Leveraging Delay Slack in Flip-flop and Buffer Insertion for Power Reduction

Lucanus Simonson, King Ho Tam, {Nataraj Akkiraju, {Mosur Mohan, Lei He *

EE Department, University of California, Los Angeles, CA
1 Intel Corporation, San Jose, CA

Abstract

We show that the delay slack can be distributed optimally
between flip-flops to reduce power in a pipelined intercon-
nect, and such power reduction can be achieved by simul-
taneous flip-flop and buffer insertion satisfying latency and
delay constraints specified at sinks. We develop a dynamic
programming algorithm with effective pruning rules and
pseudo polynomial time complexity with respect to the dec-
imation and the length of a net. Experiments using a clus-
ter of interconnect in a leading industrial high-performance
design show that there exists plenty of useful slack for power
reduction. Without jeopardizing the delay specification, as
much as 17% of power can be saved for this cluster of in-
terconnects.

1 Introduction

Increase in clock frequency has rendered buffered inter-
connect alone inadequate for meeting delay constraints for
global interconnect. Flip-flop (FF) insertion has therefore
become necessary for long interconnects that can no longer
deliver signal in a single clock cycle, and more nets will re-
quire FF and buffer insertion to meet delay constraints as
the technology scales. For a routing tree, let the latency
of a node be the number of FFs between the source and the
node, and the delay slack (or in short, slack) of a node be the
difference between the clock period and the delay from the
upstream FF to the node. Extending the dynamic program-
ming algorithm originally developed for buffer insertion in
an RC tree [8] , simultaneous FF and buffer insertion was
studied for minimizing latency in [5] and for maximizing
the minimum slack at the source and sinks while satisfying
the specified latency in [1].

*This paper is partially supported by NSF CAREER award CCR-
0306682, SRC grant HJ-1008, a UC MICRO grant sponsored by Analog
Devices, Fujitsu Laboratories of America, Intel and LSI Logic, and a Fac-
ulty Partner Award by IBM. We used computers donated by Intel and SUN
Microsystems. Address comments to lhe@ee.ucla.edu.

0.4 T T T T T

0.39 \
0371 \

0.36

035

Power

0.33

0.32-

031 \

0.3

200 250 300 350 400 450 500
Delay

Figure 1. Power vs Delay Specification

Nowadays power constraints are also of increasingly
critical importance to designers. Maximizing slack as in
[1] may introduce unnecessary power dissipation. Figure 1
shows the power dissipation of a straight net of 2mm length
with buffers inserted optimally to meet different delay spec-
ifications. One can clearly see that as we increase the de-
lay budget for the line, the required power dissipation is
reduced. If we distribute slack to intermediate FF stages
as well, we may increase the delay budget for intermediate
FF stages and in turn reduce the power needed by optimal
buffer insertion as indicated by Figure 1. Such power opti-
mal FF and buffer insertion has also been discussed at the
full-chip level in [6]. However, the assumption of 2-pin net
based on enumeration limits its use.

In this paper we formulate the simultaneous FF and
buffer insertion problem for power optimization. Instead
of minimizing latency and delay at the sinks as in [5],
our formulation finds the FF and buffer insertion solu-
tion with minimum power but meeting the specified la-
tency and delay at multiple sinks of a given routing tree.

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

We develop an efficient dynamic programming algorithm
to properly distribute delay slack among interconnect seg-
ments for power reduction. We compare the solutions pro-
duced by our algorithm with those from [1], which will
be referred to as Maximum Slack Dynamic Programming
(MSDP). We call our formulation as Low Power Dynamic
Programming(LLPDP). We show that there exists plenty of
useful delay slack in a high-performance industrial design,
and our LPDP algorithm achieves an average of 17% power
reduction compared to the MSDP algorithm.

The rest of this paper is organized as follows. We dis-
cuss modeling and problem formulation in Section II, and
describe our algorithm in Section III. We present experi-
mental results in Section IV and conclude in Section V.

