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Abstract—Owing to inductive effect, coplanar waveguide
(CPW) is widely used to achieve signal integrity in high perfor-
mance clock designs. In this paper, we first propose a piece-wise
linear (PWL) model for the far-end response of a CPW consid-
ering ramp input and capacitive loading. The PWL model has
a high accuracy but uses at least 1000x less time compared to
SPICE. We then apply the PWL model to synthesize the CPW
geometry for clock trees considering constrains of rising time
and oscillation at sinks. We obtain a spectrum of solutions with
smooth tradeoff between area and power.

I. INTRODUCTION

The signal integrity in clock trees of GHz+ frequencies
gains increasing importance due to inductive effects. Coplanar
waveguide (CPW ) sandwiches the clock signal line by two
AC-grounded shielding wires (see fig.1), and can be used to ef-
fectively reduce the oscillation of clock signal [1, 2]. However,
there is virtually no existing work on automatic synthesis of
CPW structure for buffered clock trees. In this paper, we will
develop an efficient yet accurate model for far-end response in
a CPW, and use the model to synthesize buffer insertion solu-
tion and CPW geometry for a given clock tree topology.

Fig. 1. Coplanar Waveguide Structure

It has been proposed in [2] that a CPW can be modeled by
an equivalent transmission line with the following parasitics:

R = Rs + Rg/2 (1)

L = Ls − 2Lsg +
Lgg

2
+

Lg

2
(2)

C = 2Csg + Cs (3)
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Fig. 2. Circuit models for CPW

where the parameters are shown in fig. 2. Existing works on
transmission line model [3, 4, 5, 6] are not able to obtain ac-
curate oscillation and far-end rising time with consideration of
both capacitive loading and input rising time. Our first contri-
bution in the paper is to develop a piece-wise linear (PWL)
model for computation of waveform at the far-end of a single
transmission line with consideration of capacitive loading and
ramp input. The model can compute delay, rising time and
noise with high accuracy but takes at least 1000X less time
when compared to SPICE simulation.

A recent work [2] studied the ranges of geometrical parame-
ters of CPW structure to ensure the minimal transmission delay
and no oscillation. However, the tight constraints may lead to
over-design and cost unnecessary power and area. Our sec-
ond contribution of this paper is to apply the newly developed
CPW model to synthesize the CPW geometry for clock trees
with respect to relaxed constrains of bounded rising time and
oscillation. We show that the min-area and min-power solu-
tions are totally different, and obtain a spectrum of solutions
for tradeoff between area and power. We also point out that
there exists a knee point in the tradeoff curve, which leads to a
desired solution with 5% more power but 60% less area com-
pared to the min-power solution.

The rest of the paper is organized as follow: we present the
PWL model in section II, and synthesize CPW-based clock
trees in section III. We conclude in section IV with discussion
of future work.

II. PIECE-WISE LINEAR MODEL

The piece-wise linear model (PWL) computes the far-end
response of a transmission line with capacitive loading for
ramp input. It includes three steps: 1. transform the system to
a new system without loading capacitance; 2. construct wave-
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form for step input; 3. construct waveform for ramp input. We
will briefly explain these steps in this section, more detailed
derivation can be found in a technical report [7].

For clear explanation, we summarize the notations in table
I. Generally, we use subscript “i” for notations related to the
input, subscript “o” for those related to the far-end response,
subscript “1” for those related to the far-end response resulting
from the step input, and subscript “2” for those related to the
far-end response resulting from the ramp input.

TABLE I
NOTATIONS

w width of clock signal wire
g width of shielding wire
s spacing between signal wire and shielding
l length of CPW segment
Rd driver resistance
CL loading capacitance
tri input rising time
tf flight time of original transmission line
t′f flight time of the transmission line after mapping
tdo delay at far-end
tro rising time at far-end
tro upper bound of rising time at far-end
Vi input waveform
Vo1 voltage response at far-end with step input
Vo2 voltage response at far-end with ramp input
Vosc amplitude of oscillation at far-end
Vosc upper bound of amplitude of oscillation at far-end
A area of CPW
P power consumption of CPW
O penalty function of oscillation violation at the far-end
T penalty function of rising time violation at the far-end
α tradeoff factor between area and power
β area of minimal driver
λ balance factor between area and power
kb number of buffers
Cw total capacitance of transmission line
d size of buffer

