Power ModelingandReductionof VLIW Processors

WeipingLiao andLei He
ElectricalandComputerEngineeringDepartment
University of WisconsinMadison,WI 53706

Abstract

In this paper we first presenta cycle-accuratgpower simu-
lator basedon the IMPACT toolset. This simulatorallows

the designerto evaluateboth VLIW compiler and micro-

architectureinnovations for power reduction. Using this

simulator we thendevelopandcomparethe following tech-
nigueswith a boundedperformanceéossof 1% comparedo

the casewithout ary dynamicthrottling: (i) clock ramping
with hardware-basegrescan(CRHP), and (ii) clock ramp-
ing with compilerbasedprediction (CRCP). Experiments
using SPEC2000floating point benchmarksshow that the

power consumedy floating point units can be reducedby

upto 31%and37%,in CRHPandCRCPrespectiely.

1 Introduction
Pawer is rapidly becomingone of the primary designcon-
straintsfor modernprocessodesigndueto increaseccom-
plexity andspeedf the system.Cycle-accuratenicroarchi-
tecturelevel power simulationssuchasWattch[1], Simple-
Pawer[2], andTEM 2 P?EST [3] have beendeveloped,and
usedextensiely to validate power-efficient microarchitec-
ture innovationsincluding clock gating[4], dynamicallyre-
configuringresource$5], etc. However, all aforementioned
work focuseson the superscalaarchitecture.

In this paperwe studythe power modelingandreduction
for the VLIW architectureOur contributionsinclude:

e We integrate the Cai-Lim power model [6, 7] into
the IMPACT toolset[8], anddevelop a cycle-accurate
power simulatornamedPowverimpact. This simulator
allows the designerto evaluateboth VLIW compiler
andmicroarchitecturénnovationsfor power reduction.

We developandcomparehefollowing techniquesvith

aboundedperformancéossof 1% comparedothecase
without ary dynamicthrottling: (i) clock rampingwith

hardware-basedrescan(CRHP), and (ii) clock ramp-
ing with compilerbasedbrediction(CRCP).

*This researchwas partially supportedby the NSF CAREER Award
0093273andSRCgrant2000-HJ-782 We usedcomputergdonatedoy HP
andSUN MicrosystemsAddresscommentdo Ihe@ece.wisc.edu.

¢ Experimentausing Poverlmpactand SPEC200Gloat-
ing point benchmarkshaw that the power consumed
by floating point unitscanbereducedy up to 31%for
CRHPand37%for CRCR respectiely.

Therestof thepapelis organizedasfollows. Section? de-
scribeghepower simulatorfor VLIW architecture Sections
3 presentimplementation®f CRHPand CRCP Section4
shavs the experimentresults.Section5 concludeghe paper
anddiscussesheongoingwork.

2 Cycle-Accurate VLIW Power Sim-
ulation

Existing work [1, 2, 3] considerssuperscalaarchitecture.
Thereis hardly ary architecturallevel power simulatorfor
Very Long Instruction Word(VLIW) architecture. In this
section, we first introducethe IMPACT infrastructurefor
VLIW architecture[and the Cai-Lim power model. We
thenpresenthe power simulationenhancemertb IMPACT.

C program | MPACT C
—| conpiler Emul at or
C code
Si mul ation Trace for Conpi | ed by host
results LSIM Lsim conpiler and run
si mul at or for trace

Figurel: Flow diagramfor IMPACT

2.1 |IMPACT Architecture Framework

The IMPACT toolset (http://www.crhc.uiuc.edu/IMRCT/)
containsthe IMPACT EPIC architecturecompiler andem-
ulation and simulationtools (seeFigure1). The IMPACT
compiler compilesC benchmarkwith both front-end and
back-endoptimizations. The emulatortranslateghe inter-
mediaterepresentatioto C code,which canbe compiledby
hostcompilerandbe executedto generate tracefor Lsim,
acycle-accuratenicroarchitectural-leel performanceimu-
lator. This toolsethasbeensuccessfullyutilized to conduct

