
PowerModelingandReductionof VLIW Processors
�

WeipingLiao andLei He
ElectricalandComputerEngineeringDepartment

Universityof Wisconsin,Madison,WI 53706

Abstract

In this paper, we first presenta cycle-accuratepower simu-
lator basedon the IMPACT toolset. This simulatorallows
the designerto evaluateboth VLIW compiler and micro-
architectureinnovations for power reduction. Using this
simulator, we thendevelopandcomparethefollowing tech-
niqueswith a boundedperformancelossof 1% comparedto
the casewithout any dynamicthrottling: (i) clock ramping
with hardware-basedprescan(CRHP), and(ii) clock ramp-
ing with compiler-basedprediction (CRCP). Experiments
using SPEC2000floating point benchmarksshow that the
power consumedby floating point units canbe reducedby
up to 31%and37%,in CRHPandCRCPrespectively.

1 Introduction

Power is rapidly becomingoneof the primary designcon-
straintsfor modernprocessordesigndueto increasedcom-
plexity andspeedof thesystem.Cycle-accuratemicroarchi-
tecturelevel power simulationssuchasWattch[1], Simple-
Power [2], andTE

�������
EST[3] have beendeveloped,and

usedextensively to validatepower-efficient microarchitec-
ture innovationsincludingclock gating[4], dynamicallyre-
configuringresources[5], etc. However, all aforementioned
work focuseson thesuperscalararchitecture.

In this paper, we studythepowermodelingandreduction
for theVLIW architecture.Our contributionsinclude:

� We integrate the Cai-Lim power model [6, 7] into
the IMPACT toolset[8], anddevelop a cycle-accurate
power simulatornamedPowerImpact. This simulator
allows the designerto evaluateboth VLIW compiler
andmicroarchitectureinnovationsfor power reduction.

� Wedevelopandcomparethefollowing techniqueswith
aboundedperformancelossof 1%comparedto thecase
without any dynamicthrottling: (i) clock rampingwith
hardware-basedprescan(CRHP), and(ii) clock ramp-
ing with compiler-basedprediction(CRCP).�

This researchwas partially supportedby the NSF CAREER Award
0093273andSRCgrant2000-HJ-782.We usedcomputersdonatedby HP
andSUN Microsystems.Addresscommentsto lhe@ece.wisc.edu.

� ExperimentsusingPowerImpactandSPEC2000float-
ing point benchmarksshow that the power consumed
by floatingpoint unitscanbereducedby up to 31%for
CRHPand37%for CRCP, respectively.

Therestof thepaperis organizedasfollows.Section2 de-
scribesthepowersimulatorfor VLIW architecture.Sections
3 presentsimplementationsof CRHPandCRCP. Section4
shows theexperimentresults.Section5 concludesthepaper
anddiscussestheongoingwork.

2 Cycle-Accurate VLIW Power Sim-
ulation

Existing work [1, 2, 3] considerssuperscalararchitecture.
Thereis hardly any architecturallevel power simulatorfor
Very Long InstructionWord(VLIW) architecture. In this
section,we first introducethe IMPACT infrastructurefor
VLIW architecture[8] and the Cai-Lim power model. We
thenpresentthepowersimulationenhancementto IMPACT.

IMPACT C
compiler

C program

 LSIM
simulator

Emulator

C code

Compiled by host
compiler and run
for trace

Trace for
 Lsim

Simulation
results

Figure1: Flow diagramfor IMPACT

2.1 IMPACT Architecture Framework

The IMPACT toolset (http://www.crhc.uiuc.edu/IMPACT/)
containstheIMPACT EPICarchitecture,compiler, andem-
ulation andsimulationtools (seeFigure1). The IMPACT
compiler compilesC benchmarkwith both front-end and
back-endoptimizations. The emulatortranslatesthe inter-
mediaterepresentationto C code,whichcanbecompiledby
hostcompilerandbeexecutedto generatea tracefor Lsim,
acycle-accuratemicroarchitectural-level performancesimu-
lator. This toolsethasbeensuccessfullyutilized to conduct

