
RALF: Reliability Analysis for Logic Faults

— An Exact Algorithm and Its Applications

Samuel Luckenbill1, Ju-Yueh Lee2, Yu Hu3, Rupak Majumdar1, and Lei He2

1. Computer Science Department, University of California, Los Angeles

2. Electrical Engineering Department, University of California, Los Angeles

3. Electrical Engineering Department, University of Alberta, Edmonton Canada

Abstract—Reliability analysis for a logic circuit is one of the
primary tasks in fault-tolerant logic synthesis. Given a fault
model, it quantifies the impact of faults on the full-chip fault
rate. We present RALF, an exact algorithm for calculating the
reliability of a logic circuit. RALF is based on the compilation
of a circuit to deterministic decomposable negation normal form
(d-DNNF), a representation for Boolean formulas that can be
more succinct than BDDs. Our algorithm can solve a large set
of MCNC benchmark circuits within 5 minutes, enabling an
optimality study of Monte Carlo simulation, a popular estimation
method for reliability analysis, on real benchmark circuits. Our
study shows that Monte Carlo simulation with a small set of
random vectors generally has a high fidelity for the computation
of full-chip fault rates and the criticality of single gates. While
we focus on reliability analysis, RALF can also be used to
efficiently locate random pattern resistant faults. This can be
used to identify where methods other than random simulation
should be used for accurate criticality calculations and where to
enhance the testability of a circuit.

I. INTRODUCTION

Fault-tolerant techniques are increasingly important for

designing robust systems in modern circuit technologies.

Conventional semiconductor devices using scaled CMOS are

vulnerable to soft errors (e.g., due to single-event upsets),

resulting in a reduced mean time to failure (MTTF), and

nano devices (e.g., carbon nano-tubes) suffer from excessive

manufacturing defects, reducing yield. Thus, a lot of recent

research has focused on system optimizations that target fault

tolerance. In this paper, we focus on technology-independent

logic optimizations for fault tolerance at the circuit level.

Reliability analysis of logic circuits is one of the funda-

mental algorithmic tasks for many optimization algorithms

for fault tolerance. It computes the signal probability of

logic gates under an input distribution, and the probability

of the propagation of errors among logic gates under given

fault models. It also identifies useful metrics for individual

circuit components which can be used to guide logic synthesis

to optimize a circuit for reliability. For instance, reliability

analysis can compute criticality of a gate, the number of input

vectors for which a fault at this gate is observable at the

primary outputs divided by the total number of input patterns.

In addition, reliability analysis serves in the verification phase

to assess the robustness of the overall circuit after a logic

optimization.

Existing reliability analysis approaches can be divided into

the following two categories: simulation-based [1] and sym-

bolic [2]–[4]. Simulation-based analyses propagate a set of test

vectors through the circuit and observe the output behavior.

Due to the huge number of input combinations, one usually

cannot afford to obtain an exact solution using a simulation-

based analysis. Nevertheless, simulation-based approaches us-

ing random input vectors and Monte Carlo sampling are

popular because of their flexibility, runtime controllability, and

ease of implementation. For example, they have been used in

a few recently proposed fault-tolerance techniques [1], [5].

Symbolic analyses use formal methods to propagate proba-

bilities through a symbolic representation of a circuit, e.g., a

DAG-based netlist [4], a representation for Boolean functions

[6], or a representation for probabilistic networks [3], [7], [8].

However, exact symbolic algorithms are difficult to scale in the

presence of path re-convergence [2], [3],1 and approximations

introduced in practical implementations often produce large

estimation errors [4] and have poor estimation of reliability

compared to simulation-based approaches.

In this paper, we propose an exact symbolic algorithm,

RALF (Reliability Analysis for Logic Faults), for technology-

independent circuit reliability analysis. The key technical

innovation in RALF is the compilation of circuits into a

representation for Boolean functions called deterministic de-

composable negation normal form (d-DNNF) [9]. The fault

rate at the primary output can be computed in time and

space linear in the size of the d-DNNF representation, even

in the presence of path re-convergence in the circuit. The d-

DNNF representation is generally more succinct than a BDD

representation, enabling RALF to scale to practical circuits.

