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.4bstract- Because the inductive noise L d i l d t  is induced 
by the power change and can have disastrous impact on the 
timing and reliability of the system, high-performance CPU 
designs are more concerned with the  step power reduction 
instead of the average power reduction. The step power is 
defined as the power difference between the previous and 
present clock cycles, and represents the L d i l d t  noise at  the 
microarchitecture level. Two mechanisms at the microar- 
chitecture level are proposed in this paper to reduce the 
step power of the floating point unit (FPU) ,  as F P U  is the 
potential “hot” spot of L d i l d t  noise. The two mechanisms, 
ramping up and ramping down F P U  based on instruction 
fetch queue (IFQ) scanning and PC + N instruction pre- 
diction, can meet any specific s t ep  power constraint. We 
implement and evaluate the two mechanisms using a per- 
formance and power simulator based on the SimpleScalar 
toolset. Experiments using SPEC95 benchmarks show that 
our method reduces the performance loss by a factor of four 
when compared to a recent work. 

I. INTRODUCTION 

Because of the growing transistor budget, increasing 
clock frequency and wider datapath width in the mod- 
ern processor design, there is an ever-growing current to 
charge/discharge the power/ground buses in a short time 
[I], [2]. When the current passes through the wire induc- 
tance ( L )  associated with power or ground rails, the voltage 
glitch is induced and is proportional to L d i l d t ,  where d i / d t  
is the current changing rate. Therefore, the power surge is 
also known as Ldi ld t  noise. Further, many power-efficient 
microarchitecture techniques involve selectively throttling, 
or clock gating certain functional units or parts of func- 
tional units [3], [4], [5], [SI, [7], (81. Dynamic throttling 
techniques may lead to an even larger surge current. 

A large surge current may reduce the chip reliability, and 
cause timing and logic errors, i.e., a circuit may switch at 
the wrong time and latch the wrong value. Dealing with a 
large surge current needs an elaborate power distribution 
and contributes to  higher design and manufacturing costs. 
In this paper, we define the step power as the power dif- 
ference between the previous and present clock cycles. We 
use the step power as a figure of merit for power surges at 
the microarchitecture level, and study how to reduce the 
step power by ramping up and ramping down functional 
units for high-performance processors. 

We use the floating point unit (FPU) to illustrate our 
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ideas. The FPU consumes 10-20% power of the whole sys- 
tem. Its step power has a significant impact on power de- 
livery and signal integrity in processor design. The FPU is 
turned on or off mniedia te ly  in most previous research on 
the dynamic throttling, and results in a large step power 
Recently, Tiwari et a l [ 9 ] ,  [a] proposed to prolong the switch 
on/off time by inserting “waking up” and “going to sleep” 
time between the on and off state. However, every time 
the pipeline is forced to stall several clock cycles before an 
inactive resource becomes available. This may lead to a 
large performance penalty. 

In this paper, we proposed two new mechanisms to  ramp 
up/down (turn on/off gradually) the FPU based on either 
the instruction fetch queue (IFQ) scannzrig or the PC+.V 
instructzon predzction to meet the step power constraint 
specified by the designer. The main difference between 
our work and Tiwari’s is that we predict the instruction 
in advance whether the resource is required. This will en- 
able a request signal to be placed early enough to  ramp 
up the inactive FPU gradually and make it ready for use 
in time. We implement and evaluate our two mechanisms 
using a performance and power simulator based on the Sim- 
pleScalar toolset. Compared to [9], [2], we can reduce the 
performance loss by a factor of 4 on average over SPEC95 
benchmarks. 

The paper is organized as follows. Section 2 describes 
our two step power reduction mechanisms in detail. Sec- 
tion 3 presents the quantitative study of the step power 
and performance impact of the two mechanisms. Section 
4 discusses the possible implementation method of the two 
mechanisms, and section 5 concludes this paper. 

