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ABSTRACT
The geometry-integration based vector potential equivalent cir-

cuit (VPEC) was introduced to obtain a localized circuit model

for inductive interconnects in [1]. In this paper, we show that

the method in [1] is accurate only for the two-body problem. We

derive N-body VPEC models based on geometry integration and

inversion of inductance matrix under the PEEC model, respec-

tively. Both VPEC models are derived from first principles and

are accurate compared to the full PEEC model. The resulting

circuit matrix Ĝ can be analyzed directly by existing simulation

tools such as SPICE, and the simulation time of VPEC model is

47X less than that for PEEC model for a bus structure with 256

wires. It is also passive and strictly diagonal dominant, which

leads to efficient circuit sparsification methods such as numerical

and geometry based sparsifications. Compared to the full PEEC

model, the sparsified VPEC models are orders of magnitude faster

and produce waveforms with very small error.

Categories and Subject Descriptors
B7.2 [Integrated Circuits ] Design Aids - simulation

General Terms
Theory, Algorithms

1. INTRODUCTION
As VLSI technology advances with decreasing feature size

as well as increasing operating speed and global intercon-
nect length, an increasing portion of interconnects should
be modeled as RLC circuits. Although these interconnects
can be accurately modeled by Partial Element Equivalent
Circuit (PEEC) [2], the resulting full PEEC circuit may
have an extremely high complexity for circuit analysis. Be-
cause the partial inductance matrix in PEEC is not diagonal
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dominant, simply truncating off-diagonal elements leads to
negative eigenvalues such that the truncated matrix loses
the property of passivity [3]. Several inductance sparsifica-
tion methods have been proposed with guaranteed passivity.
The return-loop inductance model [4] assumes that the cur-
rent for a signal wire returns from the nearest ground wires
sandwiching the signal wire. It loses accuracy by ignoring
coupling between signal wires not in the same “halo”. The
shift-truncation model [5] directly calculates a sparse induc-
tance matrix by assuming that the current returns from a
shell with radius r0. However, it is difficult to define r0 to
obtain the desired accuracy. The inverse-truncation model
[6] replaces the inductance matrix by its inversion, called K
matrix or susceptance. K matrix is diagonal dominant and
small-valued off-diagonal elements can be truncated without
affecting the passivity. Because K is a new circuit element
that is not considered in conventional circuit analysis such
as SPICE, new circuit analysis tools need to be developed
[7]. Further, inversion of truncated K matrix is proposed
to avoid using K in simulation [8], and wire duplication is
used to construct a complexity-reduced circuit that is equiv-
alent to the circuit under the inductance matrix or under the
truncated K matrix [9].
Using equivalent resistance to model inductive intercon-

nects, the geometry-integration based vector potential equiv-
alent circuit (VPEC) is introduced in [1]. The resulting cir-
cuit model can be analyzed by SPICE, and shows a good po-
tential for circuit sparsification. This paper presents an in-
depth study on VPEC. In Section 2, we show that the VPEC
method in [1] is accurate only for the two-body problem, and
derive an accurate N-body VPEC model based on geometry
integration. In Section 3, we introduce a new N-body VPEC
model using inversion of inductance matrix under the PEEC
model. Both VPEC models are derived from first principles
and are accurate compared to the full PEEC model. The
integration based VPEC model needs a FastHenry[10]-like
three-dimensional field solver developed from scratch, but
the inversion based VPEC model can be easily obtained us-
ing the partial inductance matrix generated by FastHenry.
Further, we prove that the circuit matrix Ĝ resulting from
the VPEC model is passive and strictly diagonal dominant.
As a by-product, the Ĝ matrix can be used to justify from
first principles the K matrix (or susceptance) based sparsi-
fication methods. In Section 4, we present efficient circuit
sparsification methods leveraging the passivity of Ĝ matrix.
We conclude the paper in Section 5. Proofs and more experi-
ments including those on spiral inductors in the mixed-signal
design are available at [11].
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Figure 1: Expansion of two filaments in (a) to hyper-
filaments in (b).

2. INTEGRATION BASED VPEC
In this section, we first use the two-body problem to il-

lustrate the concept of VPEC model, then extend VPEC to
the N-body problem.

