
Instruction Prediction
for Step Power Reduction

Zhenyu Tang”, Norman Chang, Shen Lin, Weize Xie, Sam Nakagawa, and Lei He”
Hewlett-Packard Laboratories. Pa10 Alto, CA 94306

‘ECE Dept., Univ. of Wisconsin, Madison, WI 53706

.4bstract- Because the inductive noise L d i l d t is induced
by the power change and can have disastrous impact on the
timing and reliability of the system, high-performance CPU
designs are more concerned with the step power reduction
instead of the average power reduction. The step power is
defined as the power difference between the previous and
present clock cycles, and represents the L d i l d t noise at the
microarchitecture level. Two mechanisms at the microar-
chitecture level are proposed in this paper to reduce the
step power of the floating point unit (FPU) , as F P U is the
potential “hot” spot of L d i l d t noise. The two mechanisms,
ramping up and ramping down F P U based on instruction
fetch queue (IFQ) scanning and PC + N instruction pre-
diction, can meet any specific s t ep power constraint. We
implement and evaluate the two mechanisms using a per-
formance and power simulator based on the SimpleScalar
toolset. Experiments using SPEC95 benchmarks show that
our method reduces the performance loss by a factor of four
when compared to a recent work.

I. INTRODUCTION

Because of the growing transistor budget, increasing
clock frequency and wider datapath width in the mod-
ern processor design, there is an ever-growing current to
charge/discharge the power/ground buses in a short time
[I], [2]. When the current passes through the wire induc-
tance (L) associated with power or ground rails, the voltage
glitch is induced and is proportional to L d i l d t , where d i / d t
is the current changing rate. Therefore, the power surge is
also known as Ldi ld t noise. Further, many power-efficient
microarchitecture techniques involve selectively throttling,
or clock gating certain functional units or parts of func-
tional units [3], [4], [5], [SI, [7], (81. Dynamic throttling
techniques may lead to an even larger surge current.

A large surge current may reduce the chip reliability, and
cause timing and logic errors, i.e., a circuit may switch at
the wrong time and latch the wrong value. Dealing with a
large surge current needs an elaborate power distribution
and contributes to higher design and manufacturing costs.
In this paper, we define the step power as the power dif-
ference between the previous and present clock cycles. We
use the step power as a figure of merit for power surges at
the microarchitecture level, and study how to reduce the
step power by ramping up and ramping down functional
units for high-performance processors.

We use the floating point unit (FPU) to illustrate our

Part of this work was performed while Mr. Tang was an summer
internship with HP. Mr. Tang and Dr. He were partially supported
by the SRC grant HJ-782. This research used computers donated
by SUN Microsystems. Address comments to Ihe@lece.wisc.edu and
nchangOhpl.hp.com.

0-7695-1025-6/01 $10.00 0 2001 IEEE
211

ideas. The FPU consumes 10-20% power of the whole sys-
tem. Its step power has a significant impact on power de-
livery and signal integrity in processor design. The FPU is
turned on or off mniedia te ly in most previous research on
the dynamic throttling, and results in a large step power
Recently, Tiwari et a l [9] , [a] proposed to prolong the switch
on/off time by inserting “waking up” and “going to sleep”
time between the on and off state. However, every time
the pipeline is forced to stall several clock cycles before an
inactive resource becomes available. This may lead to a
large performance penalty.

In this paper, we proposed two new mechanisms to ramp
up/down (turn on/off gradually) the FPU based on either
the instruction fetch queue (IFQ) scannzrig or the PC+.V
instructzon predzction to meet the step power constraint
specified by the designer. The main difference between
our work and Tiwari’s is that we predict the instruction
in advance whether the resource is required. This will en-
able a request signal to be placed early enough to ramp
up the inactive FPU gradually and make it ready for use
in time. We implement and evaluate our two mechanisms
using a performance and power simulator based on the Sim-
pleScalar toolset. Compared to [9], [2], we can reduce the
performance loss by a factor of 4 on average over SPEC95
benchmarks.

The paper is organized as follows. Section 2 describes
our two step power reduction mechanisms in detail. Sec-
tion 3 presents the quantitative study of the step power
and performance impact of the two mechanisms. Section
4 discusses the possible implementation method of the two
mechanisms, and section 5 concludes this paper.