Unlike existing symbolic analysis approaches using exhaustive

enumeration of satisfying assignments, BDDs, or probabilistic

transfer matrices [3], RALF scales to many real-world circuit

benchmarks and finds both the exact fault rate for the full

circuit and the exact criticality for each individual gate in

the circuit. For most of the MCNC big 20 circuits [10],

RALF returns the accurate criticality for one gate in under one

minute. It can computes the full-chip fault rate for a circuit

with 200 inputs and 238 gates in under 5 minutes. In contrast,

1For example, the algorithm from [3] took over 10 minutes to compute the
fault rate for a MCNC benchmark (9symml) with nine inputs.

978-3-9810801-6-2/DATE10 © 2010 EDAA

an equivalent BDD-based technique does not scale for these

circuits.

Using RALF, we present an optimality study of Monte Carlo

simulation for reliability analysis. Although the accuracy of

Monte Carlo simulation has been studied based on between-

simulation variability, it is not known how far the criticality

estimations obtained by Monte Carlo simulation are from exact

values. The scalability of RALF makes such a study feasible

for real benchmark circuits. Tested on 93 MCNC benchmark

circuits, our study shows the following indications.

• For uniformly distributed faults, 1K randomly generated

test vectors are sufficient to obtain a relatively accurate

estimation of the full-chip fault rate for most of the

MCNC circuits;

• For non-uniformly distributed faults, a large set of ran-

dom vectors or a set of dedicated test vectors are required

to obtain an accurate estimation of the full-chip fault rate;

• 64 random vectors that can be implemented easily in a

64-bit machine are sufficient to obtain a sufficiently good

assessment of the relative criticality of individual gates

for fault-tolerant optimization.

Furthermore, for random pattern-based circuit testing, RALF

can be used to identify random pattern resistant (RPR) faults

[11]. RPR faults are faults with very low detection probabil-

ities; specifically those that are hard to detect with random

patterns. In fact, the criticality of a logic gate returned by

RALF is equal to the fault detection probability. In general,

fault-tolerant logic synthesis tends to increase logic masking

to prevent the propagation of faults [1], [5], which inevitably

lowers the testability of a circuit [12]. By using RALF for

post-synthesis RPR fault detection, BIST or other testability

enhancement techniques can be specifically applied to gates

with RPR faults.

II. PRELIMINARIES

Circuits and Faults. We restrict attention to combinational

circuits, which are modeled in the usual way as directed

acyclic graphs with a set of primary inputs, a set of primary

outputs, and internal gates. For a circuit C with k primary

inputs, and x ∈ {0, 1}
k
, we denote by C(x) the value of

the primary outputs when the input vector x is applied to the

primary inputs. For a circuit C and a node n of C, we denote

by C(n̄) the circuit identical to C except that the output of

node n is negated. We denote by |C| the number of nodes in

C. For circuit C and node n of C, we write Cn(x) for the

output of node n when the input vector x is applied to the

primary inputs.

We use von Neumann faults as our fault model, in which

each node of a circuit can be flipped independently with a

certain probability. In the following, we assume the probability

that a node is faulty is known. In the literature, the stuck-at

fault model, where each node of a circuit can be stuck at a

constant 0 or 1 with a certain probability, is often studied. Our

fault simulation algorithm can be easily modified to handle this

fault model.

AND

OR -x2

AND -x1

x1 x3

Fig. 1. d-DNNF Representation for ∆

Let C be a circuit with k primary inputs. We define the

criticality critn of a node n of C as

critn =
1

2k
|{x ∈ {0, 1}

k
| C(x) 6= C(n̄)(x)}|, (1)

Intuitively, the criticality of a node is a measure of the sensi-

tivity of a node with respect to faults. An input x for which

C(x) 6= C(n̄)(x) is said to cause an observable erroneous

output.

The full-chip fault rate of a circuit C is the percentage of

the primary input vectors which cause observable erroneous

outputs due to faults. If the single-fault model is assumed, the

full-chip fault rate of a circuit C is calculated by the average

criticality of all nodes in C, and it is defined by the following

equation:

fault rate(C) =

∑

n∈C
critn · PF (n)

|C|

where PF (n) is the probability that a fault occurs at node n.