2 Modelling and Problem Formulations
2.1 Models

We use the II-type model in this paper. This model is
known to accurately reflect the behavior of a distributed RC
interconnect due to the fact that on average only half of the
capacitance of a uniform wire lies downstream of a the re-
sistance of a small segment. For buffers we use the simple
first order model of an inverter, substituting the gate capac-
itance, drive resistance and drain capacitance for the non-
linear device, to reduce delay estimation for buffer insertion
points to a form to which Elmore delay can be applied. El-
more delay has been shown to exhibit high fidelity [3] but is
known to be an inaccurate first order estimation of RC delay
and increasingly inadequate as it fails to capture the effect of
inductance upon delay entirely. The Elmore model is partic-
ularly well suited to the bottom up dynamic programming
approach we have chosen because it can be calculated by
summing the product of resistance and downstream capac-
itance as the algorithm moves up the tree thereby enabling
the computations of delays at each node. This is due to the
iterative aspect of the calculation of Elmore delay, as can be
seen in the equation 1 for the Elmore delay of a single line
of n segments with iteration beginning at the end of the line
and progressing to the beginning.

tElmore = Z(Rz Z(CJ)) (1)
i=1 j=1

For the purposes of power estimation, spice simulation
was used for leakage of buffers and FFs. Dynamic power
per clock cycle for interconnect, buffers and FFs was mod-
elled as the capacitive switching power for full Vdd to
ground transition (2). In the absence of switching informa-
tion we assume 0.15 switching probability, which is consid-
ered to be a reasonable value [4].

1 .
P;= §(Cclk -+ 0.15Csignal)vd2d @

2.2 Problem Formulation

There are three optimization objectives at each node. Re-
quired arrival time of a partial solution at node n, denoted
q(v), is defined as follows:

g(v) = min (q(u) —delay(u)) — delaypus(v) (3)

u€child(v)
where ¢(u) is the required arrival time of a child partial
solution u of v associated with a child node k£ of n. The
delay due to the wire connecting u to v, denoted delay(u),
is defined as:

delay(u) = r(u) [m(u) + %c(u)] C))

where r(u) is the resistance of the wire connecting the node
k to the parent node n. Similarly ¢(u) is the capacitance of
the wire vu and m(u) is the downstream capacitance of w.
In (3) delaypyf(v) is the gate delay of a buffer at node n
driving capacitances at and downstream of n as follows:

delaypu s (v) = ra(v) [Cd(v) + Y (ew +m(u))}
w€child(v)
)
In the case where v represents FF insertion at n, ¢(v) is
equal to the FF latency of solution v, denoted f(v), multi-
plied by the clock period, ¢, with the FF setup time, ¢
subtracted out.

q(v) = f(v)ter —tf (6)

Downstream capacitance, denoted m(v), is the sec-
ond optimization objective, and is defined as:

S (elu) +m(u))

w€child(v)

m(v) =

or as the gate capacitance, c4(v), of a FF or buffer, if v
represents a FF or buffer insertion at n.

The third optimization objective is user defined and is
power minimization for LPDP and performance optimiza-
tion through maximizing the minimum slack at source and
sinks for MSDP. Power consumption of a partial solution
v at node n, denoted p(v), represents the power consump-
tion of the subtree rooted at n under solution v and is de-
fined as in (8) where p(u) is the power consumption of the
subtree rooted at the node associated with a child solution
of v.

p(v) = % |:Cd(1)) + Z c(u)] Vig + Z
)

w€child(v w€child(v)

p(u) (8)

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

The performance optimization objective is to maximize
the minimum slack at the source and sinks, henceforth
called margin. The margin at node n under solution v is
denoted ¢14.1 (v) and is defined as the minimum difference
between required arrival time at all k sinks, s; (1 = 0 to k,)
of T}, and the required arrival time at the output of the first
FE, f;, upstream of each sink.

tslack(v) = min (Q(Sz) - (I(fz)) (9)

i=0 to k

Let T’ be an RC tree with root node r and sink nodes
s;, 1 <4 < m. Let the latency constraint at s; be f(s;) and
the required arrival time constraint at s; be g(s;).

Formulation(LPDP): Assign FFs and buffers to the
nodes of T;. such that p(r) is minimized, the arrival time at
s; is less than ¢(s;) and the latency at s; is f(s;).