A. Consideration of Capacitive Loading

Based on the circuit model in fig.2, the transfer function at
the far end of the wire is [8],

H(s) =
1

(1 + sRsCL) cosh(θ) + (Rs

Z0
+ sCLZ0) sinh(θ)

=
1

1 +
∑∞

i=1 bisi
(4)

whereθ = (R + sL)sC. The time of flight of the transmission
line is tf =

√
LC. To consider the loading capacitance in

the model, we propose to transform the original circuit model
with CL to a new open-ended transmission line withoutCL by
matching their first two moments of the transfer functions. To
do this, we modify the wire capacitanceC and wire inductance

L of the transmission line. The new transfer function of the
circuit is

H ′(s) =
1

cosh(θ′) + Rs

Z′

0

sinh(θ′)
(5)

Note that theθ′ andZ ′
0 in (5) are different fromθ andZ0 in (4).

By matching the first two moments of (4) and (5), we obtain
the new wire capacitanceC ′ and wire inductanceL′ as,

C ′ =
b1

Rd + R
2

(6)

L′ =
2
(

b2 − R2C′2

24 − RdRC′2

6

)

C ′
(7)

whereb1 is defined in (4). The time of flight of the mapped
line is,

t′f =
√

L′C ′

=

√

(LC +
R2C2

12
+ RdRCLC +

(RdC + CLR)RC

3

+2CLL − R2C ′2

12
− RdRC ′2

3
) (8)

We will use thet′f in our model later on. Normallyt′f > tf , but
whenCL and in turnC ′ is sufficient large,t′f may be smaller
thantf . In this case,t′f is not physically meaningful. However,
because of the large capacitive loading, the circuit becomes
capacitive dominant in this case. Naturally, we can just match
the first moment and obtain,

C ′ =
b1

Rd + R
2

(9)

⇒ t′f =
√

C ′L (10)

L will be the same in this special case. BecauseC ′ > C,
t′f > tf holds.

B. PWL Model with Step Input

After mapping, the system is an open-ended transmission
line, thus it can be solved by the formula from [4]. The for-
mula is based on the series of modified Bessel function and
provides a closed-form solution. However, directly applying
the algorithm results in steep rising att = (2n + 1)t′f , which
is far from true due to the loading capacitance. Furthermore, it
is not efficient to compute the entire waveform simply by time
stepping. Thus we develop a PWL model to approximate the
waveform and efficiently compute delay, rising time, overshoot
and undershoot.

Our algorithm works as follows: we first compute the wave-
form slopes atn · t′f , n = 1, 2, · · ·. Then we draw straight lines
passing through these points with the calculated slopes. Fi-
nally, we obtain the crossing points of directly adjacent lines,
and approximate the waveform by connecting these crossing
points. Fig.3 illustrates the process.
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Fig. 3. Illustration of piece-wise linear model.

The above algorithm is justified by the following observa-
tions. Owing to the reflection from the far end, the waveform
can be divided into regions(0, t′f ), (t′f , 3t′f ), (3t′f , 5t′f ), · · ·.
The waveform changes quickly only at the boundary of these
regions but not inside these regions. Therefore, we can use one
line to approximate the waveform at the reflection pointt′f , and
use two lines to approximate the waveform in each region start-
ing from (t′f , 3t′f ). One line passes through the middle point
(e.g.,2t′f ) in the region, and the other passes through the next
reflection time point (e.g.,3t′f ).

In the following, we explain how to compute the slopes.
Without losing generality, we assume input signal rising from
0 to V dd. In fig.4, we illustrate the computation of the slope
at t′f . We approximate the time where the voltage reaches the
50% of the amplitude of this rise att′f , of which the starting
point of the rise is attf , the flight time without considering the
loading capacitance. From this approximation, we obtain the
slope att′f as

s1 =

Vo1(t
′

f+δ)

2

t′f − tf
. (11)

Fig. 4. Construction of piece wise linear model.

