

cLe
i

=
1

2K
·

X
∀Li

cLi
= cL.

This completes the proof.

The criticality of an SRAM bit in routing switches can be divided
into two components: c1→0

b
and c0→1

b
, i.e., the percentage of input

vectors that make the 0 → 1 and 1 → 0 fault observable at the
primary outputs, respectively. In addition, c1→0

b
and c0→1

b
are

bounded by their driver LUT, i.e., c1→0
b

(resp. c0→1
b

) equals to the
total OnSet(resp. OffSet) criticality of its driver LUT.

Based on the above lemmas, after the duplication of LUT L, the
total criticality reduction under the AND-encoding scheme is

ΔcAND =
X

Li∈OffSet

cLi
−

X
Li∈OnSet

cLi
+ δb · (c0→1

b − c1→0
b ),

and the total criticality reduction under OR-encoding scheme is

ΔcOR =
X

Li∈OnSet

cLi
−

X
Li∈OffSet

cLi
+ δb · (c1→0

b − c0→1
b ),

where δb is the number of SRAM bits in the corresponding routing
switches.

3.2 Algorithm and Complexity
The possibility of the LUT duplication and encoding is deter-

mined by the available LUT resource. An LUT cannot be dupli-
cated more than once since it can only use up to two outputs. On
the other hand, an LUT can be encoded more than once. In ad-
dition, duplication and encoding can be performed simultaneously
on an LUT. The possibility of duplication and encoding is con-
strained by the number of spare (non-occupied) input pins of an
LUT. Particularly, we have the following lemma to quantitatively
express such constraints.

Lemma 3. If a K-LUT has p occupied input pins and p < K,
the total number of atomic operations (duplication and encoding)
that can be applied to this LUT cannot exceed (K − p), and the
duplication can only be done at most once.

Proof. We show that each atomic operation occupies one spare
input pin. It is clear that each encoding operation occupies exactly
one original spare input pin. A duplication operation effectively
occupies one input pin. In other words, A1 must be set as constant
0 in a Xilinx Virtex-5 LUT, as shown in Figure 1.

Based on Lemma 3, the FMD problem can be formulated as the
following ILP problem:

Maximize
P

L∈Luts(C) wL · dL

Subject to dL +
P

f∈fanin(L) df ≤ SL, ∀L ∈ Luts(C),

dL ∈ {0, 1},

(4)

where for each LUT L ∈ Luts(C), we introduce a 0-1 variable
dL where dL = 1 if LUT L is duplicated, and dL = 0 other-
wise. SL is the number of spare input pins of LUT L, and wL =
max(ΔcAND, ΔcOR). Formulation (4) guarantees that the encoding
scheme which leads to the maximal criticality reduction between
AND-encoding and OR-encoding is selected.

Theorem 1. The decision version of problem (4) is NP-hard.

Proof. We prove the NP-hardness of Problem (4) by a reduc-
tion from 3-SAT. Given a 3-SAT instance with variables x1, · · · , xn

and clauses C1, · · · , Cm, we construct Problem (4) as follows. We
construct DAG G = (V, E) where V = {S, T}∪{x1, · · · , xn, x1, · · · ,
xn}∪{C1, · · · , Cm}. For the edge set E, we have (S, xi) ∈ E, (T, xi)
∈ E, (xi, xi) ∈ E for 1 ≤ i ≤ n and (xi, Ci) ∈ E if Cj contains
literal xi ((xi, Ci) ∈ E if Cj contains literal xi). The weight for
each node is defined as follows. wS = wT = (m + 1)(2n + 2),
wxi

= wxi
= m + 1 and wCj

= 1. We finally set K = 6. Then the

constraints in the ILP can be expressed as follows.

dT + dS + dxi
+ dxi

≤ 3, 1 ≤ i ≤ n
dz1 + dz2 + dz3 + dCj

≤ 3, 1 ≤ j ≤ m, z1, z2, z3 are literals in Cj .

Based on the weight selection, we can see that the optimal solu-
tion of the constructed Problem (4) will duplicate both S and T ;
furthermore, it will duplicate exactly one out of each pair xi and
x̄i; finally it will try to duplicate as many Cj ’s as possible. By the
second set of ILP constraints, A Cj can be duplicated if and only
if one of its literals is duplicated. Hence, the given 3-SAT instance
is satisfiable if and only if the constructed Problem (4) can achieve
objective value 2(m+1)(2n+2)+(m+1)n+m, and a literal is set
true in the truth assignment if and only if its corresponding LUT
is duplicated.