Formulation(M SDP): Assign FFs and buffers to the
nodes of T, such that the minimum of {tgqcx(5:), g(r)} is
maximized, the slack at each FF is minimized, the arrival
time at s; is less than ¢(s;) and the latency at s; is f(s;).

3 Algorithm

In this section we describe the details of our algorithm
for the LPDP formulation. At each node of T, a list of par-
tial solutions for the sub tree rooted at that node is gener-
ated by recursively traversing the tree from the bottom up.
At a branch node, two child lists of partial solutions must
be combined to form a new list of partial solutions. Each
entry in the list of partial solutions stores the required ar-
rival time, latency, downstream capacitance and objective
function associated with that solution. A partial solution,
or option, also stores pointers to the options of the child
nodes that it is based upon, allowing easy implementation
of the top down traversal to trace back the optimal solu-
tion. At each node the choice of inserting a FF or buffer is
evaluated. The algorithm functions by optimizing three ob-
jectives simultaneously. The required arrival time is max-
imized, the downstream capacitance is minimized and the
objective function (either power consumption of the sub-
tree rooted at the current node or minimum margin at the
sinks) is optimized. To allow pruning to proceed efficiently,
the list can be sorted in terms of one of these parameters.
For ease of implementation, we sort in ascending order of
required arrival time. The following pseudo code outlines
the recursive bottom up propagation of partial solutions.
It details the sequence of operations followed by the al-
gorithm. The FlopInsertion() and Buf ferInsertion()
procedures (lines 16 and 18) in the pseudo code simply it-
erate through the list of options propagated up from child
nodes and perform FF and buffer insertion respectively. The
resulting lists are then pruned (lines 17 and 19) and com-
bined with the original list (line 20.) This comprehensive

list is then passed through the delay and general pruning
procedures before itself being propagated up the tree.

1 Procedure Insertion(n)
2 if nis leaf node

3 return spec solution;
4 endif;

5 Sm={}h

6 foreach ¢ € child(n)
7 S. = Insertion(c);

8

So = {},
9 foreach sg € S,
10 S1 = S0,
11 q(s1) = qs0) — delay(so);
12 push s; onto tail of Sp;
13 end for;
14 Sm = Merge(Sm, So);
15 end for;

16 Sy = FlopInsertion(Sm);

17 8§ = FlopPrune(Sy);

18 Sy = Buf ferInsertion(Sy);
19 Sy = Buf fer Prune(Ss);

20 Sp =S5, USFUSy;

21 Sy = DelayPrune(Sp);

22 S =General Prune(Sy);

23 Return S;

24 end Procedure;

3.1 Pruning Rules

Effective pruning is essential to a dynamic programming
algorithm. Because the rate at which options are created
at each node is super linear, the time complexity of the
algorithm would be intractable without pruning. In general,
pruning is based upon the comparison of the several
optimization objectives, and specifically, determining
whether a given solution, s, can never result in a more
optimal global solution than some other solution, s;. This
determination is made based upon the following property.

Dominance Property

Partial solution s; is said to dominate partial solution sq if
each of the following criteria are true:

a. f(s1) = £(s0)

b. q(s1) > q(s0)

c. m(sy1) < m(sp)

d. p(s1) < p(so)

If s; dominates sy then sy is not required to find a
globally optimal solution and can be pruned. Because the
optimality of the algorithm will be compromised by an
incorrect pruning condition it is important to prove that the
criteria used for pruning is correct.

Proof of Dominance Property
1. Let {s1, so } be partial solutions at node n.

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

2. f(s1) = f(s0)s q(s1) = q(s0), m(s1) < m(so).
p(s1) < p(s0).

3. Let s, be any global solution of which sq is a partial
solution.

4. Substitution of s; for s in s, cannot violate any time
constraints or make p(s,) less optimal.

The Dominance Property is applied in three cases, when
a list of flop insertion options is generated, when a list of
buffer insertion options is generated and when these lists
are combined with the original list. These pruning rules as
well as pruning based upon timing constraints are summa-
rized in table 1. Pruning the list of FF insertion options at
a given node is performed by the FlopPrune() procedure
and is very straightforward. It is a special case of the Dom-
inance property because all such options are known to have
identical required arrival times (the end of clock cycle mi-
nus setup time) and identical downstream capacitance (the
gate capacitance of a FF.) Therefore, the FF with the best
objective function for each latency will dominate all other
FF insertion options of the same latency.