11. THE STEP POWER REDUCTION MECHANISMS 

A .  Overview 

As the first step towards the power reduction techniques, 
we have implemented an accurate microarchitecture level 
power estimation tool based on the extended SimpleScalar 
toolset, where the SimpleScalar architecture [lo] is divided 
into thirty-two functional blocks, and activity monitors are 
inserted for these functional blocks [Ill,  [12]. We have de- 
veloped a power hook as an interface between the extended 
SimpleScalar toolset and the RTL power models of func- 
tional blocks. After reading the system configuration and 
user specified RTL power information coming from the real 
design data or RTL power estimation tool (131, [14], [15], 
[16], [17], the activities and the corresponding power in- 
formation of these functional blocks are collected in every 
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clock cycle. Our resulting Simplescalar toolset is able to 
simulate the performance, average power and step power 
for every functional block and the whole system for given 
benchmark programs. All our power reduction techniques 
are implemented and tested on this toolset. 

The conventional floating point unit (FPU) design only 
has two states: inactive state and active state (see Figure 
l (a)) .  When there are floating point instructions executed, 
the FPU is in the active state and consumes the active 
power ( P a ) .  On the other hand, FPU has no activity in 
the inactive state and dissipates the leakage power (Pi ) ,  
about 10% of the active power (Pa) in the present process 
technology. When any floating point instruction gets into 
the FPU, the FPU will jump up from the inactive state to 
the active state in one clock cycle and has a step power of 
(Pa - Pi) (see Figure l(a)). If we assume that the inactive 
power (leakage power) is 10% of the active power, the step 
power of FPU will reach 0.9Pa and may translate into a 
large Ldildt  noise. 

Essentially, Figure 1 (b) illustrates the technique used 
in Tiwari's work 191, [23. Stall cycles will be inserted to  
power up the functional units gradually every t ime when 
the inactive resources are needed and may lead to a big 
loss of the performance. However, our work predicts the 
occurrence of the floating point instructions and prepares 
the FPU in advance to reduce this performance penalty. In 
both Tiwari's and our approaches, the FPU will be powered 
down gradually to  save power consumption, when it is not 
used for certain clock cycles. 

We introduce several art i jc ial  workload states in our a p  
proach. The relationship of the inactive state, artificial 
workload states, and active state of FPU is illustrated in 
Figure 1 (c). The FPU consumes power PA, i=1,2 ,..., n,  
and Pz > PZ-' > .., > p& if there are n artificial work- 
load states. We assume that the power difference between 
adjacent power states is uniform for the simplicity of pre- 
sentation. A special power state, which is only one step 
below the active state, is called subactive state and dissi- 
pates P, power. After a floating point instruction is pre- 
dicted, the FPU will ramp up and stay in the subactive 
state. The FPU enters the active state when the instruc- 
tion gets executed. In summary, P: = Pi, P," = P, and 
P,"+' = Pa. 

B. Raiiip up/dowii FPU based on the IFQ scaiiiiiiig 

The Simplescalar is a five-stage superscalar architecture. 
There are two intermediate stages between the instruction 
fetch (IF) and execution (EXE) stages. We can scan the 
fetched instructions in the instruction fetch queue (IFQ) 
of the IF stage every clock cycle. We call this mechanism 
IFQ scarinirig. If there exist floating point instructions, a 
request signal will be sent to the EXE stage directly to 
ramp up the FPU from the inactive state to the subactive 
state within prediction time by adding artificial workload 
gradually. Here, the prediction time is two cycles between 
IF and EXE stage. If the floating point instruction really 
gets into the FPU in EXE stage, the FPU will switch from 
the subactive state to the active state. Otherwise, FPU will 
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Fig. 1. The relationship of states. 

be ramped down to the inactive state after the busy t ime,  
which is a user defined time to  keep FPU in the subactive 
state. If one floating point instruction appears during the 
busy time or ramp down time, to reduce the performance 
penalty, the FPU will ramp up immediately without reach- 
ing the inactive state as shown in Figure l(c). 

A prolonged busy time helps to  exploit the spatial and 
temporal locality of operations. If i t  is set to zero, the 
FPU will be ramped down immediately after it reaches 
the subactive state. This will introduce larger performance 
penalty also due to the following observation: the floating 
point instruction may be executed out-of-order and cannot 
get into the FPU within the prediction time. On the other 
hand, the infinite busy time keeps the l?PU in the subactive 
state and never powers it down. It may increase the per- 
formance, but the average power dissipation of FPU will 
increase a lot since the FPU always consumes the subactive 
power even in the idle state. 