8-1

FUB’s name correspondinghardware FUB’sname correspondinghardware
npclog next pcgenerationlogic decodepla Instructiondecoder
btblog BTB logic decodemisp Mispredictionhandlinglogic
btbcac BTB cache fuint Integerexecutionunit
rsbcac ReturnStackBuffer fufp Floatingpointexecutionunit
itlbcac InstructionTLB ul2log Unified L2 cachelogic
dtlbcac DataTLB ul2tag UnifiedL2 cachetag
il1log L1 instructioncachelogic ul2cac Unified L2 cachearray
il1tag L1 instructioncachetag reglog RegisterFile logic
il1cac L1 instructioncachearray reg Registers
dl1log L1 datacachelogic vcachelog Victim cachelogic
dl1tag L1 datacachetag vcachetag Victim cachetag
dl1cac L1 datacachearray vcachecac Victim cachearray

biu Bus/IObuffer

Table1: FUBsin our powermodel

thesystemlevel architecturalexperimentandnew codeop-
timization[8, 9].

In this paper, we implementour power modelingwithin
Lsim, but implementour power reductiontechniqueswithin
theback-endcompiler, emulatorandLsim simulator.

2.2 Cai-Lim Power Model

The Cai-Lim power model [6] wasoriginally usedfor su-
perscalararchitecture.It partitionstheprocessorinto Func-
tional Unit Blocks (FUBs). EachFUB is characterizedby
areas(�
���) of four circuit types - dynamic, static, PLA
(programmablelogic array),andclock andmemoryto im-
plementthis FUB, aswell asactive power densities

���
���
andinactive power densities

���
��� for eachtypeof circuit.
Then,theenergy dissipationof a FUB is givenby

� � ����� ���������� "!��$#�%'&(*)�+
_

%',�%.-/+�0
1 ��2*� "!��'(* 3#�%'&4(*)�+

_

%5,�%$-/+�0'!
(1)

where � iteratesover the four circuit types,and numbers
of active andinactive cyclesarecollectedby cycle-accurate
performancesimulator. Theenergy dissipationcomputedfor
eachFUB separatelyis addedup to get the total power dis-
sipation.

2.3 PowerImpact

WeintegratetheCai-Lim powermodelinto IMPACTtoolset,
andnametheresultingnew toolsetasPowerImpact.Figure2
illustratestheoverall structureof PowerImpact.We develop
an interfacebetweenLsim andthe power modelsof FUBs.
According to the structureof Lsim simulator, we partition
the VLIW architecturesupportedby Lsim into total twenty
five FunctionalUnit Blocks(FUBs)shown in Table1. Pow-
erImpactreadstheuserspecifiedpower informationandthe

systemconfiguration,then the activities andcorresponding
powerinformationfor FUBsarecollectedin every clockcy-
cle. ThePowerImpacttoolsetis ableto simulatetheperfor-
mance,averagepower, andsteppower (i.e., the power dif-
ferencebetweentwoconsecutivecycles)for everyfunctional
blockandthewholesystemfor givenbenchmarkprograms.

Cycle-accurate
Performance
Simulator (Lsim)

Power Models with
simulator interface

Power
Estimation

Performance
Estimation

Hardware
description
for IMPACT

 Power
parameters

Benchmark
compiled by
IMPACT

Figure2: Overall structureof thePowerImpact

3 Clock Ramping

Clock gatingis effective to reducethedynamicpower con-
sumptionof functionalunits.Mostexistingwork [10, 11, 12]
assumethatthedynamicthrottlingcanbeachievedinstantly.
However, turningon/off afunctionalunit in ashorttime(e.g.
within oneclock cycle) will leadto a largesurgecurrent.A
largesurgecurrentrequireshigherdesignandmanufacturing
costsfor on-chipvoltagesupply, reducesthecircuit reliabil-
ity, andlimits thevoltagescalingfor furtherpowerreduction.

To reducethe surge currentby theseclock gating tech-
nologies,Tiwari et al [13, 14] first proposedto extend the
switch on/off time by inserting"waking up" and"going to
sleep"time betweenthe on andoff state. In this case,the
clockgatingtakesafew cyclesandcanbecalledclock ramp-
ing for differentiationfrom theconventionalclockgatingap-
proachin [10]. To avoid theperformancepenaltyintroduced
by theextra switchingcycles,theclock rampingwith hard-

8-2

wareprescan(CRHP) is proposedin [15]. An extra setof
fetch and decodelogic1 are usedto prescanthe incoming
instructionsso that the clock gatedfunctionalunits canbe
rampedup in time for theupcominginstructions.Thesuper-
scalararchitectureis assumedin [15].