The Buf fer Prune() procedure, which performs prun-
ing on the list of buffer insertion options at a given node,
while still a special case the the Dominance Property, is
complicated by the fact that while they have the same down-
stream capacitance value (the gate capacitance of a buffer)
their arrival times and objective functions may vary. The
Dominance Property is applied to buffer insertion options
of the same latency to prune suboptimal options.

When lists of options are combined in line 20 of Inser-
tion() options may dominate options from another list. Ap-
plying the Dominance Property to all three criteria of opti-
mality is performed by the General Prune() procedure and
requires O(n logn) operations to evaluate the entire list [7].

Options that have a negative required arrival time are ig-
nored, as well as options that have a required arrival time
less than the minimum possible arrival time for their la-
tency. In addition, minimum Elmore delay for optimally
buffered interconnect is estimated at each node using the
closed form optimal buffer insertion length formula as pre-
sented in [2] during the initial top down traversal of the tree
before bottom up traversal begins. This establishes a hard
minimum and is also conservative because it does not take
FF setup time into consideration. If the required arrival time
of a solution is less than this estimated minimum arrival
time the solution cannot result in a viable solution at the
root and is pruned by the DelayPrune() procedure.

4 Experimental Results

Parameters for the device and parasitic information have
been extracted from some industrial cell libraries and pro-

Table 1. Pruning Rules

Procedure Requirements Pruning Criteria
FlopPrune() f(so) = f(s1), p(so) > p(s1)
m(so) = m(s1),
q(so) = q(s1)
BufferPrune() f(so) = f(s1), q(s0) < q(s1),
m(so) =m(s1) p(so) > p(s1)
GeneralPrune() f(so) = f(s1) m(sg) > m(s1),
q(s0) < q(s1),
p(s0) > p(s1)
DelayPrune() - q(s0) < Gmin(s0)

cess. For the sake of IP protection, the parameter used is
not displayed here. All the nets information presented in
this work is not being disclosed to avoid conflicts of IP in-
terest.

Only the general setup information is described here.
One type of moderately-sized FF and one type of single-
sized buffer are used throughout the experiment. All routing
is done on two levels with similar parasitic property. Rout-
ing topologies for the nets are obtained from real industrial
designs.

4.1 Algorithm Analysis

For a single line, in the worst case with no pruning,
the number of options at each node grows exponentially as
computation progresses from sink to source. This is be-
cause each solution propagated up the tree may give rise to
three options, a FF insertion, a buffer insertion, or no in-
sertion. With no pruning our time complexity is therefore
O(c™), where ¢ is 3 in our case. With pruning, however, the
number of options at each node is observed to be capped
at a level after some initial exponential growth. Such level
is roughly proportional to the maximum number of nodes
between FFs and insertion points.

The effectiveness of the General Prune() procedure as
well as the DelayPrune() procedure was investigated by
running the two versions of the algorithm on a very long
line, 37mm, with a requirement that six FFs be inserted be-
tween source and sink. Figure 2 is a plot of the number
of partial solutions at each node of the long line a distance
of one unit of decimation apart from sink to source when
solved with MSDP. From 2 we can see that the number of
options at each node becomes a constant value after an ini-
tial period of super linear growth. With General Prune()
and Delay Prune(), the constant value is brought down by

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

more than half. This has an effect of roughly 70% reduction
in run time due to the reduced complexity in pruning.

In LPDP where both pruning rules have been applied,
the general pruning procedure has a dramatic effect on the
rate of growth of options at each node. We show in Figure
3 a plot of the number of partial solutions at each node in
the main trunk of a test case under the power optimization
objective function. The test case has three sinks and a to-
tal net length of 9.03mm and was chosen because it is both
large and branches more than once, making it a reasonable
example of the general case. In the plot, options per node
are observed to grow at a nearly constant rate. (Discontinu-
ities are due to merging of branches.) It should be noted that
without General Prune() the number of options per node
would be equivalent to that of MSDP in Figure 2.