2.1 Two-Body Problem
Same as in FastHenry [10], the long and thin conductor in

integrated circuits can be divided into a number of rectilin-
ear filaments. Given the magneto-quasi-static assumption,
the current is constant in the current direction assumed as
z-axis in this paper, and it is uniform over the cross-section
of the current flow (i.e., uniform over the cross-section of
filament). For VPEC, the region of filament is extended to
include the space between two adjacent filaments as shown
in Fig. 1 such that the two extended regions touch each
other. To be precise, we call the extended filament as hyper-
filament (in short, h-filament). If the original filaments al-
ready touch each other, the h-filaments are equivalent to the
filaments. In this paper, we use the superscripts x, y, z to
denote spacial components of a vector variable. Let A be
the vector potential, then Az is its z-direction component.
We use the subscripts i and j for variables associated with
h-filaments ai and aj . Without loss of generality, two h-
filaments with cross-section in the xy plane and an identical
length l in z-direction are studied in the two body prob-
lem. We start with the differential Maxwell equations in the
formalism of Az:

∇2Az = −µJz (1)

∂Az

∂t
= −Ez −∇zφ (2)

where the vector potential A is in z-direction same as cur-
rent density J, E is electrical field, and φ is the scalar po-
tential. Because Jz = Jz

i + Jz
j , the total vector potential is

Az = Az
i + Az

j , where Az
i is determined by Jz

i of h-filament
ai:

Az
i =

µ

4π

∫
dr′i

Jz
i

|r − r′i|
(3)

where |r − r′i| is the distance between the source and desti-
nation points. Az

j of h-filament aj can be obtained similarly.
Furthermore if (1) is integrated within the volume Ωi of h-
filament ai, using Gauss’ law :∫

S

dS · a =

∫
Ω

dΩ∇ · a, (4)

we can obtain the following integral equation:∫
Si

dS · ∇Az + µ

∫
Ωi

dΩJz
i = 0 (5)

where Si is the surface of h-filament ai, including Sx
i and

Sy
i (see Fig. 1), and only the contribution of Jz

i is counted
because the integration is inside ai. An effective resistance
(called equivalent magnetic resistance, in short, EMR) is
defined as

R̂ij = µ
(Az

i |Si − Az
j |Si)∫

Si
dS · ∇Az|Si

(6)

to model (i.e., replace) the mutual inductive coupling be-
tween ai and aj . Its value is determined by the average of
Az

i and Az
j , both evaluated at surface Si. Note that the def-

inition of EMR in this paper is slightly different from [1] but
more precise. For the simplicity of presentation, we define:

Ai = Az
i |Si , Aj = Az

j |Si (7)

Note that the gradients of Az
i and Az

j at surface Si are op-
posite to each other.
Moreover, there exists a ground EMR taking into account

the self inductive effect. The ground EMR of ai is given by:

R̂i0 = µ
Az

i |Si∫
Si

dS · ∇Az
i |Si

(8)

Because the current is constant along z-direction, the vol-
ume integral of current density is reduced to lIi, where Ii is
the electrical current at ai. Therefore (5) is simplified as:

Ai

R̂i0

+
(Ai − Aj)

R̂ij

= −lIi (9)

A vector potential current source Îi can be defined as:

Îi = lIi (10)

which is controlled by the electrical current Ii.
On the other hand, integrating (2) along z-direction at

the h-filament surface Si leads to the following inductive
electro-potential drop at ai:

l
∂Ai

∂t
= −Vi (11)

Consequently the voltage-controlled vector potential voltage
source V̂i is defined as:

V̂i = Vi/l (12)

The VPEC model for two h-filaments includes following
components [1] (see Fig. 2): (i) four nodes (INi, ni1, ni2,
OUTi) for each h-filament ai; (ii) the pre-calculated resis-
tance and capacitance between INi and ni1; (iii) a dummy
voltage source (for electrical current Ii) between ni1 and

ni2 and it controls a vector potential current source Îi (see

(10)); (iv) a vector potential voltage source V̂i controlled

by the vector potential current source Îi; (v) an electrical
voltage source Vi between ni2 and OUTi controlled by the
vector potential voltage source V̂i (see (12)); (vi) effective

resistances including ground R̂i0 (see (8)) and coupling R̂ij
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Figure 2: The Vector Potential Equivalent Circuit
model for two h-filaments.