11. THE STEP POWER REDUCTION MECHANISMS

A . Overview

As the first step towards the power reduction techniques,
we have implemented an accurate microarchitecture level
power estimation tool based on the extended SimpleScalar
toolset, where the SimpleScalar architecture [lo] is divided
into thirty-two functional blocks, and activity monitors are
inserted for these functional blocks [Ill, [12]. We have de-
veloped a power hook as an interface between the extended
SimpleScalar toolset and the RTL power models of func-
tional blocks. After reading the system configuration and
user specified RTL power information coming from the real
design data or RTL power estimation tool (131, [14], [15],
[16], [17], the activities and the corresponding power in-
formation of these functional blocks are collected in every

mailto:Ihe@lece.wisc.edu
http://nchangOhpl.hp.com

clock cycle. Our resulting Simplescalar toolset is able to
simulate the performance, average power and step power
for every functional block and the whole system for given
benchmark programs. All our power reduction techniques
are implemented and tested on this toolset.

The conventional floating point unit (FPU) design only
has two states: inactive state and active state (see Figure
l (a)) . When there are floating point instructions executed,
the FPU is in the active state and consumes the active
power (P a) . On the other hand, FPU has no activity in
the inactive state and dissipates the leakage power (Pi) ,
about 10% of the active power (Pa) in the present process
technology. When any floating point instruction gets into
the FPU, the FPU will jump up from the inactive state to
the active state in one clock cycle and has a step power of
(Pa - Pi) (see Figure l(a)). If we assume that the inactive
power (leakage power) is 10% of the active power, the step
power of FPU will reach 0.9Pa and may translate into a
large Ldildt noise.

Essentially, Figure 1 (b) illustrates the technique used
in Tiwari's work 191, [23. Stall cycles will be inserted to
power up the functional units gradually every t ime when
the inactive resources are needed and may lead to a big
loss of the performance. However, our work predicts the
occurrence of the floating point instructions and prepares
the FPU in advance to reduce this performance penalty. In
both Tiwari's and our approaches, the FPU will be powered
down gradually to save power consumption, when it is not
used for certain clock cycles.

We introduce several art i jc ial workload states in our a p
proach. The relationship of the inactive state, artificial
workload states, and active state of FPU is illustrated in
Figure 1 (c). The FPU consumes power PA, i=1,2 ,..., n,
and Pz > PZ-' > .., > p& if there are n artificial work-
load states. We assume that the power difference between
adjacent power states is uniform for the simplicity of pre-
sentation. A special power state, which is only one step
below the active state, is called subactive state and dissi-
pates P, power. After a floating point instruction is pre-
dicted, the FPU will ramp up and stay in the subactive
state. The FPU enters the active state when the instruc-
tion gets executed. In summary, P: = Pi, P," = P, and
P,"+' = Pa.

B. Raiiip up/dowii FPU based on the IFQ scaiiiiiiig

The Simplescalar is a five-stage superscalar architecture.
There are two intermediate stages between the instruction
fetch (IF) and execution (EXE) stages. We can scan the
fetched instructions in the instruction fetch queue (IFQ)
of the IF stage every clock cycle. We call this mechanism
IFQ scarinirig. If there exist floating point instructions, a
request signal will be sent to the EXE stage directly to
ramp up the FPU from the inactive state to the subactive
state within prediction time by adding artificial workload
gradually. Here, the prediction time is two cycles between
IF and EXE stage. If the floating point instruction really
gets into the FPU in EXE stage, the FPU will switch from
the subactive state to the active state. Otherwise, FPU will

Active state

! Activestate

. ,
Actiie state : Subactive state.

n Artificialworkload X ,'
Inactive

State
, I
4 ,

I ,
I ,
c_
I ,
I ,

-I

Busy time
I !

Ramping time
(C)

Fig. 1. The relationship of states.

be ramped down to the inactive state after the busy t ime,
which is a user defined time to keep FPU in the subactive
state. If one floating point instruction appears during the
busy time or ramp down time, to reduce the performance
penalty, the FPU will ramp up immediately without reach-
ing the inactive state as shown in Figure l(c).

A prolonged busy time helps to exploit the spatial and
temporal locality of operations. If i t is set to zero, the
FPU will be ramped down immediately after it reaches
the subactive state. This will introduce larger performance
penalty also due to the following observation: the floating
point instruction may be executed out-of-order and cannot
get into the FPU within the prediction time. On the other
hand, the infinite busy time keeps the l?PU in the subactive
state and never powers it down. It may increase the per-
formance, but the average power dissipation of FPU will
increase a lot since the FPU always consumes the subactive
power even in the idle state.