Delay estimation pruning runs in linear time for both es-
timating delay with respect to the number of nodes in the
tree and pruning options at each node with respect to the
number of options. The less slack available within a net, the
more effective delay estimation pruning becomes, as more
solutions fall under such bound.

In conclusion, the runtime of the algorithm depends
strongly on the number of options produced at all nodes.
The number of options grow exponentially in theory, but
effective pruning keeps the number of options under con-
trol. Our study shows that the number of options is roughly
linearly proportional to the number of nodes in the LPDP
case. The most complicated prune, the General Prune(),
can be performed in O(nlogn) time [7] for each pruning,
where n is the number of options at a node. Because options
at a node have been empirically shown to be nearly propor-
tional to the number of nodes, applying General Prune()
to all nodes will bring the overall runtime complexity to ap-
proximately O(n? logn) in practice.

4.2 Comparison Between MSDP and LPDP

The effectiveness of the power minimization was demon-
strated by comparing the calculated power consumption for
20 real nets in one leading edge industrial design when
solved separately under the MSDP and LPDP algorithms.
Information about the test cases, as well as the comparison
between solution results can be found in Table 2.

The nets are randomly selected from a design cluster.
The listed ones are the longer ones (4.5 - 9.8mm) with more
sinks (6 - 12). For simplicity, only the maximum latency
among the sinks of the net is displayed. As mentioned in
the introduction, latency is specified based upon architec-
tural rather than physical considerations.

The margin loss column refers to the factor of decrease in
the minimum margin at the source or sinks, which is given
by [M(M ﬁg&g%[I(JL”P DP)| - The overall slack refers to the
sum of all slack time between the FFs on a net. The overall

7000 _ S— - .
F o Deiay o General
£000 -.ﬁ?\\’:’:\-! S,
L \ LAY
0m _='= s -.‘ . s
H DelaysPruning =
o 3 2 x
5 oo £-General Pruning = s
= H ~ i
(3 000 —=— A L Y
F 1 A S
2m = ff e t\i .
i Al Pruning Y X
H o %
1000 .'-‘f [l '-. ‘\l
o
0 100 200 300 100 500 00

Figure 2. Effects of General Pruning and Delay Estimation on MSDP

140 - ‘,"_

120 4 x
100 + -

20 4
o /
40 4
204
] J”-

] a0 100

Solutions

Node

Figure 3. Number of Options in LPDP

slack loss is the difference between the overall slack from
the MSDP solution and the LPDP solution in terms of per-
centage of one clock cycle. In all test cases the margin de-
creases from the MSDP solution to the LPDP solution due
to the redistribution of the slack from the sinks and source
to the middle. In most examples, LPDP has a reduced over-
all slack compared to MSDP. The reduced slack is due to
fewer repeaters and FFs in the LPDP solution for lower
power. Because MSDP has to maximize margin at sinks
and may exclude solutions with larger overall delay slack,
we observe a few cases where LPDP has more overall slack.

Slack redistribution increases the length of segments be-
tween FFs. Thus fewer FFs (eg. one FF driving a fanout of
branches instead of multiple FFs each driving one branch)
are needed, which in turn reduces the power consumption.
FFs are not drastically reduced due to the latency require-
ment (13.5% on average), but a substantial decrease of
buffers (59.7% on average) is seen. The last column shows

YF]',F.