We directly solve the slope at2t′f for the region(t′f , 3t′f ) as

s2 =
dVo1(2t

′
f )

dt
=

Vo1(2t
′
f + δ) − Vo1(2t

′
f − δ)

2δ
. (12)

In this case, the approximating line is the tangent line at2t′f .
Because at3t′f the reflected wave travels twice along the line

after t′f , we approximate the time for the waveform to reach
50% of the falling by2(t′f − tf ). Therefore the slope at3t′f is

s3 =

Vo1(3t′f+δ)−Vo1(3t′f−δ)

2

2(t′f − tf )
(13)

The rest of the regions are calculated in the similar fashion:
Regions((2n − 1)t′f − δ, (2n − 1)t′f + δ) are similar to the
region(3t′f − δ, 3t′f + δ), where the slope is

s2n−1 =
Vo1((2n−1)t+δ)−Vo1((2n−1)t−δ)

2

2(t′f − tf )
. (14)

Regions((2n − 1)t′f , (2n + 1)t′f ) are similar to the region
(t′f , 3t′f ), where the slope is

s2n =
dVo1((2n)t′f )

dt
=

Vo1((2n)t′f + δ) − Vo1((2n)t′f − δ)

2δ
,

(15)

Fig. 5. Overdamped far-end waveform ofl = 3000µm, w = 10µm,
g = 8µm, h = 1µm, s = 2µm, Rd = 40Ω, CL = 0.2pf . Input is
step input.

In fig.5 and 6, we compare the waveforms from differ-
ent models and SPICE. Our model obtains results that match
SPICE simulations very well in both overdamped (see fig.5)
and underdamped (see fig.6) cases. Our model slightly devi-
ates from SPICE simulation around the knee points but the er-
ror is small. The waveform from either [4] or [5] can not match
the SPICE simulation.

C. PWL model with ramp input

We now extend our model to consider the ramp input with
rising timetri. Because of the extra knee point in the ramp in-
put, the regions of the far-end waveform for the step input need
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Fig. 6. Underdamped far-end waveforms ofl = 3000µm,
w = 20µm, g = 10µm, h = 1µm, s = 0.6µm, Rd=12Ω,
CL = 0.2pf . Input is step input

to be further divided according totri. We find the voltage and
slope att1+t2

2 For each pair of two adjacent time pointst1 and
t2 in the set of{(2n + 1)t′f , (2n + 1)t′f + tri}, (n = 1, 2, . . .),
then approximate the waveform by a straight line att1+t2

2 with
the computed slope. The entire waveform can be approximated
by connecting the crossing points of directly adjacent lines.

Next, we discuss how to compute voltage and slope. From
the linear circuit theory[2], the waveform at the far end of the
transmission line resulting from the ramp input is

Vo2(t) =

∫ ∞

−∞

Vo1(t)
dVi(t − τ)

dt
dt

=
1

tri

∫ t

t−tri

Vo1(t)dt (16)

Because we have already obtained the PWL waveformVo1 for
the step input in section B, we can compute the slope and volt-
age value efficiently without computation of the series of mod-
ified Bessel functions. According to (16) we can compute the
slope as

dVo2(t)

dt
=

Vo1(t) − Vo1(t − tri)

tri

(17)

and the voltage value as

Vo2(t) =
1

tri

∑

(ti,ti+1)⊆(t−tri,t)

Vo1(ti) + Vo1(ti+1)

2
(ti+1 − ti)

(18)
where (ti, ti+1) is a linear piece in the PWL expression of
V1(t). Thus the extension to ramp input is extremely efficient.

We compare waveforms from different models and SPICE
simulations in fig.7 and 8. From the figures, we can see that
our model again matches SPICE simulation very well in both
overdamped case (fig.7) and underdamped case (fig.8). The
waveform from [4] and [5] differs a lot from the SPICE simu-
lation results.

Fig. 7. Overdamped far-end waveforms ofl = 3000µm, w = 20µm,
g = 15µm, h = 1µm, s = 0.6µm, Rd = 60Ω, CL = 0.2pf . Input
rising time is 20ps.