The signal probability of a node n of circuit C is defined by

the probability that the logic value of a node’s output signal

is 1, that is, 1

2k |{x ∈ {0, 1}k | Cn(x) = 1}|.

d-DNNF Representation. Our algorithm is based on deter-

ministic decomposable negation normal form (d-DNNF) [9],

a representation for propositional formulas. A negation normal

form (NNF) is a rooted DAG whose leaves are either the

constants 0 or 1 or a literal (a variable or its negation),

and whose internal nodes are either OR nodes or AND

nodes. A deterministic decomposable negation normal form

(d-DNNF) is a NNF which satisfies the following additional

conditions: (1) Determinism: the children of any OR node are

pairwise logically inconsistent and (2) Decomposability: the

descendants of any AND node do not share any variables.

Consider the circuit:

∆ = (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) (2)

Figure 1 shows one possible d-DNNF representation of ∆, as

produced by the c2d compiler [13]. It is in d-DNNF because

it uses only conjunctions, disjunctions and negations, the left

and right branches of the disjunctions are logically inconsistent

(one contains ¬x1 and the other contains x1 ∧ x3), and the

children of the conjunctions share no common variables.

A reduced-ordered binary decision diagram (ROBDD, or

BDD in short) [14] can be considered in d-DNNF form, since

every internal node of a BDD is of the form (x∧α)∨(¬x∧β),
i.e., the representation maintains determinism, and the variable

x does not appear in α or β, i.e., the representation maintains

decomposability. However, it is known that in general, the

BDD representation of a formula is more restrictive than the d-

DNNF representation [9], and hence a d-DNNF representation

of a formula can be more succinct than its BDD representation.

III. THE RALF ALGORITHM

A. Signal Probability Computation

Let C be a circuit with one primary output. For each primary

input x, let p(x) be the probability that the input is 1. By
compiling a circuit into a d-DNNF representation, we compute

the probability, under the input distribution given by p, that the

output of the circuit is 1. The algorithm recursively computes

a function val(α) that assigns each node of the d-DNNF the

probability that the output of the node is 1:

val(α) =

p(x) If α is a variable x

1 − p(x) If α is the literal ¬x
∏

i

val(αi) If α =
∧

i

αi

∑

i

val(αi) If α =
∨

i

αi

(3)

The computation of val exploits the properties of determinism

and decomposability in the d-DNNF. The root of the d-DNNF

represents the primary output of the original circuit, so the

value computed for the root node is the probability that the

primary output of the original circuit is 1.

Leaf nodes in the d-DNNF represent literals, thus, val(n) =
p(x) for a leaf node n corresponding to a variable x and

val(n) = 1 − p(x) for a leaf node n corresponding to ¬x.

At disjunction nodes in the d-DNNF, we want to com-

pute the probability that one of the children evaluates to

1. If the sub-circuit represented at the disjunction node α

has two children β and γ. We want to compute Pr(α) =
Pr(β) + Pr(γ) − Pr(β ∧ γ). Determinism guarantees that

the children of any disjunction are pairwise inconsistent. This

means Pr(β ∧ γ) = 0 and Pr(α) = Pr(β) + Pr(γ).
The recursive algorithm gives us Pr(β) and Pr(γ), and the

algorithm sums the values of the children at disjunction nodes.

At conjunction nodes, we want to compute the probability

that every child evaluates to 1. The decomposability property

guarantees that no children of any conjunction share variables,

and hence the probabilities are independent. Thus, the algo-

rithm computes the product of the probabilities that each child

evaluates to 1.

The algorithm runs in time and space linear in the d-DNNF

representation.

B. Single-Node Criticality Analysis

Let C be a circuit and n a node of C. To measure critn,

we create a miter from the original circuit. The miter is

constructed from two copies of the original circuit that differ

only by an inverter at the output of n. The primary outputs of

the two copies are pairwise EXOR’d. For a given input, if any

EXOR evaluates to 1, we know the the inverted node affects

that output. By taking the OR of all of the EXORs, we get

a single output that evaluates to 1 when any primary output

is affected (Figure 2). The probability that the output of the

miter is 1 under a uniform distribution of inputs (i.e., for each

variable x, p(x) = 0.5) is exactly the criticality of the inverted

gate on the primary outputs of the original circuit.