C. Ramp up/down FPU based 011 itistructioii prediction

Ramp up/dowii FPU based on iristruction prediction is
a more general mechanism to reduce the step power. The
main idea is to prefetch one more instruction per cycle
from the I-cache and predict whether the FPU is required
by this instruction (IFQ scanning is clearly a simple case
of this mechanism.) This will help FPU to ramp up gradu-
ally in advance and make it available for use in time. Our
current implementation is to scan the instruction with ad-
dress PC + N , where PC is the current program counter
and N is a user decided parameter. We will ramp up/down
the FPU based on the prediction of this instruction as we
do in the first method. In this way, we can have N + 2
cycles (still including the two cycles between IF and EXE
stages) to ramp up/down FPU with a. further reduced step
power. We define this M + 2 as prediction t ime, which can
also be viewed as the rainping t ime for the FPU to power
on/off gradually between the inactive and the subactive

2 12

states shown in Figure 1 (c). .
Further, there is one power step between the subactive

state and active state. Therefore, there are prediction
tiine+l = .V + 3 power steps between the inactive and
active states. We define the step power in this paper as
fobllows:

Integer- ALU

Floating Point Adder

Memory bus width

Integer-MULT/DIV

Floating Point MULT/DIV
Fetch/decode/issue width

step power = (Pa - Pi)/(predictioii time + 1) (1)
= (pa - Pi)/(-v + 3)

4 1
1 3/20
4 2
1 4/12
4
8

For example, if Pi is O.lPa and N = 6, we can achieve a
step power of O.lPa, with an 88.9% reduction compared to
the conventional step power of 0.9Pa. As the IF& scanning
is a simple case of the PC + N instruction prediction with
N = 0, the FPU in this case has a step power of 0.3Pa.

Because the SimpleScalar is an out-of-order execution
superscalar processor, the predicted instructions may stall
in the dispatch stage due to data or resource hazard. This
will cause the predicted instructions to be executed at a
different time. Extra stall cycles have to be inserted until
the FPU reaches the subactive state and becomes avail-
able again, which will introduce performance penalty. On
the other hand, when PC + N instruction prediction is
used, there may be branch instructions among these N
instructions and branch misprediction may happen. We
currently assume that all the branch instructions are not
taken, therefore we do not need any extra circuit and keep
the cost minimum. Nevertheless, we can utilize other exist-
ing branch prediction techniques [18], [19] to reduce mis-
prediction and achieve better results, but with a higher
hardware overhead.

We proceed to present the quantitative results on perfor-
mance and step power, using the SPEC95 F P benchmark
programs in the next section.

111. THE IMPLEMENTATION METHOD
We summarize the ramping up/down algorithm based on

the N P + N prediction in Figure 2. To ramp up/down the
FPU based on instruction prediction, one more instruc-
tion will be fetched and predecoded in the IF stage for
every clock cycle. In this case, a small predecode and con-
trol logic is needed. Two counters count-fpu-busytime and
coutzt-fPu-r~llipti1iie are used to count up/down the busy
time and prediction time respectively. A logic signal szg-
rial-fpu-ramp will be used to indicate the state of ramping
up or ramping down.

As shown in Figure 2, when the floating point instruction
is detected in the instruction fetch stage, signal-fpu-ramp
will be set to ramp-up and sent to the scheduler stage.
The counter count-fpu-busytime will be reset t o 0. If
there is no floating point instruction executed by the FPU,
count-fpu_busytime will start counting. When it reaches
busy time, signal-fpu-ramp is changed to raiiip-down and
cou~it-fpu_busyti~~~e will be reset again.

The scheduler stage will keep checking the status of sig-
nalfpuxamp. If it is set to ramp-up, couiit-fpu_ra7nptiiiie
will be used to ramp up FPU from the inactive state to
the- subactive state within prediction time by increasing

the workload of FPU gradually. The FPU is ready for
execution in the subactive state. On the other hand, if sig-
nalfpuxamp is set to ramp-down; courit~fpu~mi~ipt~iiie will
be decremented to ramp down FPU graduaily and FPU is
not available then.