Fig. 8. Underdamped far-end waveforms ofl = 5000µm,
w = 10µm, g = 5µm, h = 1µm, s = 1µm, Rd = 15Ω,
CL = 0.2pf . Input rising time is 20ps.

D. Calculation of delay, rising time and oscillation

Because of the sequential property of the construction pro-
cedure of PWL model, calculation of delay, rising time and
amplitude of oscillation can be easily implemented in a need-
based procedure. A knee point is calculated only if it is needed
by the calculation of delay, rising time and oscillation. The
maximum overshoot will happen around3t′f , and so calculat-
ing the knee points up to4t′f is needed. Similarly, maximum
undershoot will happen around5t′f , thus we only need to cal-
culate the regions up to6t′f . To estimate the delaytdo andtro,
we just need to calculate the knee points till the voltage meet
the corresponding bound, for example90% for tro.

E. Time complexity and accuracy

We present sample CPW structures in table II and summa-
rize the runtime and compare different models in terms of os-
cillation, delay and rising time in table III. We compare our
method with SPICE simulation and the models from [5] and
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TABLE III
RUNTIME AND RESULTS FROM DIFFERENT MODELS. SPICEAND [4] CALCULATE UP TO 300ps BY TIME STEPPING(1ps/STEP).

Model runtime 50% delay rising time amplitude of oscillation
(s) (ps) (ps) (%V dd)

setting type SPICE PWL [5] [4] SPICE PWL [5] [4] SPICE PWL [5] [4] SPICE PWL [5] [4]

1 underdamped 88.10 0.01 0.01 0.18 24 25 25 24 10 8 9 6 4.6 4.5 9.2 5.1
2 overdamped 148.10 0.01 0.01 0.18 42 42 42 41 83 83 46 80 0 0 0 0
3 underdamped 368.23 0.01 0.01 0.12 83 84 83 80 58 56 48 48 8.6 8.9 10.3 8.8
4 overdamped 23.23 0.01 0.01 0.73 33 33 12 9 47 47 26 26 0 0 0 0
5 underdamped 121.39 0.01 0.01 0.20 55 55 39 38 26 26 10 1 4.6 5.2 11.3 8.0
6 underdamped 344.70 0.01 0.01 0.02 112 113 96 93 28 25 26 1 13.5 14.2 16.7 15.7

[4]. Both our model and [5] are at least1000× faster than
SPICE, and [4] is about100× faster than SPICE. Our model
is accurate compared to SPICE simulation. The error of delay
and noise is less than 10%, and the error of rising time is less
than 20% in the worst case. The PWL model sometimes ob-
tains smaller rising time compared to SPICE simulation. This
is because the time point of 90%V dd happens to be around
the knees. The error is normally less than 20% however. In the
contrast, both [5] and [4] can introduce huge errors in delay,
rising time and oscillation extraction. The error of [5] canbe
up to 90% for amplitude of oscillation and 50% for rising time
assuming step input. The model is much worse in the case of
ramp input. [4] also has up to 40% error for the step input cases
and up to 90% error for ramp input.

TABLE II
SAMPLE EXPERIMENT SETTINGS(ALL GEOMETRIES ARE INµm)

setting l w s g Rd(Ω) CL(fF ) tri(ps)
1 3000 6 1 4 30 45 0
2 5000 10 2 5 40 45 0
3 10000 8 2 8 24 90 0
4 1000 8 1 4 60 90 30
5 5000 10 2 10 24 45 30
6 10000 10 1 10 24 90 30

III. POWER AND AREA OPTIMIZATION FOR CLOCK

The on-chip clock trees consume significant portion of chip
area and power. In this section, we use the PWL model to
optimize the power and area for the CPW-based clock tree.
We define the noiseVosc as the difference between maximal
overshoot and maximal undershoot, and rising timetro as the
time between the moments when voltage reaches10% V dd
and90% V dd respectively. Our clock optimization considers
constraints oftro andVosc at clock sinks.