C. Ramp up/down FPU based 011 itistructioii prediction 

Ramp up/dowii FPU based on iristruction prediction is 
a more general mechanism to reduce the step power. The 
main idea is to prefetch one more instruction per cycle 
from the I-cache and predict whether the FPU is required 
by this instruction (IFQ scanning is clearly a simple case 
of this mechanism.) This will help FPU to ramp up gradu- 
ally in advance and make it available for use in time. Our 
current implementation is to scan the instruction with ad- 
dress PC + N ,  where PC is the current program counter 
and N is a user decided parameter. We will ramp up/down 
the FPU based on the prediction of this instruction as we 
do in the first method. In this way, we can have N + 2 
cycles (still including the two cycles between IF and EXE 
stages) to ramp up/down FPU with a. further reduced step 
power. We define this M + 2 as prediction t ime,  which can 
also be viewed as the rainping t ime for the FPU to power 
on/off gradually between the inactive and the subactive 
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states shown in Figure 1 (c). . 
Further, there is one power step between the subactive 

state and active state. Therefore, there are prediction 
tiine+l = .V + 3 power steps between the inactive and 
active states. We define the step power in this paper as 
fobllows: 

Integer- ALU 

Floating Point Adder 

Memory bus width 

Integer-MULT/DIV 

Floating Point MULT/DIV 
Fetch/decode/issue width 

step power = (Pa - Pi)/(predictioii time + 1) (1) 
= (pa - Pi)/(-v + 3) 

4 1 
1 3/20 
4 2 
1 4/12 
4 
8 

For example, if Pi is O.lPa and N = 6, we can achieve a 
step power of O.lPa, with an 88.9% reduction compared to  
the conventional step power of 0.9Pa. As the IF& scanning 
is a simple case of the PC + N instruction prediction with 
N = 0, the FPU in this case has a step power of 0.3Pa. 

Because the SimpleScalar is an out-of-order execution 
superscalar processor, the predicted instructions may stall 
in the dispatch stage due to data or resource hazard. This 
will cause the predicted instructions to be executed at a 
different time. Extra stall cycles have to be inserted until 
the FPU reaches the subactive state and becomes avail- 
able again, which will introduce performance penalty. On 
the other hand, when PC + N instruction prediction is 
used, there may be branch instructions among these N 
instructions and branch misprediction may happen. We 
currently assume that all the branch instructions are not 
taken, therefore we do not need any extra circuit and keep 
the cost minimum. Nevertheless, we can utilize other exist- 
ing branch prediction techniques [18], [19] to reduce mis- 
prediction and achieve better results, but with a higher 
hardware overhead. 

We proceed to present the quantitative results on perfor- 
mance and step power, using the SPEC95 F P  benchmark 
programs in the next section. 

111. THE IMPLEMENTATION METHOD 
We summarize the ramping up/down algorithm based on 

the N P  + N prediction in Figure 2. To ramp up/down the 
FPU based on instruction prediction, one more instruc- 
tion will be fetched and predecoded in the IF  stage for 
every clock cycle. In this case, a small predecode and con- 
trol logic is needed. Two counters count-fpu-busytime and 
coutzt-fPu-r~llipti1iie are used to count up/down the busy 
time and prediction time respectively. A logic signal szg- 
rial-fpu-ramp will be used to indicate the state of ramping 
up or ramping down. 

As shown in Figure 2, when the floating point instruction 
is detected in the instruction fetch stage, signal-fpu-ramp 
will be set to ramp-up and sent to the scheduler stage. 
The counter count-fpu-busytime will be reset t o  0. If 
there is no floating point instruction executed by the FPU, 
count-fpu_busytime will start counting. When it reaches 
busy time, signal-fpu-ramp is changed to raiiip-down and 
cou~it-fpu_busyti~~~e will be reset again. 

The scheduler stage will keep checking the status of sig- 
nalfpuxamp. If it is set to ramp-up, couiit-fpu_ra7nptiiiie 
will be used to ramp up FPU from the inactive state to 
the- subactive state within prediction time by increasing 

the workload of FPU gradually. The FPU is ready for 
execution in the subactive state. On the other hand, if sig- 
nalfpuxamp is set to ramp-down; courit~fpu~mi~ipt~iiie will 
be decremented to ramp down FPU graduaily and FPU is 
not available then. 