Although Theorem 1 proves that Problem (4) is NP-Hard under
arbitrary weights wi, the complexity of FMD remains unknown as
it is not clear if there exists a configuration which results in weight
assignments for wi used in the proof.

Problem (4) exhibits a nice structure of the min-cost discrete
generalized network flow (GNF) as shown in Figure 4(a). Although
the worst case complexity of a discrete GNF problem remains NP-
Hard [12], there exist efficient combinatorial algorithms to solve it
in polynomial behavior [13].

3.3 Example
Let us illustrate the proposed FMD algorithm using the circuit

shown in Figure 3 assuming K = 4. The FMD problem can be
transformed to a min-cost discrete GNF shown in Figure 4(a) as
follows. Each level-1 node dL in the flow network represents the
duplicability of LUT L, and each level-2 node SL expresses the
spare pin number of LUT L. Note that only dA, dB , dD are shown
in level-1 because LUT C and LUT E are in the last logic level,
and therefore cannot be duplicated. The tuple in each arc denotes
(capacity, cost). The capacity of a (SL, t)-arc is SL, which serves
as the constraints in the above ILP formulation. The weight of
a (s, dL)-arc is −wL and the supply flow in source node s is ∞.
The value r associated with each node is the gain factor, which
means that flow f becomes r · f when it exits from this node. In
FMD the gain factor for node dL is equal to the number of fanins
of LUT L. It is easy to verify that this GNF is equivalent to the
integer programming-based Formulation (4). The solution of the
FMD problem can be obtained by the flow amount in (s, dL)-arcs
after solving this min-cost GNF problem with integer flow values,
i.e., discrete GNF. One feasible solution of this GNF problem is
shown by the bold arcs in Figure 4(a) and the corresponding FMD
result is shown in Figure 4(b). For instance, LUT D is encoded
due to flow in (dA, SD)-arc, and it is also duplicated due to flows
in (s, dD)-arc and (dD, SD)-arc.

A

B

D

E

C

Figure 3: A sub-circuit example
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(b) A FMD solution corresponding to the flow (bold arcs)
in Figure 4(a) for the circuit in Figure 3

Figure 4: FMD example

4. PMD ALGORITHM
As a generalization of FMD, PMD allows partial encoding of

the fanout LUTs of a duplicated LUT, and therefore it is more
flexible. It can be shown that Lemma 2 remains true under PMD
but Lemma 1 no longer holds under PMD. Essentially the PMD
of LUT L does not mask faults observable along paths starting
from its non-encoded fanouts, and therefore the update of criticality
cannot be simply obtained based on Lemma 1.

Given an LUT L with non-saturated3 fanouts f1, · · · , fp, the
duplication of LUT L requires the encoding of at least one of
its non-saturated fanouts. In general, each fanout can be AND-
encoded, OR-encoded or non-encoded for LUT L, and therefore
there are (3p − 1) fanout encoding options, which are denoted as
Φ(L) = {φ(L, 1), · · · , φ(L, 3p−1)}. For each option φ(L, j), we can
pre-compute the modified criticality of LUT L after applying such

an encoding, and denote the reduction of criticality as wj
L
. Since

AND(OR)-encoding only changes the criticalities of 0(1) configuration
bits of an LUT, we only need to compute the modified criticality
of LUT L by applying pure AND(OR)-encoding, and the criticality
caused by the mixed encoding can be calculated by merging the
corresponding pure encodings as shown in Figure 5. As a result,
we only need to perform 2p+1 computations for the criticality in-
stead of 3p.

Note that wj
L

can be computed by performing O(N ·max(|Φ(L)|))
iterations of full-chip random simulations, where N is the number
of LUTs and max(|Φ(L)|) is bounded by the maximal fanout num-
ber, which is a small constant in practice. In addition, only those

options that have positive wj
L

are kept since our objective is to max-
imize the criticality reduction. As shown in Figure 6, most LUTs
have less than 9 fanouts and a threshold 512 is used to control the
size of Φ(L) taken into account. We use an emulator-based ap-
proach to perform logic simulation and therefore can pre-compute

wj
L

very efficiently.
Similar to FMD, the update of the criticality for one LUT after

PMD is independent of that for another LUT under the single
fault assumption, and therefore PMD can be solved optimally by

3
A fanout is saturated if the corresponding fanout LUT has no spare pins for

duplication or encoding. Otherwise, it is non-saturated.