In this paper, we develop a new compiler optimization
technology, which automaticallyinserts ramp-up instruc-
tions (RUI) basedon hyperblockschedulingto instruct the
in-time rampingup of functional units. Therefore,no ex-
tra fetch anddecodelogic usedin the hardwareprescanis
needed.We call thenew clock rampingtechnologyasclock
rampingusingcompiler-basedprediction(CRCP). For com-
parison,we also implementan improved CRHP technique
for VLIW architecture,with a finer clock rampinggranular-
ity to achieve morepower reductioncomparedto [15].

In thefollowingsubsections,wepresentfirst theimproved
CRHPandthenthenew CRCP. BecauseFPUsconsumeal-
most10-20%power of theprocessor, we useFPUsto illus-
trateour ideasbasedon SPECbenchmarksimulation.

3.1 Clock Ramping with Hardware Prescan
(CRHP)

The conventionalfloating point unit (FPU) designonly has
two states:inactive state andactive state (seeFigure3(a)).
Whentherearefloatingpoint instructionsexecuted,theFPU
is in theactivestateandconsumesactivepower(

���
). Onthe

otherhand,FPUshave no activity in the inactive stateand
dissipateleakagepower(

�6�
), about10%of theactive power

(
� �

) in presentprocesstechnology. Whenany floatingpoint
instructiongetsinto the FPU, the FPU will jump up from
theinactive stateto theactive statein oneclock cycle. This
approachmayleadto a largesurgecurrent.

To reducethe surge currentat the architecturelevel, we
assumethat thepower level doesnot changewithin a clock
cycle, anddefinethestep power asthepower differencebe-
tweenthe previous andpresentcycles. Further, we assume
that the bigger the steppower, the larger the surge current.
Therefore,the steppower canbe usedasa figure of merit
of the surge current. Then,we can inserta few cyclesbe-
tweenthefetchandexecutionstagesandintroduceinterme-
diatepowerconsumptionlevelsbetweentheinactiveandac-
tive statesto reducethe steppower. Figure3(b) illustrates
theclock rampingtechniquefirst proposedin [14, 13]. This
approachmayresultin abig performancelosshowever.

In comparison,Figure3(c) shows thatour clock ramping
with instruction prescan method.It prescansthecomingin-
structionsbeforetheseinstructionsarefed into the instruc-
tion fetch(IF) stage,andrampsup thecorrespondingFPUs
basedon theresultof prescanning.

1Wecanalsousealargerinstructionbuffer to avoid theextrasetof fetch
anddecodelogic. But the performancein our experimentbecamemuch
worsedueto branches.

Figure3: Therelationshipof states.

For themicroarchitecturein theLsim, therearetwo clock
cyclesfrom IF to EXE stages.If we prescana floatingpoint
instruction 7 clock cyclesearlierbeforeit getsinto the IF
stage,we canhave (7 +2) clock cycles to graduallypower
up the target FP unit to the active stateif thereis no func-
tional unit stall. We call 7 the prescan time (839). Further,
we definethe time to rampup a functionalunit asramping
time 8;: . 8;: of a functional unit is decidedby the design
constraintson thesurgecurrent,andis assumedto be inde-
pendentof thepipelinestall. Whenthereis nopipelinestall,839�<>=@?A8B: is requiredto ensureno performancelossand
is assumedin [15]. This assumptionwill beremovedin this
paperfor betterperformanceandmorepower reduction.

As in [15], we definethe active waiting time (8 �) asthe
time that an idle FPU remainsin the active statebeforeits
rampingdown. It helpsto exploit the spatialandtemporal
locality of FPinstructions.

Notethatweapplyclockrampingto eachindividualFPU.
In theimplementationpresentedin [15], all FPUsaretreated
asawholefloating-pointblock,andarerampedupanddown
simultaneously. Clearly, not all FPUsareusedat the same
time. Figure4 shows therun-timeutilization ratesof FPUs
for SPEC2000FP benchmarksequake and art, with the
hardwareconfigurationof 6-issuewidth andtotally 4 FPUs.
Clearlyonly asmallfractionof totalFPUsarerequiredmost
time. It is easyto predictthatourrampingof eachindividual
FPUcanreducemorepowercomparedto therampingof the
wholeFPblock in [15].