In the execution stage of simplescalar, floating point in- 
struction is issued to FPU only when the FPU is available, 
which is decided in the scheduler stage. Otherwise, floating 
point instruction has to stall and waits for the FPU r a m p  
ing up. If FPU is in the inactive or ramping down state and 
a new floating point instruction appears, the FPU starts to  
ramp up immediately to reduce performance penalty. 

In terms of circuit implementation, both the clock net- 
work and FPU can be partitioned into subcircuits. One 
subcircuit will be enabled or disabled per cycle during 
ramping up or ramping down via clock gating as discussed 
in [20], [21]. 

IV. THE EXPERIMENT RESULTS 

In this section, SPEC95 FP benchmark programs are 
used to study the performance impacts of the two FPU 
step power reduction techniques. The performance is pre- 
sented by instructions per cycle (IPC). We use the perfor- 
mance without any ramping up  and down as the base to 
measure the performance loss, and summarize the system 
configuration used in our experiment in Table I.  

.4. Impact of busy time 

1 Functional Unit number 1 Latency I 

~ I U-LZ 1 10% I64 1 4  I LRU 

TABLE I 
SYSTEM CONFIGUKATION FOR EXPERIMENTS. 

Figure 3 shows the performance loss in the IF& scanning 
mechanism. In this figure, the constant prediction time is 
two, the constant step power is 0.3Pa, but the busy time 
varies from five to  fifteen. As expected, the IPC loss is 
reduced when the busy time is increased, because the FPU 
has more time to stay in the subactive state and better 
prepares for the execution of floating point instructions. 
The IPC loss is less than 2.0% for the FP programs, when 
busy time is ten clock cycles. 

By using the PC + N instruction prediction mechanism 
with a prediction time of eight, we can achieve the step 
power of O.lPa (88.9% reduction compared to the conven- 
tional design with only active and inactive power states). 
The busy time varies from five to  fifteen clock cycles in 
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1 The hlicroarchitectural Level Instruction Prediction Algorithm : 

5 7 9 11 13 15 

I 

/* In the INSTRUCTION FETCH stage */ 
Prefetch instruction pwrinstr that is N cycles later; 
Predecode this instruction pwrinstr; 
if (pwrinstr is FP  instruction) { 

s igna l - fpu - ramp  = ramp-up;  //start to  ramp up FPU 
reset count-fpu-busytime; 

if (count- fpu-busyt inie  == busyt inie)  { 
signal-  f p u - r a m p  = ramp-down;  //start to ramp down FF’ 
reset count-fpu-busytime; 

count- fpu-busyt inie  + +; 

} else if (FPU is in the subactive state){ 

} else 

1 
/* In the SCHEDULER stage */ 

if ( s igna l -  f p u - r a m p  == r a m p - u p )  { 
if (FPU reaches the subactive state) 

FPUis-available = 1; 
else { 

FPUis-available = 0; 
coun t - fpu - ran ip t ime  + +; 

1 
} else if ( s i g n a l - f p u - r a m p  == ramp-down)  { 

if (count- fpu-ranipt inie  > 0) { 
FPUis-available = 0; 
count- fpu-ranipt inie  - -; 

1 
1 

/* In the EXECUTION stage */ 
if (the instruction is floating point instruction) 

if (FPUis-available) 

else { 
issue F P  instruction to FPU; 

stall FP instruction; 
start l o  ramp up FPU immediately; 

1 

J 

Fig. 2. Microarchitecture Level Instruction Prediction Algorithm 

- 4  

Busy Time (cycles) 

Fig. 3. Performance penalty versus busy time in IFQ scanning with 
a prediction time of two. 

Figure 4. Again, the performance penalty is smaller when 
the busy time increases. The performance loss is less than 
3.0% when the busy time is larger than ten clock cycles. 
However, the longer FPU stays in the subactive state, the 
more power it consumes, as the subactive power is much 
larger than the inactive power. Therefore, there exists a 
tradeoff between performance penalty and average power 
reduction. It can be controlled by the user defined busy 
time. Because the performance loss becomes smooth and 
less than 3.0% when the busy time is larger than ten cy- 
cles, we choose ten clock cycles as the busy time in the 
remaining of this section. 