(a) (b)

�
�
��
��
��
��
��
��
��
��
��
��

ai

Figure 3: Expansion of three filaments in (a) to
hyper-filaments in (b). The magnetic flux starting
from or ending at h-filament ai is not local.

(see (6)) to consider the strength of inductances; and (vii) a
unit inductance Li to consider time derivative of the electri-
cal current source Ii. It can be easily extended for the gen-
eral three dimensional current distribution by adding two
more VPEC circuits for x and y components. In essence,
the VPEC model uses a resistance network plus unit self in-
ductance and controlled voltage/current sources to replace
the mutual inductance network. Although the VPEC model
introduces more circuit elements, experiments in Section 4
will show that it reduces simulation time for interconnects
with non-trivial size.

2.2 N-Body Problem
We first expand N filaments into h-filaments as illustrated

in Fig. 3, and extend the VPEC model to the N-body prob-
lem by collocating all possible coupling pairs independently.
Collocation is a common approach to construct the system
equations [10, 12]. We collocate the vector potential drops
from ai to all the other h-filaments, and obtain the following
equation at ai:

Ai

R̂i0

+
∑
j �=i

(Ai − Aj)

R̂ij

= −lIi (13)

Note that the above summation is not local. However, in
[1] the summation is local, and there are at most six cou-

pling R̂ij for each h-filament in three-dimension. The au-
thor obtained the localized model based on the analogy be-

tween (5) and the conduction current flow at a surface S:
I = −σ

∫
S

dS · ∇φ. The later is exactly the Ohm’s law,
which means the conduction current I(x, y, z) is only re-
lated to the flux of the electrical field E(x, y, z) (−∇φ) at
the surface S. It is due to the electro-quasi-static condition
that E is along the same direction of I because of no charge
accumulated at the surface of the conductor. However, for
our N-body magneto-quasi-static problem, there is no con-
duction current flowing with the flux in (5). Therefore the

flux is related not only to the localized R̂ij (j = i ± 1), but

also to all other R̂ij (j �= i). The experiments in Section
4.1 also show that compared to the full PEEC model, our
VPEC model considering all neighbors is accurate, but the
localized VPEC model from [1] is not accurate.
Furthermore there is no rigorous methodology to extract

the equivalent magnetic resistance in [1]. We propose the
following integration based method to obtain the EMRs: (i)
calculate the distribution of A for the given input current
distribution by (3); (ii) evaluate both the average vector po-
tential difference between Az

i and Az
j and the surface integral

by gradient of Az at Si according to (6) and (8). However,
it is difficult to determine the appropriate size for each h-
filament in numerical integration. In the next section, we
propose a new inversion-based VPEC model without using
integration.

3. VPEC VIA PEEC INVERSION
In this section we first present a closed-form relation be-

tween VPEC and the inversion of PEEC, then prove that
the new circuit matrix Ĝ for VPEC model is passive and
strictly diagonal dominant.
To obtain the circuit equation based on the electrical volt-

ages and currents, we first take the time derivative at both
sides of (13) and obtain

∂Ai/∂t

R̂i0

+
∑
j �=i

(∂Ai/∂t − ∂Aj/∂t)

R̂ij

= −l
∂Ii

∂t
(14)

and then use (11) to replace the time derivative of vector
potential. Consequently we obtain:

Vi

R̂i0

+
∑
j �=i

Vi − Vj

R̂ij

= l2
∂Ii

∂t
(15)

It leads to

(1/R̂i0 +
∑
j �=i

1/R̂ij)Vi +
∑
j �=i

(−1/R̂ij)Vj = l2
∂Ii

∂t
(16)

We define the circuits matrix of VPEC model as:

Ĝij = −1/R̂ij , Ĝii = 1/R̂i0 +
∑
j �=i

1/R̂ij (17)

The system equations can be written as:

ĜiiVi +
∑
j �=i

ĜijVj = l2
∂Ii

∂t
(18)

Compared to the following system equations based on K
matrix [7] or the susceptance matrix S in [8]:

KiiVi +
∑
j �=i

KijVj =
∂Ii

∂t
(19)
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where K = L−1 and L is the partial inductance matrix, we
find that Ĝ and K only differ by a factor of l2, i.e.

l2Kij = Ĝij , l2Kii = Ĝii (20)