3.2 Clock Ramping with Compiler-based Pre-
diction (CRCP)

Alternative to hardwarebasedprediction,compiler can be
usedto predict incomingFP instructions. In our compiler-
basedclockrampingmethod,thecompilerdecideswhenand
how many FPUsareneededby the incomingfloating-point

8-3

Figure4: Utilization ratefor FPUs

instruction. Suchdecisionscan be codedinto to a special
type of instructionscalledramp-upinstructions(RUI), and
be insertedinto the instructionsequence.When RUIs are
fetched,thehardwarewill rampupFPUsasmany asneeded.
We call this methodclock rampingbasedon compilerpre-
diction (CRCP). Notethattherampingdown is still decided
by thehardwarein CRCP.

In VLIW architecture,instructionsaregroupedinto bun-
dles. An interestingobservation is thatbundlesarenot full
mosttime. Figure5 showstheutilizationratesof bundlesfor
SPEC2000floating-pointbenchmarkprogramsequake and
art. Clearlyonly a small factionof bundlesarefull. There-
fore, RUIs canbe insertedinto emptyslotsof bundles.The
basicCRCPalgorithmsandavarietyof improvementwill be
discussedbelow.

Figure 5: Distribution of instruction numbersin bundles,
with bundlewidth = 6

3.2.1 Basic CRCP Algorithm

We choosehyperblock [16] as the basic structurein our
CRCPalgorithm. A hyperblockis a set of predicatedba-
sic blocksin which controlmayonly enterfrom thetop,but
mayexit from oneor morelocations.Themotivationbehind
hyperblockis to groupa numberof basicblocksfrom dif-
ferentcontrolflow pathsinto a singlemanageableblock for
compileroptimizationandscheduling[16].

We first definetwo conceptsfor the easeof description:
(1) the latency of a bundle,asthe maximumlatency of the
instructionsin thebundle;(2) thedistancebetweentwo bun-

dlesA andB, asthe sumof the latenciesof all bundlesbe-
tweenA andB, includingthelatency of bundleA.

We applyour CRCPalgorithmasanextra back-endcom-
piler optimizationafter the compiler finishesperformance-
relatedoptimizationandscheduling.Ouralgorithmsearches
eachhyperblockfor floating-pointinstructions(FPI). During
oursearch,oncewefind abundlewith FPinstructionscalled
FP bundles, we go upstreamwith distanceD andreachthe
bundlecalledthe target bundle.If we succeedin insertinga
RUI into the target bundle,the distanceD is calledpredic-
tion time 8 9 . It is thecounterpartof theprescantime 8 9 in
CRHPsowe usethesamesymbolto representthem.When
thereis no pipelinestall, 8 9 <C= = 8 : is requiredto prevent
performanceloss.Figure6(a) illustrateshow we choosethe
targetbundle. In this figure,bundleB is theFPbundleand
bundleA is the targetbundle. ThedistancebetweenA and
B is 839 . In this case,TheRUI containsonly thenumberof
FPUsneededby thecorrespondentFPbundle.

FP bundle

Target Bundle
Tp

FP bundle

Dp

(a) (b)

Tp

Target Bundle

Figure6: Insertramp-upinstructions

It is possiblethat thetargetbundleis full, andthereis no
slot to insertRUI into this bundle. In this case,we choose
to continuegoing upstreamuntil we find a bundle with at
leastoneemptyslot to inserttheRUI. However, in this case8 9 <D= > 8 : , which meansthehardwarewill rampup FPUs
too early and causeunnecessarypower consumption. To
avoid this, we recordthe distanceE 9 (asshown in Figure
6) betweenthe ideal locationfor RUI andthe first feasible
locationfor RUI. Thehardwarewill not rampup FPUsright
afterit fetchesanRUI, but rampsup FPUs E�9 cycleslater.

Further, if we reachthe headof the entrancepoint of a
hyperblock,we shouldconsidereachbranch,except those
off-tracebranches,to this block andcontinuesearchingup-
streamon eachbranchpoint. Figure 7 shows this case.
Clearlyit mayintroduceextra RUIs andincreasepowercon-
sumption. But suchRUIs arenecessaryto improve perfor-
mance.