PIs PIs

Original Copy

POs POs

Fig. 2. Miter

a b c d

a b a b c d c d

o o

Original Switched Circuit

s1 s2

s3

Fig. 3. Programmable-Miter

In our implementation, we first construct the miter and

convert it to conjunctive normal form (CNF) in time linear

in the size of the circuit. We then use the c2d compiler

[13] to compile the CNF to d-DNNF. Compilation can be

expensive: compiling to d-DNNF is as hard as counting the

number of satisfying assignments, but c2d uses extensive

caching to reduce compilation time. Specifically, it divides the

problem into subproblems by conditioning the CNF on subsets

of variables. For each subproblem, it enumerates satisfying

solutions to build d-DNNF, then caches the d-DNNF. If the

compiler revisits the same subproblem (a frequent occurrence),

it uses the cached d-DNNF version rather than re-building it.

If the miter can be compiled in a reasonable amount of

time, the exact analytic solution for criticality is obtained by

computing val using Equation (3) on the final d-DNNF. Since

the runtime of the algorithm is linear in the size of the d-

DNNF, the runtime is dominated by compilation.

C. Multi-Node Criticality Analysis

One important application for criticality analysis is to iden-

tify nodes with high criticality, e.g., to harden or re-synthesize

Circuit Characteristics Miter size Compilation time (s)

Name Gate# Input# Output# CNF d-DNNF BDD RALF BDD

Var# Clause# Node# Node#

i7 581 199 67 4168 9901 79637 - 138.24 -
mult32a 535 34 1 3243 8035 166976 - 118.85 -

i6 455 138 67 3363 8038 67295 895599 58.31 35639.97
i5 402 133 66 2662 6391 507965 - 59.99 -
b9 296 41 21 1560 3667 725729 67.97
i4 292 192 6 1877 4177 20231 - 3.78 -

my adder 259 33 17 1618 3976 29865 116621 10.03 75.78
cht 244 47 36 1782 4471 175055 2084948 8.55 5859.04
i2 238 201 1 1622 3547 103434 398017 4.84 91.88
lal 234 26 19 1348 3262 523283 - 67.77 -

TABLE I
10 LARGEST SOLVABLE CIRCUITS USING RALF WITH A 5-MINUTE TIMEOUT

them. Finding the highest criticality nodes requires calculating

the criticality of every node in the circuit. Using the single-

node criticality analysis described in Section III-B, we have

to compile a different miter for every node. In this section,

we introduce a more complex circuit called a programmable

miter. Combined with a slight modification to Equation (3)

and the introduction of some additional CNF constraints, the

programmable miter allows us to compile a single circuit from

which we can compute the criticality of all nodes.

To construct a programmable miter, we create two copies

of each gate in the original circuit: one exact and one whose

output is inverted. The outputs of the two copies are fed to

a MUX allowing us to switch between the exact and inverted

gates (Figure 3). This switched circuit allows us to choose

which node will be faulty at runtime instead of hard-coding

the faulty gate into the miter. Using this switched circuit

as the second copy, we construct a miter as described in

Section III-B, where the resulting programmable-miter has one

additional primary inputs for each MUX, to determine if the

“correct” or “inverted” copy of each gate is chosen.

Were we to compile the programmable-miter directly, the

result would be capable of calculating the criticality of any

number of simultaneous nodes. While this is desirable, com-

pilation becomes significantly more expensive because of the

number of possible states that must be considered. If there are

n nodes in the circuit, we now have n additional unconstrained

variables in the CNF. Without any additional constraints, the

compiler must consider all 2n possible assignments to these

variables and build a d-DNNF that captures the behavior

of programmable MUX in all possible configurations. To

make compilation more tractable, we introduce at-most-one

constraints into the CNF for these variables, which models

the condition that there is at most one fault at any time.

In order to use Equation (3) for criticality analysis on a

programmable miter, we need to constrain its MUX inputs.

For the faulty node’s MUX, we set the probability that its

control input is 1 to 1. For all other MUX inputs, we set the

probability that their control inputs are 1 to 0.