81

FUB’sname | correspondindgnardware | FUB’'sname correspondindpardware
npclog next pcgeneratioriogic decodepla Instructiondecoder
btblog BTB logic decodemisp| Mispredictionhandlinglogic
btbcac BTB cache fuint Integer executionunit
rsbcac ReturnStackBuffer fufp Floatingpoint executionunit
itlbcac InstructionTLB ul2log Unified L2 cacheogic
dtlbcac DataTLB ul2tag Unified L2 cachetag
illlog L1 instructioncachdogic ul2cac Unified L2 cachearray
illtag L1 instructioncachetag reglog RagisterFile logic
illcac L1 instructioncachearray reg Ragisters
dillog L1 datacacheogic vcachelog Victim cachdogic
diltag L1 datacachetag vcachetag Victim cachetag
dlicac L1 datacachearray vcachecac Victim cachearray

biu Bus/IObuffer

Tablel: FUBsin

the systemlevel architecturakexperimentand newv codeop-
timization (8, 9].

In this paper we implementour power modelingwithin
Lsim, but implementour power reductiontechniqueswithin
theback-endcompiler emulatorandLsim simulator

2.2 Cai-Lim Power Model

The Cai-Lim power model [6] was originally usedfor su-
perscala@architecture.lt partitionsthe processointo Func-
tional Unit Blocks (FUBs). EachFUB is characterizedy
areas(A(n)) of four circuit types- dynamic, static, PLA
(programmabldogic array),and clock and memoryto im-
plementthis FUB, aswell asactive power densitiesP, (n)
andinactive power densitiesP;(n) for eachtype of circuit.
Then,theenepy dissipationof a FUB is givenby

E = EA" - (Pa(n) - active_cycles

@)

wheren iteratesover the four circuit types, and numbers
of active andinactive cyclesare collectedby cycle-accurate
performanceimulator Theenegy dissipatiorcomputedor
eachFUB separatelys addedup to getthe total power dis-
sipation.

+Pi(n) - inactive_cycles)

2.3 Power | mpact

WeintegratetheCai-Lim powermodelinto IMPACT toolset,
andnametheresultingnew toolsetasPowerlmpact.Figure2
illustratesthe overall structureof Paverimpact.We develop
aninterfacebetween_sim andthe power modelsof FUBs.
Accordingto the structureof Lsim simulator we partition
the VLIW architecturesupportedoy Lsim into total twenty
five FunctionalUnit Blocks(FUBs)shavn in Table1. Pow-
erlmpactreadsthe userspecifiedpower informationandthe

our power model

systemconfiguration thenthe activities and corresponding
powerinformationfor FUBsarecollectedin every clock cy-
cle. The Paverimpacttoolsetis ableto simulatethe perfor
mance,averagepower, andsteppower (i.e., the power dif-
ferencebetweertwo consecutie cycles)for every functional
block andthe whole systemfor givenbenchmarkprograms.

Power
par anet er s Pover Mbdels with Pover
sinulator interface (1 Estimtion

Har dwar e T

description

for | MPACT Cycl e-accurate

Per f or mance

Benchmar k Simul ator (Lsim Per f or mance
conpi | ed by Estimation
| MPACT

Figure2: Overall structureof the Paverimpact

3 Clock Ramping

Clock gatingis effective to reducethe dynamicpower con-
sumptiorof functionalunits. Mostexistingwork[10, 11, 17]
assumehatthedynamicthrottling canbeachievedinstantly.
However, turningon/off afunctionalunit in ashorttime (e.qg.
within oneclock cycle) will leadto alarge suigecurrent. A
largesumgecurrentrequireshigherdesignandmanufacturing
costsfor on-chipvoltagesupply reduceghe circuit reliabil-
ity, andlimits thevoltagescalingfor furtherpowerreduction.
To reducethe suige currentby theseclock gating tech-
nologies, Tiwari et al [13, 14] first proposedo extend the
switch on/off time by inserting"waking up" and "going to
sleep"time betweenthe on and off state. In this case,the
clockgatingtakesafew cyclesandcanbecalledclock ramp-
ing for differentiationfrom the conventionalclock gatingap-
proachin [10]. To avoid theperformanceenaltyintroduced
by the extra switchingcycles, the clock rampingwith hard-

8-2

ware prescan(CRHP) is proposedn [15]. An extra setof
fetch and decodelogic® are usedto prescarthe incoming
instructionsso that the clock gatedfunctional units canbe
rampedup in time for the upcominginstructions. Thesuper
scalararchitecturas assumedn [15].