Whena RUI is fetched,thehardwareobtainsthe EF9 and
thenumberof FPUsthatis neededby theincomingFPbun-
dle. After E�9 cycles, the hardwarechecksthe statesof all
FPUs,thenrampsup asmany FPUsasneeded.For exam-
ple, if the incoming FP bundlehasfour FP instructionsas
indicatedby RUI andtherearealreadytwo FPUsin theac-
tivestate,thenonly two extra FPUswill berampedup. It is
easyto seethatin ourCRCPapproach,thehardwareis much
simplerthanthat in CRHP. Thereis no extra setof fetchor

8-4

Fetch/Decode/Issue/Executewidth 6
BTB size 1024entries2-wayassociative
Memory pagesize4096bytes,latency 30cycles
Memorybusbandwidth 8 bytes/cycle

FunctionalUnit number Latency
IntegerUnit 4 1
FPU 4 2 for FPaddandFPmultiply, 15 for FPdivide

Cache numberof sets blocksize associatity ReplacePolicy
L2 Cache 4096 256 1 LRU
L1 InstructionCache 1024 64 2 LRU
L1 DataCache 512 64 4 LRU
dcache1st-level TLB 32 4096 fully LRU
dcache2nd-level TLB 256 4096 fully LRU

Table2: Systemconfigurationfor experiments

decodelogic needed.

After anFPUis used,it is keptin activestatefor thelength
of activewaiting time. This is thesameasthatin CRHP. The
restof thissubsectiondescribesimprovementsoverthebasic
algorithm.

FP bundle

 ramp-up
Instruction

 ramp-up
Instruction

Figure7: Insertionof ramp-upinstructionsbeyond thecur-
rentHyperblock

3.2.2 Reduce Redundant Ramp-up Instructions

Insideeachblock, if thedistancebetweentwo FPbundlesis
smallerthanthe active waiting time, andthe latter FP bun-
dlehasFPIsno morethanpreviousone,thenwe cansimply
skip the latterFP bundleanddo not needto insertRUI for
it. Becausethetwo bundlesarein thesameblock, it is very
possible(but not definitely becausewe choosehyperblock,
not basicblock) that thepreviousFPbundleis executedbe-
fore the latterone. So within theactive waiting time, if the
latteronehasfewer FP instructions,its requirementwill be
metfor sure.For this reason,we avoid insertingRUI for the
latterFPbundlesothatwecangetrid of redundantRUIs and
save power.

3.2.3 Control Flow

If we confronta procedurecall instructionwhensearching
upstream,we find the return instructionsof the procedure
andcontinuesearchingupstreamfrom thereturninstruction.

Also, whenwe move out of a block while searchingup-
stream,we shouldcheckif this is the headof a procedure.
If so,we needto searchthewholeprogram,find every pro-
cedurecall to thecurrentprocedure,andcontinuesearching
upstreamfrom every procedurecall instruction.

3.2.4 Load Instructions

Load instructionshave pre-definedlatenciesin IMPACT.
However, the actualrun-timelatenciesfor load instructions
canbe much larger than the pre-definedvaluewhencache
misseshappen.Becausetherampingof FPUsdoesn’t stall
when the pipeline is stalled, if the load latency becomes
larger than the sum of the FPU ramp-uptime and active
waiting time, the FPU will rampdown beforethe instruc-
tion arrivesat the executestage,which may causesa large
performanceloss.

To reducethe performanceloss,we apply the following
simpleamendment.If we detectduring the decodestagea
datahazarddue to a load instruction,we simply pick one
active FPU andkeepit in the active stateuntil the load in-
structionfinishes. Becausean FP bundle is most likely to
containoneFPinstruction(seeFigure4), keepingoneFPU
in theactive statecanpreventa largeperformancelosswith
smallpowerconsumptionoverheadasshown by experiment
resultsin section4.

4 Experiment Results

In this section,SPEC2000FP benchmarkprogramsequake
and art are usedto study the performanceand power im-
pacts of various power reduction techniques. We mea-

8-5

sure performancein IPC, and compareour performance
and power to thosewithout any dynamic throttling. The
systemconfigurationused in our experiment is summa-
rized in Table2. Similar to the Intel Itantium architecture
(http://developer.intel.com/design/ia-64/), our configuration
hasa fetchwidth of six andfour FPUs.