A. Objective function

To handle multiple objectives and multiple constraints si-
multaneously, we choose to minimize a weighted sum of area,
power, and penalties of rising time and oscillation violations.
With respect to notations in table I, the area of a CPW segment
with driver size ofd is,

A = l · (w + 2s + 2g) · +kb · β · d (19)

whered is the size of buffer, andβ is a constant to adjust
the relative importance of interconnect area versus devicearea.
Our experiment usesβ=0.01 as the chip area is mainly decided
by the routing area. Because we only consider dynamic power,
power is defined as the total capacitance, i.e.,

P = kb · (Cw + CL) (20)

The penalty of the rising time violation is defined as

T =

{

Tro − Tro , Tro > Tro

0 , otherwise
(21)

Clearly, there is no penalty when there is no violation. Simi-
larly, the penalty of the oscillation violation is

O =

{

Vosc − Vosc , Vosc > Vosc

0 , otherwise
(22)

Then, the objective function is defined as

F = α · λ · A + (1 − α) · P + µ · O + ν · T (23)

whereα, λ, µ andν are weight constants.α controls the
tradeoff between power and area, and is specified by the de-
signer.λ is introduced to balance the different orders of mag-
nitude ofA andP . It is decided by the ratio of power and area
of a sample circuit, and is 0.1 in our experiment. To ensure that
the final solution has no rising time and oscillation violations,
we use large values forµ andν.

B. Buffered Tree

We apply our algorithm to optimize the clock tree with fixed
buffer placement. The objective function is (23), considering
all CPW segments in the clock tree for power and area. We
enforce the oscillation constraint at all the buffers, but only
enforce the constraint of rising time at the sinks. The input
rising time at a driver/buffer is the output rising time of its
previous stage. We determine the optimal solution of signal
wire widthw, shieldingg and spacings of each wire segment,
and determine buffer size of each buffer, such that the objective
function (23) is minimized.

Our experiment assumes a symmetric H-tree in figure 9. The
input rising time is30ps, and the rising time constraint at the
sink is75ps. The noise constraint at each driver/buffer is 5%
V dd. The receiver at the sink has a fixed size of25×. The
allowed driver/buffer size is[1×, 500×]. Our algorithm adjusts
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CPW1

l1=4000X1 X2

CPW2
l2=4000

Fig. 9. A simple H-tree.

the driver sizes ofX1 andX2, and geometries ofCPW1 and
CPW2. We use a simulated annealing algorithm to optimize
the area and power of the H-tree.

Fig.10 presents the tradeoff between the area and power of
the H-tree obtained by our algorithm. The min-area solution
has 50% more power than the min-power solution, but the min-
power solution has 200% more area than the min-area solution.
There also exists a knee point aroundα = 0.3, which leads
to a desired design with 10% more power but 50% less area
compared to the min-power solution. We show the geometry
optimization results in table IV.

TABLE IV
EXPERIMENT RESULTS WITH DIFFERENT TRADEOFF FACTORS

FOR A BALANCED H-TREE (ALL GEOMETRIES ARE INµm).
α x1 w1 s1 g1 x2 w2 s2 g2 power
0 254 2.2 9.5 8.6 137 1.2 12.9 2.7 1786fF

0.3 360 2.4 4.5 4.4 153 1.2 6.0 2.4 1938fF
1 500 5.88 2.3 4.0 250 1.8 2.5 1.5 2770fF

The tradeoff in this experiment is mainly decided by the
buffer size. Larger buffers enable narrower CPW for satisfying
the constraints, which helps reduce area because the chip area
is mainly determined by routing area. However, the narrower
spacing and larger buffers introduce larger capacitance and in
turn higher power.

IV. CONCLUSION

In this paper, we have developed an efficient model for the
far-end response at a coplanar waveguide (CPW) line with ca-
pacitive loading and ramp input. This model is highly accurate
compared to SPICE simulation but is at least 1000x faster. We
have also applied the model to minimize power and area in a
buffered clock tree. We have shown that there exist knee points
in the area-power curves, and such knee points lead to the de-
sired solutions with slightly higher power but much reduced
area compared to the solutions with the minimum power. In
our future, we plan to extend our model to consider the nonlin-

Fig. 10. Tradeoff between area and power of H-tree.

earity of drivers, and develop optimization algorithms to han-
dle more design freedoms in a highly efficient fashion.
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