In this paper we develop a new compiler optimization
technology which automaticallyinserts ramp-up instruc-
tions (RUI) basedon hyperblockschedulingto instructthe
in-time rampingup of functional units. Therefore,no ex-
tra fetch and decodelogic usedin the hardwareprescans
neededWe call the new clock rampingtechnologyasclock
rampingusingcompilerbasedrediction(CRCP). For com-
parison,we alsoimplementan improved CRHP technique
for VLIW architecturewith a finer clock rampinggranular
ity to achieve morepower reductioncomparedo [15].

In thefollowing subsectionsye presenfirst theimproved
CRHPandthenthe nev CRCP Becausd-PUsconsumeal-
most10-20%power of the processarwe useFPUsto illus-
trateour ideasbasedn SPECbhenchmarlsimulation.

3.1 Clock Ramping with Hardware Prescan
(CRHP)

The cornventionalfloating point unit (FPU) designonly has
two states:inactive state andactive state (seeFigure 3(a)).
Whentherearefloatingpointinstructionsxecuted the FPU
is in theactive stateandconsumesctive power (P,). Onthe
otherhand,FPUshave no actiity in the inactive stateand
dissipatdeakagepower (P;), about10%of the active power
(P,) in presenprocesgechnology Whenary floating point
instructiongetsinto the FPU, the FPU will jump up from
theinactive stateto the active statein oneclock cycle. This
approachmayleadto alarge suige current.

To reducethe sumge currentat the architecturelevel, we
assumehatthe power level doesnot changewithin a clock
cycle, anddefinethe step power asthe power differencebe-
tweenthe previous and presentcycles. Further we assume
thatthe biggerthe steppower, the larger the surge current.
Therefore the steppower canbe usedasa figure of merit
of the suge current. Then,we caninserta few cyclesbe-
tweenthe fetchandexecutionstagesandintroduceinterme-
diatepower consumptiorievelsbetweertheinactive andac-
tive statesto reducethe steppower. Figure 3(b) illustrates
the clock rampingtechniquefirst proposedn [14, 13]. This
approachmayresultin abig performancdosshowever.

In comparisonFigure 3(c) shows thatour clock ramping
with instruction prescan method.It prescanshe comingin-
structionsbeforetheseinstructionsarefed into the instruc-
tion fetch (IF) stage,andrampsup the correspondindg-PUs
basedn theresultof prescanning.

1We canalsousea largerinstructionbuffer to avoid theextrasetof fetch
anddecodelogic. But the performancen our experimentbecamemuch
worsedueto branches.

Active state (Pa)
Base Case
Inactive state (Pi

Ramping without
pre-scan

Active state

Inactive state

Active state

Ramping with
pre-scan
Inactive state)

Pre-scan time

R

>

Active waiting
time

Active waiting
time

Figure3: Therelationshipof states.

For the microarchitecturén the Lsim, therearetwo clock
cyclesfrom IF to EXE stageslf we prescarafloating point
instruction N clock cycles earlierbeforeit getsinto the IF
stage,we canhave (N +2) clock cyclesto graduallypower
up the target FP unit to the active stateif thereis no func-
tional unit stall. We call N the prescan time (7;,). Further
we definethe time to rampup a functionalunit asramping
time T,.. T, of afunctionalunit is decidedby the design
constrainton the suge current,andis assumedo be inde-
pendenbf thepipelinestall. Whenthereis no pipelinestall,
T, + 2 = T, isrequiredto ensureno performancdossand
is assumedn [15]. Thisassumptiowill beremaovedin this
paperfor betterperformanceandmorepower reduction.

As in [15], we definethe active waiting time (7;) asthe
time that anidle FPU remainsin the active statebeforeits
rampingdown. It helpsto exploit the spatialandtemporal
locality of FPinstructions.

Notethatwe applyclock rampingto eachindividual FPU.
In theimplementatiorpresentedh [15], all FPUsaretreated
asawholefloating-pointblock,andarerampedupanddown
simultaneously Clearly, not all FPUsare usedat the same
time. Figure4 shows the run-time utilization ratesof FPUs
for SPEC2000FP benchmarksequake and art, with the
hardwareconfigurationof 6-issuewidth andtotally 4 FPUs.
Clearlyonly asmallfractionof total FPUsarerequiredmost
time. It is easyto predictthatourrampingof eachindividual
FPU canreducemorepower comparedo therampingof the
wholeFPblockin [15].