Figures8-11 show the performanceloss and power re-
ductionachieved by the CRHPandCRCPapproaches,for
the benchmarkprogramsequake andart, respectively. The
two parametersin thefiguresaretheactive waiting time 8 �
andprediction/prescantime 839 . Weassumethattheramping
time is 8B:F?AG�H in all experimentsin thispaper.

(CRHP) (CRCP)

Figure8: Performanceloss(in percentageastheZ-axisvari-
able)of CRHPandCRCPapproachesfor equake.

(CRHP) (CRCP)

Figure9: Power reduction(in percentageastheZ-axisvari-
able)of CRHPandCRCPapproachesfor equake.

(CRHP) (CRCP)

Figure 10: Performanceloss (in percentageas the Z-axis
variable)of CRHPandCRCPapproachesfor art.

Accordingto thesefigures,the longer the active waiting
time, thebettertheperformance.Further, onecaneasilysee

(CRHP) (CRCP)

Figure11: Powerreduction(in percentageastheZ-axisvari-
able)of CRHPandCRCPapproachesfor art.

that 8 � ?IG�J cansatisfy the boundedperformancelossof
1%. Therefore,we will assume8 � ?KG�J in the restof this
paper.

Moreover, thereexists a optimal 8 9 for the given active
waiting time. In general,a 8 9 that is too small or too large
is not beneficialfor performance.Becausea too small or
too large 8 9 doesnot rampFPUsin time andcontribute to
theperformanceloss. However, a large 8L9 degradesperfor-
mancelessthan a small 8L9 does. This is due to the fact
that the FPU is kept active for the active waiting time and
thereforetheperformancelossby atooearlyrampingcanbe
compensated.

Figure12: Performanceloss(in percentage)for 8 : = 10 and8 � = 16

Figure 12 shows the performancefor CRCPand CRHP
when 8 � = 16 for benchmarkM�N�O;PLQ"M (P3RTS has a similar
trend).Clearly, theperformanceof CRCPis a convex curve
with the singlelocal optimal 839 = 9. However, the perfor-
manceof CRHPis not a convex curve, andhasa few local
optimal 839 values. Thereforein the theoreticsense,an ex-
haustive enumerationof 8 9 is neededto find thebest 8 9 for
CRHPwhile thebest 8 9 for CRCPcanbeeasilyfoundasa
localoptimalvaluewithout exhaustiveenumeration.

Figure13showsthepowerreductionfor CRCPandCRHP
when 8 � = 16 for benchmarkM�N�O;P3QUM (again,P3RTS hasa sim-
ilar trend). With respectto the best 8 9 = 6 for CRHPand
the best 8 9 ?WV for CRCP, the energy consumedby FPUs
canbe reducedby 31% and37% for CRHPandCRCPre-
spectively while theperformancelossis negligible 0.2%and

8-6

Figure13: Power reduction(in percentage)for 8 : = 10 and8 � = 16

Figure14: PerformanceLoss(in percentage)beforeandaf-
ter theamendmentfor loadinstruction,for 8B: = 10, 8 � = 16
and 839 = 9.

0.1%for CRHPandCRCPrespectively. It is worthwhileto
point out that we don’t considerthe power dissipationand
cachemissfor hardwareprescan.So the actualpower and
performanceby CRHPwill beworsethanthosein Figure8
and12. GiventhatCRCPhasahigherperformanceanduses
lessenergy, the compiler-basedCRCPis recommendedfor
VLIW processors.

Wehave consideredour loadamendmentin Figures8-11.
To appreciatethecontribution of this amendment,we show
in Figure 14 the performancebeforeandafter our amend-
mentfor CRCPapproach.Benchmarkart is usedasit has
a relatively low cachehit ratefor loadinstructions.Surpris-
ingly, this simple amendmentcan reducethe performance
lossfrom over 6% to lessthan1%.