B. Impact of prediction t i m e  

Figure 5 reflects the relationship between performance 
loss and prediction time. The step power is 0.225Pa by 
setting N = 1 and pred ic t ion  t i m e  = 3. This predic- 
tion leads to less than 1.2% performance penalty for all 
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Fig. 4.  Performance penalty versus busy time for PC+N instruction 
prediction. The prediction time is eight. 
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Fig. 5. Performance penalty versus prediction time for PC f 
N instruction prediction. The busy time is ten cycles. 
Prediction time = 2 stands for IFQ scanning. 

benchmarks. Generally, when the required step power be- 
comes smaller, a bigger N is needed as the FPU needs more 
time to ramp up/down. The potential chance of mispre- 
diction will increase, and more performance loss may be 
induced. For example, if the required step power is O.lPa 
as often required in the real design, we can set N = 6 
and predicton cycle = 8. The performance penalty is in- 
creased but is still relatively small. The performance loss 
is less than 3.0% for all benchmarks. Clearly, there exists a 
tradeoff between the performance penalty and step power 
reduction. The tradeoff can be adjusted by the prediction 
time. As shown in Figure 5, benchmarks turbSd and swim 
are sensitive to the prediction time. It may be due to our 
branch prediction scheme, and is worthwhile further inves- 
tigation. 

An alternative to achieve O.lP, without using ramping 
up (and therefore without performance loss) is to set the 
inactive power Pi = 0.9Pa. Dummy operations are used 
to keep this level of inactive power when no instruction 

Performance Loss Comparison 
(Ramping Time = 2 cycles) 

Fig. 6. Performance Loss Comparison between IFQ Scanning predic- 
tion and non-prediction for SPEC95 FP programs (ramping time 
is two cycles). 

really needs the FPU. This leads to a huge amount of 
non-necessary power dissipation. With our prediction tech- 
nique, the FPU can only consume the leakage power in the 
inactive state. As the leakage power is about O.lPa for the 
current process, we can achieve a factor of nine in terms 
of power saving in the inactive state. Note that even the 
leakage power can be saved if the power gating is used to 
cut off the power supply. 

C. Comparison with previous work 

In the following, we compared our performance loss with 
that in Tiwari's work [9], [2J, where the pipeline is forced 
to install in order t20 ramp up the inactive FPU. In Figures 
6 and 7, light-colored bars are performance losses with- 
out using prediction based on our own implementation of 
the approach in [9], [2 ] ,  and dark-colored bars are perfor- 
mance losses using our IF& scanning prediction technique 
in figure 6 and N-cycle instruction prediction technique in 
figure 7. The busy time is ten for both figures, and the 
prediction time (same as ramping time) is two and eight in 
Figures 6 and 7, respectively. One can see that our predic- 
tion techniques achieve much better performance. When 
the prediction time is two, the average performance loss 
is 1.96% without prediction, but is only 0.90% with pre- 
diction. When the prediction time is eight, the average 
performance loss is 4A5% without prediction, but is only 
1.08% with prediction. The prediction reduced the perfor- 
mance loss by a factor of more than 4 in both cases. 

V.  CONCLUSIONS AND DISCUSSIONS 

Based on an extended Simplescalar toolset and the 
SPEC95 benchmark set, a preliminary study has been pre- 
sented at the microarchitecture level to reduce the induc- 
tive noise by ramping up/down the floating point unit. In- 
struction fetch queue (IFQ) scanning and PC+ N instruc- 
tion prediction have been proposed to reduce the perfor- 
mance loss due to  ramping up and ramping down. Our 
techniques are able to satisfy any given constraint on the 
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Fig. 7. Performance Loss Comparison between N-cycle instruction 
predictionand non-prediction for SPEC95 FP prograins (ramping 
time is eight cycles). 

step power, and reduce the performance loss by a factor of 
more than 4 when compared with a recent work without 
prediction. 

We assume that the ramping time is same as the predic- 
tion time in this paper. In general, the two times may be 
different to  further reduce the performance loss. It is part 
of our ongoing work to find the optimal prediction time 
for the ramping time determined a given step power con- 
straint. We also plan to apply the prediction mechanism to 
other functional units such as the integer ALU and Level-2 
cache. Further, we intend to investigate the power impact 
due to  ramping up and down in the context of the whole 
s y s t e m ,  but n o t  just an i n d i v i d u a l  f u n c t i o n a l  unit as in this 
paper. 
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