3.2 Clock Rampingwith Compiler-based Pre-
diction (CRCP)

Alternative to hardwarebasedprediction,compiler can be
usedto predictincoming FP instructions. In our compiler
basedtlockrampingmethodthecompilerdecidesvhenand
how mary FPUsare neededy the incomingfloating-point

8-3

equake art

70% 100%

Figure4: Utilization ratefor FPUs

instruction. Suchdecisionscan be codedinto to a special
type of instructionscalled ramp-upinstructions(RUI), and
be insertedinto the instructionsequence.When RUIs are

fetched thehardwarewill rampup FPUsasmary asneeded.

We call this methodclock rampingbasedon compiler pre-
diction (CRCP). Notethattherampingdown is still decided
by the hardwarén CRCP

In VLIW architecturejnstructionsaregroupedinto bun-
dles. An interestingobsenationis that bundlesare not full
mosttime. Figure5 shavstheutilization ratesof bundlesfor
SPEC2000loating-pointbenchmarkprogramsequake and
art. Clearlyonly a smallfactionof bundlesarefull. There-
fore, RUIs canbe insertedinto emptyslotsof bundles. The
basicCRCPalgorithmsandavarietyof improvementwill be
discussedbelown.

equake art

A LTI PP AT

1 2 3 4

Figure 5: Distribution of instruction numbersin bundles,
with bundlewidth = 6

3.21 Basic CRCP Algorithm

We choosehyperblock[16] as the basic structurein our
CRCPalgorithm. A hyperblockis a set of predicatedba-
sic blocksin which controlmay only enterfrom thetop, but
mayexit from oneor morelocations.The motivationbehind
hyperblockis to group a numberof basicblocksfrom dif-
ferentcontrolflow pathsinto a singlemanageabl&lock for
compileroptimizationandschedulind16].

We first definetwo conceptsfor the easeof description:
(1) the lateny of a bundle,asthe maximumlatengy of the
instructionsin thebundle;(2) thedistancebetweertwo bun-

dlesA andB, asthe sumof the latenciesof all bundlesbe-
tweenA andB, includingthelateny of bundleA.

We apply our CRCPalgorithmasan extra back-endcom-
piler optimizationafter the compiler finishesperformance-
relatedoptimizationandschedulingOur algorithmsearches
eachhyperblockfor floating-pointinstructiongFPI). During
oursearchpncewefind abundlewith FPinstructionscalled
FP bundles, we go upstreamwith distanceD andreachthe
bundlecalledthetarget bundle. If we succeedn insertinga
RUI into the target bundle, the distanceD is called predic-
tion time 7,,. It is the counterparof the prescartime 7,, in
CRHPsowe usethe samesymbolto representhem. When
thereis no pipelinestall, 7, + 2 = 7. is requiredto prevent
performancdoss. Figure6(a)illustrateshow we choosethe
targetbundle. In this figure, bundleB is the FP bundleand
bundleA is the tametbundle. The distancebetweenA and
B is 7. In this case,The RUI containsonly the numberof
FPUsneededy the correspondentP bundle.

Target Bundl e

Target Bundl e

TP
FP bundl e |

——
=

FP bundl e

(a) (b)

Figure6: Insertramp-upinstructions

It is possiblethatthetarget bundleis full, andthereis no
slot to insertRUI into this bundle. In this case we choose
to continuegoing upstreamuntil we find a bundle with at
leastoneemptyslotto insertthe RUI. However, in this case
T, + 2 >T,., which meanghe hardwarewill rampup FPUs
too early and causeunnecessarypower consumption. To
avoid this, we recordthe distanceD,, (asshown in Figure
6) betweenthe ideal locationfor RUI andthe first feasible
locationfor RUI. The hardwarewill notrampup FPUsright
afterit fetchesanRUI, but rampsup FPUsD, cycleslater.