5 Conclusions and Discussions

In this paperwe first presentthe PowerImpact,the cycle-
accuratepower simulationbasedon IMPACT infrastructure
for VLIW processors.We then usePowerImpactto study
the following power reductiontechniqueswith a bounded
performancelossof 1% comparedto thecaseswithout any

dynamicthrottling: (i) clock rampingwith hardware-based
prescan(CRHP),and(ii) clockrampingwith compiler-based
prediction(CRCP).ExperimentsusingSPEC2000floating
pointbenchmarksshow thatthepowerconsumedby floating
pointunitscanbereducedby upto 31%and37%,for CRCP
approachandCRHPapproachrespectively.

An limitation of our work is that IMPACT is designed
originally as a C compiler. Thereis only a few SPECFP
benchmarkswritten in C, while mostSPECFPbenchmarks
arewritten in Fortran.As weknow theFortranfront-endfor
IMPACT is underdevelopmentandwill be availablesoon.
Morefloatingpoint benchmarkswill betestedthen.

References
[1] D.Brooks, V.Tiwari, and M.Martonosi, “Wattch: A

framework for architectural-level power analysisopti-
mization,” in ISCA, 2000.

[2] W.Ye, N.Vijaykrishnan,M.Kandemir, and M.J.Irwin,
“The designanduseof simplepower: a cycle-accurate
energy estimationtool,” in DAC, 2000.

[3] A. Dhodapkar, C. Lim, G. Cai, and W. Daasch,
“TeX �$YB� est: A thermal enabled multi-model
power/performance estimator,” in Workshop on
Power-Aware Computer Systems, in conjuction with
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, November2000.

[4] V. Tiwari, D. Singh,S. Rajgopal,andG. Mehta,“Re-
ducing power in high-performancemicroprocessors,”
in DAC, 1998.

[5] R. Maro,Y. Bai, andR. Bahar, “Dynamically reconfig-
uring processorresourcesto reducepower consump-
tion in high-performanceprocessors,” in Workshop on
Power-Aware Computer Systems, in conjuction with the
Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, November2000.

[6] G. Cai and C. Lim, “Architectural level
power/performanceoptimizationand dynamicpower
estimation,” in Cool Chips Tutorial colocated with
MICRO32, November1999.

[7] S. Ghiasi and D. Grunwald, “A comparisonof two
architecturalpower models,” in Workshop on Power-
Aware Computer Systems, in conjuction with the
Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, November2000.

[8] P. Chang,S.Mahlke,W. Chen,N. Warter, andW. Hwu,
“Impact: An architecturalframework for multiple-
instruction-issueprocessors,” in Proceedings of the
18th ISCA, May 1991.

[9] D. August, D. Connors,and e. a. S.A. Mahlke, “In-
tegratedpredicatedand sepculative execution in the
impactepic architecture,” in Proceedings of the 25th
ISCA, July 1998.

8-7

[10] S.Manne,A.Klauser, andD.Grunwald,“Pipeline gat-
ing: Speculationcontrol for energy reduction,” in
ISCA, 1998.

[11] N.Vijaykrishnan, M.Kandemir, M.J.Irwin, and
H.S.Kim, “Energy-driven integrated hardware-
softwareoptimization using simplepower,” in ISCA,
2000.

[12] E.Musoll, “Predictingtheusefulnessof a block result:
a micro-architecturaltechniquefor high-performance
low-power processors,” in 32nd Annual International
Symposium on Microarchitecture, November1999.

[13] M. Pant, P. Pant, D. Wills, and V.Tiwari, “An archi-
tecturalsolutionfor theinductivenoiseproblemdueto
clock-gating,” in Proc. Int. Symp. on Low Power Elec-
tronics and Design, pp.255–257,1999.

[14] M. Pant, P. Pant, D. Wills, andV. Tiwari, “Inductive
noisereductionat the architecturallevel,” in Interna-
tional Conference on VLSI Design, pp.162–167,2000.

[15] Z. Tang,N. Chang,S. Lin, W. Xie, S. Nakagawa, and
L. He, “Ramp up/down floating point unit to reduce
inductive noise,” in Workshop on Power-Aware Com-
puter Systems, in conjuction with the Ninth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Novem-
ber2000.

[16] S. Mahlke, D. Lin, W. Chen,R. Hank, andR. Bring-
mann,“Effective compiler supportfor predicatedex-
ecutionusing the hyperblock,” in Proc. of Micro 25,
pp.45–54,1992.

8-8