LUT
2

LUT
2

LUT
2 x

x
x

Figure 5: The modified criticality after two AND-encoding
and one OR-encoding can be calculated by merging the
modified bit criticalities in OffSet due to two AND-encodings
and those in OnSet due to one OR-encoding.
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Figure 6: Fanout distribution of 20 MCNC benchmarks
(mapped by 6-LUTs)

a mathematical formulation. Essentially, PMD selects a subset of
LUT to duplicate. For each of those duplicated LUTs, the encoding
schemes for its fanout LUTs are decided. We formulate the PMD
problem as an ILP shown in (5) by introducing a 0-1 variable dL

with the same meaning as it is in Formulation (4), and a 0-1 variable

ej
L
, where ej

L
= 1 if option φ(L, j) is used for encoding of the

fanouts for LUT L.

Maximize
X

L∈Luts(C)

|Φ(L)|X
j=1

wj
L
· ej

L

Such that dL =

|Φ(L)|X
j=1

ej
L

, ∀L∈ Luts(C)

dL +
X

f∈fanin(L)

|Φ(L)|X
j=1

gL
f,j · ej

f
≤ SL, ∀L∈ Luts(C)

dL ∈ {0, 1} ej
L
∈ {0, 1}

(5)
where the first set of constraints guarantee that one and only one
encoding scheme is used if an LUT L is duplicated, and the sec-
ond set of constraints guarantee that the required resource (du-
plication and encoding) for an LUT does not exceed the available
amount(similar to the FMD constraints), and constant coefficient
gi

f,j
is defined as

gL
f,j =

j
1, if L ∈ φ(f, j)
0, otherwise.

It is easy to show that Formulation (5) is a generalized case of
Formulation (4). Particularly, for a circuit with a tree structure,
where each LUT has only one fanout, we have |Φ(L)| ≡ 1 and
thereby dL ≡ eL for all LUT L. In this case, dL and eL can be
merged as one variable, and therefore Formulation (5) is reduced
to Formulation (4). Since we have shown that Formulation (4) is
NP-hard in Theorem 1, we have

Theorem 2. The decision version of problem (5) is NP-hard.

Again we show that Formulation (5) has a nice generalized net-
work flow structure, which means it can be solved efficiently.
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4.1 Example
Consider the circuit example shown in Figure 3. Only AND-

encoding is assumed for the sake of simplicity. The corresponding
GNF for PMD has the similar structure as its counterpart for FMD,
except that for each node dL corresponding to LUT L we introduce

a set of new nodes ej
L

to represent encoding options φ(L, j) for L’s

fanouts. An arc (ej
L

, sK) is added if LUT K is one of the fanouts
of L and it is encoded in option φ(L, j). A gain factor is associated

with each node ej
L
, and it is equal to the number of encoded fanouts

in option φ(L, j). For instance, there are 2 fanouts of LUT A and
therefore |Φ(A)| = 3, i.e., φ(A, 1) = {C} (only encoding LUT C),
φ(A, 2) = {D} (only encoding LUT D) and φ(A, 3) = {C, D} (en-
coding both LUT C and LUT D), if LUT A is duplicated. It is
easy to verify that this GNF is equivalent to Formulation (5). A
feasible solution of the GNF in Figure 7(a) is shown in bold arcs
and the corresponding PMD result is shown in Figure 7(b), where
three LUTs (A, B, D) are duplicated and three LUTs (C, D, E) are
encoded.
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)
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(a) Min-cost generalized flow network
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Figure 7: PMD example

5. EXPERIMENTAL RESULTS
The proposed FMD and PMD algorithms are implemented in

C++ with the mosek [14] solver on a Ubuntu server with Xeon
2.4GHz CPU and 2Gb of memory. The 20 biggest MCNC bench-
marks are tested. Throughout the experiments, the 6-input 2-
output LUT structure and a cluster size of 4 in Xilinx Virtex-5
FPGA architecture is assumed. All benchmarks are first mapped
by Berkeley ABC technology mapper [15] with edge flow optimiza-
tion, which has a special property that the mapped circuits are
more suitable to be packed into dual-output LUTs [5]. The origi-
nal circuits are clustered by TV-Pack packing tool, and placed and
routed by VPR [16]. Then, the routing resource utilization (includ-
ing the configuration bits in the switch boxes and the connection