Further if we reachthe headof the entrancepoint of a
hyperblock,we should considereachbranch,exceptthose
off-tracebranchesto this block and continuesearchingup-
streamon eachbranchpoint. Figure 7 shows this case.
Clearlyit mayintroduceextra RUIs andincreasgpower con-
sumption. But suchRUIs arenecessaryo improve perfor
mance.

Whena RUI is fetched,the hardwareobtainsthe D, and
thenumberof FPUsthatis neededy theincomingFP bun-
dle. After D, cycles,the hardwarechecksthe statesof all
FPUs,thenrampsup asmary FPUsasneeded.For exam-
ple, if theincoming FP bundle hasfour FP instructionsas
indicatedby RUI andtherearealreadytwo FPUsin the ac-
tive state thenonly two extra FPUswill berampedup. It is
easyto seethatin our CRCPapproachthehardwards much
simplerthanthatin CRHR Thereis no extra setof fetch or

8-4

Fetch/Decode/lssue/Exutewidth | 6

BTB size 1024entries2-wayassociatre

Memory pagesize4096bytes,lateny 30cycles
Memorybusbandwidth 8 bytes/gcle

FunctionalUnit number Lateny

Integer Unit 4 1

FPU 4 2 for FPaddandFP multiply, 15 for FPdivide
Cache numberof sets | blocksize | associatity| ReplacePolicy
L2 Cache 4096 256 1 LRU

L1 InstructionCache 1024 64 2 LRU

L1 DataCache 512 64 4 LRU
dcachelst-level TLB 32 4096 fully LRU
dcache2nd-level TLB 256 4096 fully LRU

Table2: Systemconfigurationfor experiments

decoddogic needed.

After anFPUis used|t is keptin active statefor thelength
of activewaitingtime. Thisis thesameasthatin CRHR. The
restof this subsectiomlescribesmprovementoverthebasic
algorithm.

ranp-up
ranp- up I nstruction
I nstruction

FP bundl e

Figure7: Insertionof ramp-upinstructionsbeyond the cur-
rentHyperblock

3.22 Reduce Redundant Ramp-up Instructions

Insideeachblock, if the distancebetweertwo FP bundlesis

smallerthanthe active waiting time, andthe latter FP bun-

dle hasFPIsno morethanpreviousone,thenwe cansimply
skip the latter FP bundleand do not needto insertRUI for

it. Becausehetwo bundlesarein the sameblock, it is very
possible(but not definitely becausave choosehyperblock,
not basicblock) thatthe previous FP bundleis executedbe-
fore the latter one. So within the active waiting time, if the
latter one hasfewer FP instructions,its requiremenwill be
metfor sure.For thisreasonwe avoid insertingRUI for the
latterFPbundlesothatwe cangetrid of redundanRUIs and
save power.

3.2.3 Control Flow

If we confronta procedurecall instructionwhen searching
upstream,we find the return instructionsof the procedure
andcontinuesearchingipstreanfrom thereturninstruction.
Also, whenwe maove out of a block while searchingup-
stream,we shouldcheckif this is the headof a procedure.
If so,we needto searchthewhole program find every pro-
cedurecall to the currentprocedureandcontinuesearching
upstreanfrom every procedurecall instruction.

3.24 Load Instructions

Load instructionshave pre-definedlatenciesin IMPACT.
However, the actualrun-timelatenciesfor load instructions
canbe much larger thanthe pre-definedvalue when cache
misseshappen.Becausahe rampingof FPUsdoesnt stall
when the pipeline is stalled, if the load latenyy becomes
larger than the sum of the FPU ramp-uptime and active
waiting time, the FPU will ramp down beforethe instruc-
tion arrives at the executestage,which may causesa large
performancéoss.

To reducethe performancdoss, we apply the following
simpleamendmentIf we detectduring the decodestagea
datahazarddueto a load instruction, we simply pick one
active FPU andkeepit in the active stateuntil the load in-
structionfinishes. Becausean FP bundleis mostlikely to
containoneFP instruction(seeFigure4), keepingone FPU
in the active statecanpreventa large performancdosswith
smallpower consumptioroverheadasshovn by experiment
resultsin sectiord.