In the execution stage of simplescalar, floating point in-
struction is issued to FPU only when the FPU is available,
which is decided in the scheduler stage. Otherwise, floating
point instruction has to stall and waits for the FPU r a m p
ing up. If FPU is in the inactive or ramping down state and
a new floating point instruction appears, the FPU starts to
ramp up immediately to reduce performance penalty.

In terms of circuit implementation, both the clock net-
work and FPU can be partitioned into subcircuits. One
subcircuit will be enabled or disabled per cycle during
ramping up or ramping down via clock gating as discussed
in [20], [21].

IV. THE EXPERIMENT RESULTS

In this section, SPEC95 FP benchmark programs are
used to study the performance impacts of the two FPU
step power reduction techniques. The performance is pre-
sented by instructions per cycle (IPC). We use the perfor-
mance without any ramping up and down as the base to
measure the performance loss, and summarize the system
configuration used in our experiment in Table I.

.4. Impact of busy time

1 Functional Unit number 1 Latency I

~ I U-LZ 1 10% I64 1 4 I LRU

TABLE I
SYSTEM CONFIGUKATION FOR EXPERIMENTS.

Figure 3 shows the performance loss in the IF& scanning
mechanism. In this figure, the constant prediction time is
two, the constant step power is 0.3Pa, but the busy time
varies from five to fifteen. As expected, the IPC loss is
reduced when the busy time is increased, because the FPU
has more time to stay in the subactive state and better
prepares for the execution of floating point instructions.
The IPC loss is less than 2.0% for the FP programs, when
busy time is ten clock cycles.

By using the PC + N instruction prediction mechanism
with a prediction time of eight, we can achieve the step
power of O.lPa (88.9% reduction compared to the conven-
tional design with only active and inactive power states).
The busy time varies from five to fifteen clock cycles in

2 13

1 The hlicroarchitectural Level Instruction Prediction Algorithm :

5 7 9 11 13 15

I

/* In the INSTRUCTION FETCH stage */
Prefetch instruction pwrinstr that is N cycles later;
Predecode this instruction pwrinstr;
if (pwrinstr is FP instruction) {

s igna l - fpu - ramp = ramp-up; //start to ramp up FPU
reset count-fpu-busytime;

if (count- fpu-busyt inie == busyt inie) {
signal- f p u - r a m p = ramp-down; //start to ramp down FF’
reset count-fpu-busytime;

count- fpu-busyt inie + +;

} else if (FPU is in the subactive state){

} else

1
/* In the SCHEDULER stage */

if (s igna l - f p u - r a m p == r a m p - u p) {
if (FPU reaches the subactive state)

FPUis-available = 1;
else {

FPUis-available = 0;
coun t - fpu - ran ip t ime + +;

1
} else if (s i g n a l - f p u - r a m p == ramp-down) {

if (count- fpu-ranipt inie > 0) {
FPUis-available = 0;
count- fpu-ranipt inie - -;

1
1

/* In the EXECUTION stage */
if (the instruction is floating point instruction)

if (FPUis-available)

else {
issue F P instruction to FPU;

stall FP instruction;
start l o ramp up FPU immediately;

1

J

Fig. 2. Microarchitecture Level Instruction Prediction Algorithm

- 4

Busy Time (cycles)

Fig. 3. Performance penalty versus busy time in IFQ scanning with
a prediction time of two.

Figure 4. Again, the performance penalty is smaller when
the busy time increases. The performance loss is less than
3.0% when the busy time is larger than ten clock cycles.
However, the longer FPU stays in the subactive state, the
more power it consumes, as the subactive power is much
larger than the inactive power. Therefore, there exists a
tradeoff between performance penalty and average power
reduction. It can be controlled by the user defined busy
time. Because the performance loss becomes smooth and
less than 3.0% when the busy time is larger than ten cy-
cles, we choose ten clock cycles as the busy time in the
remaining of this section.

B. Impact of prediction t i m e

Figure 5 reflects the relationship between performance
loss and prediction time. The step power is 0.225Pa by
setting N = 1 and pred ic t ion t i m e = 3. This predic-
tion leads to less than 1.2% performance penalty for all

2 14

7

1 5 7 9 11 13 15

SPEC95 FP Programs Result

l
0

-1

-2

-3

-4

-5

-6

-7
-8

hydro2c

su2cor

- tomcah
turb3d

- mgrid

-9 ' I
Busy Tlme (cycles)

Fig. 4. Performance penalty versus busy time for PC+N instruction
prediction. The prediction time is eight.