For a circuit with n nodes and a corresponding d-DNNF

with m nodes, we can compute the criticality of all n nodes

in O(nm) time, assuming at most one fault.

IV. APPLICATIONS AND RESULTS

A. Tractability of RALF

In this section, we evaluate the performance of our pro-

posed RALF using the MCNC benchmark set. We chose 183

benchmarks from the third set in the MCNC suite. These

benchmarks, when expressed as and-inverter graphs, range

from 1 to 12126 AND gates with 820 gates on average. The

number of inputs to each circuit ranges from 2 to 257, with

an average of 29. The majority of circuits have less than 2000

gates and less than 50 inputs. Assuming the von Neumann

fault model with a single-fault constraint (only one fault occurs

during each cycle), we ran RALF on 183 benchmarks. 93

(51%) could be solved in under 5 minutes and 89 (49%)

could be solved under one minute. Compilation to d-DNNF

is performed by c2d [13]. All experiments were run on a

2.83GHz Intel Xeon with 6MB cache and 11GB of RAM.

With a 5-minute timeout, the 10 largest solvable benchmarks

and their runtime are summarized in Table I. Note that Table I

only shows the compilation time (the time required to convert

a circuit from CNF to a functionally equivalent circuit in d-

DNNF) since compilation time dominates the total runtime.

As mentioned, BDD is a restricted form of d-DNNF, and

therefore we can convert a circuit to its BDD-based repre-

sentation and then propagate the probability along the BDD

using the similar method as RALF. In Table I, we compare

RALF with the BDD-based exact solution, where BDD is

constructed using Berkeley ABC tool [15] with a 10-hour

timeout. The comparison result is also summarized in Table I

in terms of number of gate and runtime, where ’-’ indicates

BDD compilation cannot finish within 10 hours. The result

shows that the d-DNNF representation is significantly smaller

than the BDD representation, approximately 14% of the size

on average. Furthermore, only 4 of the 10 circuits could be

compiled to BDDs, and RALF overwhelmingly outperforms

the BDD-based method in terms of runtime.

For circuits on which RALF did not finish within 5 minutes,

we can often calculate the criticality of each gate individually.

The full chip fault rate can be obtained after solving criticality

gate by gate, and the total runtime is the sum of the runtime of

the single-gate calculations. Table II summarizes the runtime

for solving the exact criticality of one gate in each of the

10 biggest MCNC combinational circuits. Most of the com-

putations for a single gate completed within 2 seconds while

“apex2” and “des” did not finish within a 1-hour timeout.

Circuit Gate# Input# Output# Runtime(s)

alu4 2403 14 8 43.81

apex2 3191 39 3 -

apex4 1422 9 19 1.17

des 2508 256 245 -

ex1010 5366 10 10 184.54

ex5p 1470 8 63 0.12

misex3 3652 14 14 0.99

pdc 7553 16 40 2.14

seq 2951 41 35 0.27

spla 7472 16 46 0.88

TABLE II
RUNTIME FOR EXACT COMPUTATION OF ONE GATE IN 10 BIGGEST MCNC

COMBINATIONAL CIRCUITS WITH A ONE-HOUR TIMEOUT.

B. Application 1: Fidelity Study of Monte Carlo Simulation

The exact solutions provided by RALF allow us to evaluate

the accuracy of Monte Carlo simulation. We use both RALF

and Monte Carlo simulation to compute the criticality of

each gate in a circuit. We assume a uniform distribution of

the primary input vectors and that each input has a signal

probability of 0.1, i.e., the probability that an input is 1 is

10%2.

Under the set of solvable MCNC circuits solved by RALF,

we first study the accuracy of Monte Carlo simulation for

full-chip fault rate computations by comparing the Monte

Carlo Error (MCE) from simulations with 1K and with 128K

random vectors. MCE is the absolute value of the difference

between the value produced by the Monte Carlo simulation

and RALF, our exact algorithm. The relative MCE is the

MCE divided by the exact solution. As shown in Figure 4,

for most circuits, Monte Carlo simulation using 1K vectors

gives a close estimation to the exact solution (with a mean

error of 0.5% and a mean relative error of 1%). Note that

the improvement reported by most of the existing fault-

tolerant synthesis algorithms [1], [5] is above 10% (relative

improvement). Therefore, an estimation error under 1% given

by the Monte Carlo simulation with 1K vectors is sufficient

to assess the quality of these algorithms. On the other hand,

we note that increasing the length of random vectors to 128K

can reduce the relative MCE from 1% to 0.3%, but that such

a small precision improvement is not justified by over 100x

runtime increase.