4 Experiment Results
In this section,SPEC2000-P benchmarkprogramsequake

and art are usedto study the performanceand power im-
pacts of various power reduction techniques. We mea-

8-5

sure performancein IPC, and compareour performance
and power to thosewithout ary dynamicthrottling. The
system configurationused in our experimentis summa-
rizedin Table2. Similar to the Intel Itantium architecture
(http://developerintel.com/designi&-64J), our configuration
hasa fetchwidth of six andfour FPUs.

Figures8-11 showv the performanceoss and power re-
duction achieved by the CRHP and CRCPapproachesfor
the benchmarlkprogramsequake andart, respectrely. The
two parameterén the figuresarethe active waiting time 7,
andprediction/prescatime 7,,. We assumehattheramping
timeis 7, = 10 in all experimentdn this paper

Figure8: Performancdoss(in percentagastheZ-axisvari-
able)of CRHPandCRCPapproachefor equake.

Figure9: Power reduction(in percentag@asthe Z-axis vari-
able)of CRHPandCRCPapproachefor equake.

Figure 10: Performancdoss (in percentageas the Z-axis
variable)of CRHPandCRCPapproachefor art.

Accordingto thesefigures,the longerthe active waiting
time, the betterthe performanceFurther onecaneasilysee

Figurell: Powverreduction(in percentagasthe Z-axisvari-
able)of CRHPandCRCPapproachefor art.

that7, = 16 cansatisfythe boundedperformancdoss of
1%. Therefore we will assumel, = 16 in the restof this
paper

Moreover, thereexists a optimal 7,, for the given active
waiting time. In generala 7, thatis too smallor too large
is not beneficialfor performance. Becausea too small or
too large 7, doesnot ramp FPUsin time and contribute to
the performancdoss. However, a large 7, degradesperfor
mancelessthan a small 7, does. This is dueto the fact
that the FPU is kept active for the active waiting time and
thereforethe performancdossby atoo earlyrampingcanbe
compensated.

N

1

0.9

0.8
07
06

05 ~CRCP|
- CRHP

04

03

0.2

0t

0

Figure12: Performancéoss(in percentagefor 7, = 10 and
T, =16

Figure 12 shaws the performanceor CRCPand CRHP
when T, = 16 for benchmarkequake (art hasa similar
trend). Clearly, the performanceof CRCPis a convex curve
with the singlelocal optimal 7, = 9. However, the perfor
manceof CRHPis not a cornvex curwe, andhasa few local
optimal 7}, values. Thereforein the theoreticsensean ex-
haustve enumeratiorof 7,, is neededo find the best7,, for
CRHPwhile the best7, for CRCPcanbeeasilyfoundasa
local optimalvaluewithout exhaustive enumeration.

Figurel3shavsthepowerreductionfor CRCPandCRHP
whenT, = 16 for benchmarkquake (again,art hasasim-
ilar trend). With respectto the best7, = 6 for CRHPand
the best7,, = 9 for CRCR the enegy consumedyy FPUs
canbe reducedby 31% and37% for CRHPand CRCPre-
spectvely while theperformancéossis nggligible 0.2%and

8-6

25 ~CRCP
20 - CRHP

Figure13: Pawerreduction(in percentagefor 7. = 10 and

T,=16

8

7+ — — —

O Before
W After

Figure14: Performance.oss(in percentagepeforeandaf-
tertheamendmentor loadinstruction,for 7,, = 10,7, = 16

and7}, = 9.

0.1%for CRHPand CRCPrespectiely. It is worthwhileto
point out that we don't considerthe power dissipationand
cachemissfor hardwareprescan.So the actualpower and
performancéy CRHPwill beworsethanthosein Figure8
and12. Giventhat CRCPhasahigherperformanceanduses
lessenepy, the compilerbasedCRCPis recommendedor

VLIW processors.

We have consideredurloadamendmenin Figures8-11.
To appreciateghe contribution of this amendmentywe shov
in Figure 14 the performancebeforeand after our amend-
mentfor CRCPapproach.Benchmarkart is usedasit has
arelatively low cachehit ratefor load instructions.Surpris-
ingly, this simple amendmentan reducethe performance

lossfrom over 6% to lessthan1%.