Figure 8: Experimental flows

boxes along the path of an interconnect) is extracted. As the dedi-
cated clustering, placement, and routing that consider dual-output
LUTs are not available in the current TV-Pack and VPR tool set,
we use the post-routing results produced by the original circuit
to estimate the routing resource utilization for the optimized (by
FMD/PMD) circuits with dual-output LUTs4. Since the number
of routing configuration bits of a net may increase after duplica-
tion(due to the extra interconnect of the duplicating output), we
estimate the number of configuration bits after routing by the fol-
lowing empirical rule: the wire length (proportional to the num-
ber of configuration bits) is proportional to the square root of the
area (proportional to the number of LUTs). Once the number of
configuration bits in the interconnects is obtained, we perform the
full-chip logic simulation to calculate the fault rate, considering the
single fault in both LUTs and interconnects. The criticality and
the fault rate calculation can be done by an FPGA-based emula-
tor, which takes less than 1s for runtime per circuit. In the set of
experiments, we assume γ = 1.0 in (3) for all FPGA devices. In
addition, we assume the same FPGA device for each circuit, i.e.,
the same A in eq. 3.

Three sets of CAD flows (shown in Figure 8) are compared in
our experiments. In the baseline algorithm (“base” in Figure 8 (a)),
benchmarks are first mapped to 6-LUTs and then the LUT merge
algorithm in [4] is used to merge pairs of small LUTs (<4 inputs)
into dual-output LUTs. In the second set of CAD flows (“fmd”
and “pmd” in Figure 8 (b)), the proposed resynthesis (FMD or
PMD) is performed on the 6-LUT-mapped circuits, and then the
aforementioned LUT merge algorithm is applied. Note that both
fmd and pmd preserve logic depths of the baseline flow. To further
explore the potential of the proposed algorithms, the third set of
CAD flows (“fmd-R” and “pmd-R” in Figure 8 (c)) adds explicit
area redundancy for fault masking by first mapping the benchmarks
with 5-LUTs. This reserves at least one spare pin for each LUT to
increase the opportunities of duplication by FMD and PMD.

The experimental results for the baseline algorithm and the pro-
posed resynthesis flows (fmd, pmd, fmd-R and pmd-R) are summa-
rized in Table 1. It shows that the four proposed resynthesis flows
achieve different tradeoff among fault tolerance, area and perfor-
mance. For combinational circuits as shown in the upper part of
Table 1, fmd increase MTTF5 by 14% without area overhead, and
pmd increases MTTF by 27% with 4% area overhead, while both
preserving the logic depth, compared to the baseline algorithm. For
sequential circuits, both fmd and pmd increases MTTF by about
23% without area overhead. We found that the majority of the du-
plication and encoding for sequential circuits occur in those LUTs
lying in the boundary defined by FFs, and those LUTs that drive
FFs mostly do not have multiple fanouts. Therefore, fmd and pmd

produce very similar results for sequential circuits.
With explicit area redundancy, more significant improvement of

MTTF is obtained by both fmd-R and pmd-R. Specifically, pmd-R

4
Note that the area and performance of the duplicated circuits can be further

improved using intelligent clustering, placement and routing algorithms, which ab-
sorb the duplicated interconnects into CLBs and therefore minimize the impact to
the global routing. These algorithms will be our future work.
5

MTTF ratio is calculated based on the reciprocal of the fault rate for each
benchmark circuit [17].
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combinational circuits
circuit characteristics # of LUTs fault rate logic depth

circuit PI# PO# reg# base fmd pmd fmd-R pmd-R base fmd pmd fmd-R pmd-R base/fmd/pmd fmd-R/pmd-R

alu4 14 8 0 442 442 471 537 594 0.51% 0.48% 0.41% 0.33% 0.25% 5 6
apex2 39 3 0 600 602 634 741 779 0.43% 0.36% 0.35% 0.23% 0.20% 6 7
apex4 9 19 0 533 537 550 651 664 1.67% 1.40% 1.23% 1.09% 0.71% 5 6
des 256 245 0 531 531 531 949 950 1.94% 1.94% 1.94% 1.28% 1.07% 4 4

ex1010 10 10 0 642 647 652 735 781 1.66% 1.25% 1.22% 1.14% 0.95% 5 6
exp5p 8 63 0 337 340 348 436 437 1.07% 0.98% 0.76% 0.71% 0.50% 4 5
misex3 14 14 0 425 428 463 506 553 0.82% 0.71% 0.58% 0.50% 0.33% 5 6

pdc 16 40 0 1377 1385 1397 1910 1911 1.29% 1.15% 1.04% 0.77% 0.60% 7 8
seq 41 35 0 629 631 661 804 850 0.90% 0.79% 0.70% 0.53% 0.42% 5 5
spla 16 46 0 1296 1300 1312 1836 1842 1.63% 1.42% 1.39% 0.99% 0.85% 7 8