Therefore starting with the L matrix under PEEC model, we
can first obtain Ĝ matrix via (20), and then derive R̂ matrix
via (17). Because the major computation step is inversion
of L matrix, we call this method as inversion based VPEC
model. Furthermore, (20) can be viewed as how to derive
the K-matrix based model in [6] from first principles.
We have proved the following theorem in [11] about the

property of Ĝ matrix:

Theorem 1. Circuit matrix Ĝ in VPEC model is passive
and strictly diagonal dominant. 1

Note that truncating off-diagonal entries from a strictly
diagonal dominant matrix still leads to a passive matrix.
Intuitively, truncating small off-diagonal entries in Ĝ ma-
trix (equivalent to truncating larger off-diagonal entries in

R̂ matrix) results in ignoring larger resistors in the equiva-
lent resistances network. Based on Theorem 1, such trunca-
tion/sparsification leads to passive circuit models. Further-
more, larger resistors are less sensitive to and also contribute
less to current change. Therefore, such sparsification may
have a bounded accuracy loss, as shown by two sparsification
procedures in Section 4.

4. EXPERIMENTAL RESULTS
We have implemented the inversion-based VPEC method

in C code with the following steps: (i) generate partial in-
ductance matrix L by FastHenry or formula from [13, 14];

(ii) inverse L by LU decomposition; (iii) calculate Ĝ and

then R̂; and (iv) generate VPEC model using R̂. We as-
sume each wire segment is modeled by one h-filament, and
consider coupling between any pair of segments (including
segments in a same line) unless specified otherwise.
We assume copper interconnect and low-k (ε = 2) dielec-

tric, and use FastCap to extract capacitance. Furthermore,
interconnect driver and receiver are modeled by resistance
Rd = 100Ω and loading capacitance CL = 2fF . All circuit
models are simulated by HSPICE. Below, we present results
for aligned parallel bus lines. For all bus structures, a 1-V
step voltage with 10ps rising time is applied to the first line,
and all other lines are quiet. The outputs presented in Fig.
4, Fig. 5 and Fig. 6 are measured at the far ends of the last
line.

4.1 Full VPEC Model
In this part we present the full VPEC model for a five-bit

bus. We used both FastHenry and formula [14] to calculate
the partial inductance for PEEC model. As shown in the
experiment results, the difference of waveforms between the
two methods is very small. Therefore we employ the PEEC
calculated by formula to obtain the EMRs for VPEC model
in the rest of experiments.
We assume that each line in the bus has one segment.

Each bus line is 1000µm long, 1µm wide and 1µm thick.

1Precisely, the matrix is positive definite, and the result-
ing circuit model is passive. In short, we say the matrix is
passive in this paper.
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Figure 4: Waveforms of 5-bit bus with one segment
each line.

The space between lines is 2µm. The calculated L, K, Ĝ

and R̂ matrices are presented as follows:

L =




1.4816 1.1820 1.0437 0.9630 0.9059
1.1820 1.4816 1.1820 1.0437 0.9630
1.0437 1.1820 1.4816 1.1820 1.0437
0.9630 1.0437 1.1820 1.4816 1.1820
0.9059 0.9630 1.0437 1.1820 1.4816


 nH

K =




1.9696 −1.2091 −0.1904 −0.1371 −0.1749
−1.2091 2.6964 −1.1044 −0.1231 −0.1371
−0.1904 −1.1044 2.7052 −1.1044 −0.1904
−0.1371 −0.1231 −1.1044 2.6964 −1.2091
−0.1749 −0.1371 −0.1904 −1.2091 1.9696


 109H

−1

Ĝ =




1.9696 −1.2091 −0.1904 −0.1371 −0.1749
−1.2091 2.6964 −1.1044 −0.1231 −0.1371
−0.1904 −1.1044 2.7052 −1.1044 −0.1904
−0.1371 −0.1231 −1.1044 2.6964 −1.2091
−0.1749 −0.1371 −0.1904 −1.2091 1.9696


 103H

−1
m

2

R̂ =




3.8736 0.8270 5.2533 7.2964 5.7172
0.8270 8.1566 0.9054 8.1220 7.2963
5.2533 0.9054 8.6494 0.9054 5.2533
7.2964 8.1220 0.9054 8.1566 0.8270
5.7172 7.2964 5.2533 0.8270 3.8736


 10−3

Hm
−2

where K̂ and Ĝ matrices differ only by a constant factor l2.
Similar to the “shielding” effect in the K̂ matrix as pointed
out in [7], the coupling Ĝij (R̂ij) between non-adjacent lines
is significantly smaller (larger) than that between adjacent
lines. For a five-bit bus, we compare the waveform of the
full VPEC model (with coupling R̂ij between all lines) from
this paper, and the localized VPEC model (with coupling

R̂ij between adjacent lines) from [1]. Clearly as shown in
Fig. 4, our full VPEC model and the full PEEC model by
FastHenry and formula [14] obtain identical waveforms, but
the localized VPEC model introduces non-negligible error
and is not accurate compared to the full PEEC model.