5 Conclusions and Discussions

In this paperwe first presentthe Powverimpact,the cycle-
accuratgpower simulationbasedon IMPACT infrastructure
for VLIW processors.We then use Poverimpactto study
the following power reductiontechniqueswith a bounded
performancdoss of 1% comparedo the caseswithout ary

8-7

dynamicthrottling: (i) clock rampingwith hardware-based
prescaffCRHP),and(ii) clockrampingwith compilerbased
prediction (CRCP).Experimentsusing SPEC200(loating
pointbenchmarkshaow thatthe power consumedby floating
pointunitscanbereducedyy upto 31%and37%,for CRCP
approacrandCRHPapproactrespectiely.

An limitation of our work is that IMPACT is designed
originally asa C compiler Thereis only a few SPECFP
benchmarksvritten in C, while mostSPECFP benchmarks
arewrittenin Fortran. As we know the Fortranfront-endfor
IMPACT is underdevelopmentandwill be available soon.
More floatingpoint benchmarksvill betestedthen.

References

[1] D.Brooks, V.Tiwari, and M.Martonosi, “Wattch: A
framework for architectural-lgel power analysisopti-
mization; in 1SCA, 2000.

[2] W.Ye, N.Vijaykrishnan,M.Kandemir and M.J.lrwin,
“The designanduseof simplepaver: a cycle-accurate
enepgy estimationtool,” in DAC, 2000.

[3] A. Dhodapkar C. Lim, G. Cai, and W. Daasch,
“Tem?p?est: A thermal enabled multi-model
power/performance estimatof in Wobrkshop on
Power-Aware Computer Systems, in conjuction with
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, November2000.

[4] V. Tiwari, D. Singh,S. Rajgopal,andG. Mehta,“Re-
ducing power in high-performancamicroprocessors,
in DAC, 1998.

[5] R.Maro,Y. Bai,andR. Bahar “Dynamically reconfig-
uring processoresourceso reducepower consump-
tion in high-performancerocessors,in \Workshop on
Power-Aware Computer Systems, in conjuction withthe
Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, November2000.

[6] G. Cai and C. Lim, “Architectural level
power/performanceptimization and dynamic power
estimatior, in Cool Chips Tutorial colocated with
MICRO32, November1999.

[7] S. Ghiasi and D. Grunwald, “A comparisonof two
architecturalpower models) in Workshop on Power-
Aware Computer Systems, in conjuction with the
Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, November2000.

[8] P ChangS.Mahlke,W. Chen,N. Warter andW. Hwu,
“Impact: An architecturalframeavork for multiple-
instruction-issueprocessors, in Proceedings of the
18th ISCA, May 1991.

[9] D. August, D. Connors,ande. a. S.A. Mahlke, “In-
tegrated predicatedand sepculatie execution in the
impact epic architecturé, in Proceedings of the 25th
ISCA, July 1998.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S.Manne,A.Klauser and D.Grunwald,“Pipeline gat-
ing: Speculationcontrol for enegy reduction; in
ISCA, 1998.

N.Vijaykrishnan, M.Kandemir M.J.Irwin, and
H.S.Kim, “Enemy-driven integrated hardware-
software optimization using simplepaver,” in [SCA,
2000.

E.Musoll, “Predictingthe usefulnes®f a block result:
a micro-architecturatechniquefor high-performance
low-power processors,in 32nd Annual International
Symposium on Microarchitecture, November1999.

M. Pant, P. Pant, D. Wills, and V.Tiwari, “An archi-
tecturalsolutionfor theinductive noiseproblemdueto
clock-gating; in Proc. Int. Symp. on Low Power Elec-
tronics and Design, pp. 255-257,1999.

M. Pant, P. Pant, D. Wills, andV. Tiwari, “Inductive
noisereductionat the architecturallevel,” in Interna-
tional Conference on VLS Design, pp.162-1672000.

Z. Tang,N. Chang,S. Lin, W. Xie, S. Nakagava, and
L. He, “Ramp up/downn floating point unit to reduce
inductive noise’; in Workshop on Power-Aware Com-
puter Systems, in conjuction with the Ninth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Novem-
ber2000.

S. Mahlke, D. Lin, W. Chen,R. Hank, andR. Bring-
mann, “Effective compiler supportfor predicatedex-
ecutionusing the hyperblock; in Proc. of Micro 25,
pp.45-54,1992.

8-8