COMPUTER

0-7695-2093-6/04 $20.00 © 2004 IEEE SOCIETY

Table 2. Experimental Results

Net | Length | Sink Max Margin Overall Buf fer” FF* Power
Latency Loss Slack Loss (%) | (MSDP)LPDP | (MSDP)LPDP | Savings(%)
1 9.77 12 5 7.06 60.8 (25)10 14) 10 20
2 7.87 8 5 8.54 0 216 (10)9 16
3 8.33 8 6 0.44 20.8 24) 4 12) 12 17
4 8.18 6 4 0.03 3.6 (26) 19 5)5 6
5 8.24 6 4 0.00 -0.4 27 19 5)5 7
6 7.17 10 2 0.01 1.2 (22) 8 M7 14
7 8.24 6 4 0.00 -0.4 2719 5)5 7
8 6.98 9 2 3.81 11.6 (18) 5 ©6)5 18
9 7.61 9 5 6.27 -34.8 2009 (13)8 24
10 6.93 6 5 0.18 50 (22) 6 5)6 14
11 4.13 6 1 0.34 24 (14)4 11 21
12 6.19 6 4 1.12 8.8 ans 5)5 15
13 5.30 6 4 0.54 5.6 ans 5)5 17
14 9.66 9 5 0.22 17.6 (28) 11 ©6)5 16
15 4.88 6 4 1.14 7.2 (13)5 5)5 12
16 4.51 7 2 0.44 27.2 14)5 3)3 15
17 9.71 9 5 0.23 18.4 30) 11 ©6)5 18
18 9.74 9 5 0.24 18.8 30) 11 ©6)5 18
19 5.25 8 4 6.55 -304 (15) 5 ano 19
20 6.06 8 5 11.99 0 ans 117 28
| avg | 7.24 | 8 | 4 | 2.46 | - | 219 | (7)6 | 17 |

the power saving by using LPDP instead of MSDP. As can
be seen in net 10, an increase in FFs can result in lower
power if it is offset by a reduction in buffers. The combined
effect of buffer and FF reduction is that power consumption
is reduced by 17% on average and up to 28% for a single
net.

5 Conclusions and Future Work

We have shown that significant power reduction in
pipelined interconnect can be achieved by properly dis-
tributing the delay slack between flip-flops. We have de-
veloped an efficient algorithm with pseudo-polynomial time
complexity to find flip-flop and buffer insertion solutions
that have minimum power and meet the specified latency
and delay at multiple sinks of a routing tree. Using a clus-
ter of interconnects in a leading industrial high-performance
design, we have shown that without jeopardizing perfor-
mance, the power of pipelined interconnects can be reduced
by 17% for the cluster of interconnects, and the power sav-
ing is up to 28% for a single interconnect.

In the future, we will integrate flip-flop and buffer inser-
tion with routing topology generation. We will also con-
sider routing layer assignment and driver/receiver sizing, as
well as higher order and RLC interconnect delay models.
These will form our overall low power buffer and FF in-
sertion framework that explores power reduction with delay

and latency constraints.

References

[1] N. Akkiraju and M. Mohan. Spec based flip-flop and buffer
insertion. In Proc. Int. Conf. on Computer Aided Design,
2003.

[2] K. Banerjee and A. Mehrotra. Power dissipation issues in in-
terconnect performance optimization for sub-180 nm designs.

In Proceedings of 2002 Symposium on VLSI Circitus, 2002.
[3] K. Boese, A. Kahng, B. McCoy, and G. Robins. Fidelity

and near-optimality of Elmore-based routing constructions.
In Proc. IEEE Int. Conf. on Computer Design, pages 81-84,

1993.
[4] A.P. Chandrakasan and R. W. Brodersen. Low power digital

CMOS design. Kluwer Academic Publishers, 1995.

[5] P.Cocchini. Simultaneous insertion of repeaters and flip-flops
in high performance vlsi circuits. In Proc. Int. Conf. on Com-
puter Aided Design, 2002.

[6] L. He and W. Liao. Full-chip interconnect power estimation
and simulation considering concurrent repeater and flip-flip
insertion. In Proc. Int. Conf. on Computer Aided Design,
2003.

[7] J. Lillis, C. K. Cheng, and T.-T. Lin. Optimal wire sizing and

buffer insertion for low power and a generalized delay model.
In Proc. Int. Conf. on Computer Aided Design, pages 138—

143, 1995.
[8] L.P.P. P. van Ginneken. Buffer placement in distributed RC-

tree networks for minimal Elmore delay. In Proc. IEEE Int.
Symp. on Circuits and Systems, pages 865-868, 1990.

0-7695-2093-6/04 $20.00 © 2004 IEEE

YF]',F.

COMPUTER

SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