4.2 Sparsification for VPEC Model
We study two sparsification procedures, numerical spar-

sification and 2D geometry based sparsification for various
bus line structures in this part.

4.2.1 Numerical Sparsification
As explained in Section 3.2, Ĝ matrix is passive and di-

agonal dominant. Therefore, small-valued off-diagonal ele-
ments can be truncated without loss of passivity. For ex-
ample, setting the truncating threshold as 0.09 where any
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Figure 5: Waveforms in numerical sparsification of
VPEC model for 128-bit bus with one segment each
line.

off-diagonal element smaller than 0.09 of its correspondent
diagonal element is truncated results in the following trun-

cated Ĝ (called as truncated VPEC model) for the above
five-bit bus:

[G] =




1.9696 −1.2091 −0.1904 0 0
−1.2091 2.6964 −1.1044 0 0
0 −1.1044 2.7052 −1.1044 0
0 0 −1.1044 2.6964 −1.2091
0 0 −0.1904 −1.2091 1.9696


 103H

−1
m

2

Applying (17) to truncated Ĝ leads to the following trun-

cated R̂:

[
R̂

]
=




3.8736 0.8270 5.2533 ∞ ∞
0.8270 8.1566 0.9054 ∞ ∞
∞ 0.9054 8.6494 0.9054 ∞
∞ ∞ 0.9054 8.1566 0.8270
∞ ∞ 5.2533 0.8270 3.8736


 10−3

Hm
−2

Fig. 5 plots the simulation results under our numerical
sparsification for a 128-bit bus with one segment per line,
where the sparse factor is the ratio between the numbers
of circuit elements in the truncated and full VPEC mod-
els. The waveform difference is small in terms of the noise
peak for sparse factors up to 30.5%. Table 1 summarizes the
truncation setting and simulation result, where the values in
parentheses of column 1 are truncating thresholds, and the
runtime includes both SPICE simulation and matrix inver-
sion in case of VPEC models. The average voltage differ-
ences, and associated standard deviations are calculated for
all time steps in SPICE simulation. One can see from the
table that up to 30X speedup is achieved when the average
waveform differences is up to 0.377mV, less than 1% of the
noise peak. A much bigger speedup factor can be expected
as a much higher waveform difference can be tolerated in
practice. Compared to the full PEEC model, the full VPEC
simulation is 7X faster, due to the fact that the VPEC model
has more resistances and coupled current/voltage sources
but much fewer inductances. The negligible difference be-
tween the full VPEC and PEEC simulations is due to the
numerical matrix inversion.

4.2.2 Geometry Based Sparsification
We study the geometry based sparsification for segmented

buses by defining a truncating window (NW , NL), where NW

and NL are the numbers of coupled segments in directions of

Models No. of Runtime Avg. Standard

Elements & Speedup Volt. Diff. Dev.

Full PEEC 8256 281.02s (1X) 0V 0V

Full VPEC 8256 36.40s (7X) -1.64e-6V 3.41e-4V

VPEC(5e-5) 7482 30.89s (9X) 4.64e-6V 4.97e-4V

VPEC(1e-4) 5392 19.55s (14X) 1.29e-5V 1.37e-3V

VPEC(5e-4) 2517 8.35s (28X) 3.77e-4V 5.20e-3V

Table 1: Results of numerical sparsification
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Figure 6: Waveforms in geometry based sparsifica-
tion of VPEC model for 32-bit bus with 8 segments
each line.

wire width and length, respectively. We further define the
couplings along wire length as the forward coupling same
as in [15], and along wire width as the aligned coupling.