SPEC95 FP Programs Result

2 5 8 11
0

-1

0 -3
-4

0
& -6

g -2

a -5

-
U

-7 -8 J
Prediction Time (cycles)

- apPlU
e apsi

fPPP
hydro2c

- mgrid - su2cor
swim

- tomcah
turb3d
wave5

Fig. 5. Performance penalty versus prediction time for PC f
N instruction prediction. The busy time is ten cycles.
Prediction time = 2 stands for IFQ scanning.

benchmarks. Generally, when the required step power be-
comes smaller, a bigger N is needed as the FPU needs more
time to ramp up/down. The potential chance of mispre-
diction will increase, and more performance loss may be
induced. For example, if the required step power is O.lPa
as often required in the real design, we can set N = 6
and predicton cycle = 8. The performance penalty is in-
creased but is still relatively small. The performance loss
is less than 3.0% for all benchmarks. Clearly, there exists a
tradeoff between the performance penalty and step power
reduction. The tradeoff can be adjusted by the prediction
time. As shown in Figure 5, benchmarks turbSd and swim
are sensitive to the prediction time. It may be due to our
branch prediction scheme, and is worthwhile further inves-
tigation.

An alternative to achieve O.lP, without using ramping
up (and therefore without performance loss) is to set the
inactive power Pi = 0.9Pa. Dummy operations are used
to keep this level of inactive power when no instruction

Performance Loss Comparison
(Ramping Time = 2 cycles)

Fig. 6. Performance Loss Comparison between IFQ Scanning predic-
tion and non-prediction for SPEC95 FP programs (ramping time
is two cycles).

really needs the FPU. This leads to a huge amount of
non-necessary power dissipation. With our prediction tech-
nique, the FPU can only consume the leakage power in the
inactive state. As the leakage power is about O.lPa for the
current process, we can achieve a factor of nine in terms
of power saving in the inactive state. Note that even the
leakage power can be saved if the power gating is used to
cut off the power supply.

C. Comparison with previous work

In the following, we compared our performance loss with
that in Tiwari's work [9], [2J, where the pipeline is forced
to install in order t20 ramp up the inactive FPU. In Figures
6 and 7, light-colored bars are performance losses with-
out using prediction based on our own implementation of
the approach in [9], [2] , and dark-colored bars are perfor-
mance losses using our IF& scanning prediction technique
in figure 6 and N-cycle instruction prediction technique in
figure 7. The busy time is ten for both figures, and the
prediction time (same as ramping time) is two and eight in
Figures 6 and 7, respectively. One can see that our predic-
tion techniques achieve much better performance. When
the prediction time is two, the average performance loss
is 1.96% without prediction, but is only 0.90% with pre-
diction. When the prediction time is eight, the average
performance loss is 4A5% without prediction, but is only
1.08% with prediction. The prediction reduced the perfor-
mance loss by a factor of more than 4 in both cases.

V. CONCLUSIONS AND DISCUSSIONS

Based on an extended Simplescalar toolset and the
SPEC95 benchmark set, a preliminary study has been pre-
sented at the microarchitecture level to reduce the induc-
tive noise by ramping up/down the floating point unit. In-
struction fetch queue (IFQ) scanning and PC+ N instruc-
tion prediction have been proposed to reduce the perfor-
mance loss due to ramping up and ramping down. Our
techniques are able to satisfy any given constraint on the

215

Performance Loss Comparison
(Ramplng tlme = 8 cycler)

10.42%
.83%

turb3d

tomcatv o.wA 1. %

RLldCtWl mgrii 4.62%

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%

Fig. 7. Performance Loss Comparison between N-cycle instruction
predictionand non-prediction for SPEC95 FP prograins (ramping
time is eight cycles).

step power, and reduce the performance loss by a factor of
more than 4 when compared with a recent work without
prediction.

We assume that the ramping time is same as the predic-
tion time in this paper. In general, the two times may be
different to further reduce the performance loss. It is part
of our ongoing work to find the optimal prediction time
for the ramping time determined a given step power con-
straint. We also plan to apply the prediction mechanism to
other functional units such as the integer ALU and Level-2
cache. Further, we intend to investigate the power impact
due to ramping up and down in the context of the whole
s y s t e m , but n o t just an i n d i v i d u a l f u n c t i o n a l unit as in this
paper.