GeoMean 21 24 0 615 618 638 804 835 1.07% 0.94% 0.85% 0.67% 0.51% 5.21 5.98
Ratio 1 1.0047 1.0366 1.3066 1.3577 1 0.8769 0.7904 0.6232 0.4801 1.00 1.15

MTTF Ratio 1 1.1410 1.2756 1.6476 2.1254

sequential circuits
bigkey 263 197 224 518 518 518 798 742 1.56% 1.33% 1.26% 1.16% 1.12% 3 3
clma 383 82 33 2868 2868 2869 3242 3234 0.10% 0.08% 0.08% 0.07% 0.07% 9 11
diffeq 28 3 305 534 536 537 573 566 1.20% 0.98% 0.96% 0.75% 0.68% 8 10
dsip 228 197 224 665 665 665 782 782 1.70% 1.73% 1.73% 1.46% 1.46% 3 3

elliptic 19 2 194 322 323 323 271 270 1.18% 0.95% 0.94% 0.90% 0.88% 6 8
frisc 20 116 886 1868 1868 1872 2233 2228 1.38% 1.15% 1.14% 0.66% 0.64% 14 17
s298 3 6 14 20 20 20 24 23 2.03% 1.50% 1.50% 1.25% 1.19% 2 2

s38417 29 106 1462 1991 1993 2005 2338 2314 1.70% 1.43% 1.39% 1.20% 1.05% 6 8
s38584.1 39 304 1260 1972 1976 1985 2408 2378 1.51% 1.27% 1.24% 1.01% 0.95% 7 8

tseng 52 122 385 640 664 667 743 741 1.51% 1.16% 1.13% 0.86% 0.82% 7 10
GeoMean 46 47 247 661 664 665 767 755 1.15% 0.95% 0.94% 0.77% 0.73% 5.63 6.66

Ratio 1 1.0047 1.0066 1.1601 1.1415 1 0.8287 0.8145 0.6649 0.6338 1.00 1.18
MTTF Ratio 1 1.2337 1.2426 1.4700 1.5023

Table 1: Summary of experimental results

increases MTTF by 113% with 36% area overhead and 15% logic
depth increase for combinational circuits, and it increases MTTF
by 50% with 14% area overhead and 18% logic depth increase for
sequential circuits. Remarkably, pmd-R reduces fault rate by about
2× with only 24% area overhead and 20% logic depth increase
for “apex4”. Note that the effectiveness of fmd-R and pmd-R for
sequential circuits is less significant than that for combinational
circuits. In fact, optimization such as technology mapping and
retiming can be performed before or simultaneously with fmd-R

and pmd-R to create more opportunities for the duplication and
encoding. This will be an interesting future research topic.

The runtime for our proposed algorithms are less than 2 minutes
for all cases. In addition, it is interesting that although fmd-R

duplicates fewer LUTs than pmd-R, it results in larger area for
sequential benchmarks (767 vs. 755 on average). This is because
more small LUTs (<4 inputs) are used for duplication and encoding
in fmd-R due to the fully-masking constraint, and as a result the
LUT merge algorithm becomes less effective for fmd-R.

6. CONCLUSIONS AND FUTURE WORK
We have presented a fault-tolerant post-mapping resynthesis which

explicitly exploits the dual-output LUT architecture. The LUT
duplication problem is formulated as a generalized network flow
problem, which can be solved very efficiently. Our experimental
results are encouraging and show 27% MTTF improvement with
4% area overhead and 2× MTTF improvement with 36% explicit
area overhead, compared to ABC technology mapping.

In the future, the following research directions can be explored.
As our experiments present the area-robustness-performance trade-
off of the two extreme cases (mapping with 6-LUTs and 5-LUTs),
simultaneous technology mapping and resynthesis should be stud-
ied in order to traverse the Pareto points in the solution space and
to maximize the robustness under area/performance constraints.
In addition, besides AND-Encoding and OR-Encoding, other logics
(e.g., NAND and NOR, or other more complicated logics) can also
be used to mask faults in their upstream circuit. Furthermore,
while the proposed technique places masking logic immediately af-
ter a duplicated LUT, the area overhead may be reduced by placing
masking logics at the end of a series of duplications. Finally, we will
study the dual-output-aware physical synthesis, including cluster-
ing, placement and routing, to mitigate the impact of the proposed
approach on performance.
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