Figure 5 shows the maximal MCE and relative MCE of

the criticality values for all gates in a circuit. Monte Carlo

simulation using 1K vectors has a large maximal relative MCE,

i.e., for certain gates, the estimation is far from the exact

value. The relative MCE can be significantly reduced using

128K random vectors. This observation indicates that for non-

uniformly distributed faults, a large set of random vectors are

needed to estimate the full-chip fault rate. In this case, it is

beneficial to design a set of dedicated test vectors to capture

corner cases that purely random vectors would not cover.

To evaluate the criticality of single gates in a circuit, Figure

6 compares the accuracy of Monte Carlo simulation with

2Similar observations are obtained under other signal probability settings,
including 0.5 and 0.9.

0 0.005 0.01 0.015
0

2

4

6

8

10

12

14

Full−chip fault rate, MCE: |RALF − MC|

of

 ci
rc

uit
s

1K vectors

128K vectors

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

Full−chip fault rate, relative MCE: |RALF − MC| / |RALF|

of

 ci
rc

uit
s

1K vectors

128K vectors

Fig. 4. Monte Carlo error (MCE) for full-chip fault rate over 93 MCNC
circuits with signal probability 0.1 for primary inputs

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

2

4

6

8

10

12

Criticality, maximal MCE: |RALF − MC|

of

 ci
rc

uit
s

1K vectors

128K vectors

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Criticality, relative maximal MCE: |RALF − MC| / |RALF|

o
f c

irc
uit

s

1K vectors

128K vectors

Fig. 5. Monte Carlo error (MCE) for criticality computation of single
gates in over 93 MCNC circuits with signal probability 0.1 for primary

inputs

64 random vectors and 128K random vectors for the “rd73”

MCNC circuit. To guide resource-constrained optimizations,

we are primarily interested in the ordering of nodes by their

criticality values. As shown in Figure 6, assuming uniformly

distributed faults3, the overall ranking of criticality produced

by 64 random vectors has a high fidelity to the exact solution.

Using fast simulation with 64 vectors, we can accurately

cluster gates into a few categories based on their criticality

values, thereby excluding the “noise” due to MCE. Note that a

logic simulation using 64 random vectors can be implemented

3Similar observation is seen for non-uniformly distributed faults.

very efficiently in bit-parallel fashion on a 64-bit CPU core.

0.6

0.8

1

1.2

de
cr
it
ic
al
it
y

Critiality Distribution of circuit ``rd73''

LOW MEDIUM HIGH CRITICAL

0

0.2

0.4

N
o

Gates

RALF Monte Carlo (128K) Monte Carlo (64)

Fig. 6. Criticality distribution of MCNC circuit rd73

C. Application 2: Detection of Random Pattern Resistant

Faults

As the criticality of a logic gate returned by RALF is equal

to the fault detection probability of the gate, RALF can identify

random pattern resistant (RPR) faults that are useful in re-

synthesis for testability after a fault-tolerant synthesis. Figure

7 shows the logic schematic of MCNC circuit “o64”, which

consists of AND gates at the primary inputs followed by a

network of OR gates. Due to logic masking, to propagate a

fault through an OR gate requires that all the non-faulty inputs

to be logic 0. Therefore, in “o64”, to propagate a fault at an OR

gate to the primary output, i.e., to detect a fault, requires that

all the other OR gates that are not in its transitive fanin network

have their inputs to be logic 0. However, under random input

vectors, it is rarely satisfied and results in extremely low fault

detection probabilities, i.e., criticality values. As a result, it is

hard to use random input vectors to cover the RPR faults that

occur in these gates. Using RALF, we can plot a distribution

curve of the fault detection probability for each gate in “o64”

(see Figure 8), and from the plot one can easily identify

RPR faults and use BIST or other testability enhancement

techniques for those gates with RPR faults.