ACKNOWLEDGMENTS

The authors would like to thank Dr. George Cai at Intel
for providing his enhanced version of Simplescalar toolset
and for his helpful discussions.

REFERENCES
Y.-S.Chang, S.K.Gupta, and MABreuer , “Analysis of ground
bounce in deep submicron circuits,” in VLSI Test Symposium,
IEEE, IEEE Computer Society Press, pp. 110-116, 1997.
M. Pant, P. Pant, D. Wills, and V.Tiwari, “An architectural
solution for the inductive noise problem due t o clock-gating,”
in Proc. Int. Symp. on Low Power Electronics and Design,

S.Manne, A.Klauser, and D.Grunwald, “Pipeline gating: Specu-
lation control lor energy reduction,” in International Symposium
on Computer Architecture, 1998.
ARaghunathan, S.Dey, A.Horak, T.Mudge, and K.Roy, “Low-
power system design: Application, architectures, and design
methodologies,” in Proc. Design .4utomation Conf, 2000.
N.Vijaykrishnan, MXandemir, M.J.lrwin, and H.S.Kim,
“Energy-driven integrated hardware-software optimization using
simplepower,” in International Symposium o n Computer .4rchi-
tecture, pp. 95-106, 2000.
E.Musoll, “Predicting the usefulness of a block result: a micro-
architectural technique for high-performance low-power proces-
sors,” in 32nd Annual International Symposium o n Microarchi-
tecture, November 1999.
E. Macii, M. Pedram, and F. Somenzi, “High-level power model-

pp. 255-257,1999,

ing, estimation and optimization,” in Proc. Design Automation
Conf, 1997.
Y. Li and J . Henkel, “A framework for estimatingand minimiza-
tion energy dissipation of embedded hw/sw systems,” in Proc.
Design Automation Conf, 1998.
M. Pant, P. Pant, D. Wills, and V. ‘Tiwari, “Inductive noise
reduction a t the architectural level,” in .International Conference
o n VLSI Design, pp. 162-167,2000,

(lo] D. Burger and T. Austin, The simplescalar tool set version 2.0.
University of Wisconsin-Madison, 1997.

(111 G. Z . Cai, I(. Chow, ‘I. Nakanishi, J. Hall, and M. Barany, “Mul-
tivariate power/performance analysis for high performance mo-
bile microprocessor design,” in Power-Driven Microarchitecture
Workshop In Conjunction With ISC.498, June 1998.

[12] A . Dhodapkar, C. Lim, and G. Cai, “Tem2p2est: A thermal en-
abled multi-model power/performance estimator,” in Workshop
o n Power .4ware Computer Systems, Nov 2000.

(131 Q.Wu, Q.Qiu, M.Pedram, and C.Ding;, “Cycle-accurate macro-
models for rt-level power analysis,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 6, pp. 520-528,December
1998.

[I41 H. Mehta, R. Owens, and M. Irwin, “Energy characterization
based on clustering,” in Proc. Design Automation Conf, June
June 1996.

[15] F.N.Najm, “A survey of power estimation techniques in VLSI
circuits,” IEEE Trans. o n Very Large Scale Integration (VLSI)
Systems, vol. 2, pp. 446-455, December 1994.

[16] S. Gupta and F. N. Najm, “Power macromodelingfor high level
power estimation,” in Proc. Design -4utomation Conj, pp. 365-
370, June 9-13 1997.

(171 D. Liu and C. Svensson, “Power consumption estimation in
CMOS VLSI chips,” IEEE Journal of Solid-state Circuits,
pp. 663-670, June 1994.

[IS] J.L.Hennessy and D.A.Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, 1996.

(191 J.Fisher and S.Freudenberger, “Predicting conditional branch
directions from previous runs of a program,” in Proc. Fifth Conf.
o n .4rchitectural Support f o r Programming Languages and Op-
erating Systems, IfiEE/.4CM, pp. 85-95, October 1992.

(201 V. Tiwari, D. Singh, S. Rajgopal, and G. Mehta, “Reducing
power in high-performance microprocessors,” in Proc. Design
Automation Conf, pp. 732-737,1998.

(211 E. Macii, M. Poncino, and R. Zakdon, “RTL and gate-level
power optimizationof digitalcircuits,” in Proc. IEEE Inf. Symp.
o n Circuits and Systems, 2000.

[8]

19)

216