For each wire segment, the circuit model only contains R̂ij

within the truncating window of the segment, and is called
windowed VPEC model. We consider a 32-bit bus with eight
segments per line and four different windows: (32, 8), (32,
2), (16, 2) and (8, 2). Furthermore, we apply the normalized
model [16] to VPEC and obtain the following normalized
VPEC model for the bus lines with n segments per line. If
the EMR between any two bus lines without segmentation
is R̂ij , the EMR for each pair of aligned segments is R̂ij ·n2,
and is zero for non-aligned segments.
We plot simulations under different models in Fig. 6, and

summarize the experiment setting and result in Table 2.
There is a smooth trade-off between runtime and accuracy
for different window sizes. We first compare results of dif-
ferent truncating windows. The window (8, 2) achieves the

Models No. of Runtime Avg. Standard

Elements & Speedup Volt. Diff. Dev.

Full PEEC 32896 2535.48s (1X) 0V 0V

Full VPEC 32896 772.89s (3X) 1.00e-5V 6.26e-4V

VPEC(32,2) 11392 311.22s (8X) 5.97e-5V 1.84e-3V

VPEC(16,2) 3488 152.57s (16X) -1.23e-4V 4.56e-3V

VPEC(8,2) 2240 85.14s (32X) -2.17e-4V 8.91e-3V

Normalized

VPEC 4224 255.36s (10X) -6.05e-4V 2.96e-3V

Table 2: Results of geometry based sparsification
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Figure 7: Runtime to simulate multiple bus with one
segment each line using the full PEEC, full VPEC,
and sparsified VPEC models

highest speedup of 30X and the largest difference of about
0.2mV on average, less than 2% of the noise peak, and the
window (32, 2) has the highest accuracy with 0.06mV on av-
erage but a reduced speedup of 10X. Furthermore, we com-
pare the normalized model to the window (16, 2) with a sim-
ilar complexity. The windowing technique is faster but has
a larger standard deviation. The normalized model implic-
itly considers the forward coupling between all non-aligned
segments, and the window (16, 2) considers forward cou-
pling between adjacent segments only. The small difference
between the two models implies that the forward couplings
between non-adjacent segments may be negligible, which is
also indicated by the small difference between windows (32,
8) and (32, 2). However an NW much larger than NL (as
shown in Table II) is needed to archive a high accuracy.
This implies that the aligned coupling is stronger than the
forward coupling.

4.3 Runtime Scaling
We compare runtimes to analyze parallel bus structures

using the full PEEC model, full VPEC model, and win-
dowed VPEC model, respectively. The runtime for the full
or windowed VPEC model includes both SPICE simulation
and matrix inversion. We consider one segment per line,
and plot runtimes in Fig. 7. The full PEEC and VPEC
models can only handle the bus with up to 256 bit because
SPICE can not further allocate enough memory. But the
windowed VPEC model can handle the bus with up to 1024
bit. For the 256-bit bus, the full and windowed VPEC model
is 47X (185.39s vs. 8726.85s) and over 1, 000X faster than
the full PEEC model, respectively. Our experiment assumed
a truncating window of (8, 1) because NW = 8 for a truncat-
ing window (NW , NL) has a reasonably good error bound as
shown in Table 2. It is easy to see that the windowed VPEC
has a slow runtime scaling with respect to the increase of
the bus line numbers. In all the simulations, the full VPEC
model achieves identical waveform and the windowed VPEC
model has a very small waveform difference when compared
to the full PEEC model.

5. CONCLUSIONS AND DISCUSSIONS
The primary contribution of this paper is to derive from

first principles both integration and inversion based VPEC
models for multiple inductive interconnects. Using equiva-

lent resistance network and controlled voltage and current
sources to replace inductance network, the full VPEC model
is as accurate as the full PEEC model but takes less simula-
tion time. We have observed a speedup of 47X for simulating
256 wire segments in a bus structure. Further, the resulting
circuit element matrix Ĝ in the VPEC model is passive and
strictly diagonal dominant. This leads to easy sparsification
methods with guaranteed passivity. When compared to the
full PEEC and VPEC models, the sparsified VPEC models
achieve orders of magnitude speedup in circuit simulation
and produce waveforms with very small error.
Furthermore, because matrix Ĝ and matrix K from [6]

differ only by constant factors, our study can be used to
justify from first principles the K matrix based sparsifica-
tion methods. Note that SPICE is able to directly simulate
VPEC model but not K-matrix based model.
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