OR

Network

Fig. 7. Logic schematic of “o64”

V. CONCLUSION

We have proposed RALF, an exact algorithm for reliability

analysis for fault-tolerant logic synthesis. We have applied

RALF to evaluate the fidelity of Monte Carlo simulation and to

identify RPR faults. While the d-DNNF data structure scaled

better than related representations such as BDDs, in the worst

case, the representation can be exponentially larger than the

Node 5:00 5E-09

Node 6:00 5E-09

Node 7:00 5E-09

Node 9:00 5E-09

Node 10:00 5E-09

Node 11:00 5E-09

Node 12:00 5E-09

Node 13:00 5E-09

Node 14:00 5E-09

Node 15:00 5E-09

Node 16:00 5E-09

Node 17:00 5E-09

Node 18:00 5E-09

Node 19:00 5E-09

Node 20:00 5E-09

Node 21:00 5E-09

Node 22:00 5E-09

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

Fa
ul

t d
et

ec
tio

n
pr

ob
ab

ili
ty

(c

rit
ic

al
ity

)

Logic gates

Fig. 8. Fault detection probability of “o64”

circuit. This is unavoidable for any exact representation, since

the reliability analysis problem is computationally hard. It

will be interesting to explore algorithms which combine exact

computations locally with approximations at the circuit level

which can scale without sacrificing precision.

RALF currently assumes that the inputs have independent

signal probabilities and that there is at most one error per

cycle. It will also be interesting to see if d-DNNF-based

computations can be used without these assumptions.

Acknowledgements We thank Adnan Darwiche and Knot

Pipatsrisawat for many helpful discussions and the anony-

mous referees for their suggestions. This work was patially

supported by State-Key-Lab of ASIC & Systems of Fudan

University and Actel.

REFERENCES

[1] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes, “En-
hancing design robustness with reliability-aware resynthesis and logic
simulation,” in Proc. Int. Conf. on Computer Aided Design, 2007.

[2] K. Parker and E. McCluskey, “Probabilistic treatment of general com-
binational networks,” IEEE Transactions on Computers, vol. C-24,
pp. 668–670, 1975.

[3] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes,
“Probabilistic transfer matrices in symbolic reliability analysis of logic
circuits,” ACM Trans. on Design Automation of Electronic Systems,
vol. 13, 2008.

[4] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, pp. 2957–
2969, 2004.

[5] Y. Hu, Z. Feng, R. Majumdar, and L. He, “Robust FPGA resynthesis
based on fault tolerant boolean matching,” in Proc. Int. Conf. on

Computer Aided Design, 2008.
[6] B. Zhang, W.-S. Wang, and M. Orshansky, “FASER: Fast analysis of

soft error susceptibility for cell-based designs,” in ISQED, pp. 755–760,
2006.

[7] T. Rejimon and S. Bhanja, “An accurate probalistic model for error
detection,” in VLSI Design, pp. 717–722, 2005.

[8] A. Abdollahi, “Probabilistic decision diagrams for exact probabilistic
analysis,” in Proc. Int. Conf. on Computer Aided Design, pp. 266–272,
2007.

[9] A. Darwiche, “Decomposable negation normal form,” Journal of the

ACM, vol. 48, p. 2001, 2001.
[10] S. Yang, “Logic synthesis and optimization benchmarks, version 3.0,”

tech. rep., Microelectronics Center of North Carolina (MCNC), 1991.
[11] N. A. Touba and E. J. McCluskey, “Automated logic synthesis of random

pattern testable circuits,” in International Testing Conference, 1994.
[12] S. Krishnaswamy, I. Markov, and J. Hayes, “Improving testability and

soft-error resilience through retiming,” in Proc. Design Automation Conf,
2009.

[13] A. Darwiche, “A compiler for deterministic, decomposable negation
normal form,” in In Proc. AAAI ’02, 2002.

[14] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[15] “ABC: A system for sequential synthesis and verification,” in
http://www.eecs.berkeley.edu/ alanmi/abc/.

