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Abstract— We develop a realizable circuit reduction to generate
the interconnect macro-model for parasitic estimation in wideband
applications. The inductance is represented by VPEC (vector potential
equivalent circuit) model, which not only enables the passive sparsification
but also gives correct low-frequency response, whereas the recent

�����
circuit reduction intrinsically has inaccurate ��� value and low-frequency
response due to nodal-susceptance formulation. Applying hierarchical
circuit-reduction enhanced by multi-point expansions, we can obtain an
accurate high-order impedance function to capture the high-frequency
response. The impedance function is further enforced passivity by convex
programming, and realized by a Foster’s synthesis. Experiments show
that our method is as accurate as PRIMA in high frequency range, but
leads to a realized circuit model with up to 10X times less complexity
and up to 8X smaller simulation time. In addition, under the same
reduction ratio, its error margin is less than that for the time-constant
based reduction in both time-domain and frequency-domain simulations.

I. INTRODUCTION
As VLSI technology advances with increased operating frequency

and decreased feature size, parasitics from on-chip interconnects
and off-chip packagings will de-tune the performance of high-
speed circuits in terms of slew rate, phase margin and bandwidth.
To accurately model parasitics in a wide frequency range, Partial
Element Equivalent Circuit (PEEC) [1] in terms of RLCM (M here
stands for mutual inductance) circuits are generated from discretized
conductors by volume decomposition according to skin-depth and
longitudinal segmentation according to wavelength at the maxim
operating frequency. Because the PEEC model typically results in a
large RLCM circuit with massively coupled partial inductance matrix�

, it challenges the circuit level simulation in two aspects: (i) a dense
inductively coupled matrix sacrifices the sparsity of circuit matrix;
(ii) the model order of the circuit matrix is too high. It slows down
the simulation and even makes the simulation infeasible. Therefore,
inductance sparsification and model order reduction are two necessary
approaches to reduce the complexity.

Since directly truncating small off-diagonal elements of inductance
matrix results in loss of passivity [4], there are several passivity-
enforced sparsification methods proposed in the literature [5], [6].
Due to the fact that inversion of partial inductance matrix is strictly
diagonal dominant, the susceptance (K-element) ( 	�
 �
��� ) based
sparsification [5] becomes an efficient way to achieve the passive
sparsification of the dense inductance matrix. Nevertheless, the order
of the circuit matrix can be still large after the sparsification. To
further reduce the model complexity, the sub-space projection based
model-order-reduction (MOR) techniques [7] are applied to generate
a low-order approximation of the original circuit via implicit moment
matching [8]. Note that the resulting model for time-domain simu-
lation is a dense state matrix [7]. To achieve a realizable reduction
in the flow of RLC-in and RLC-out, the circuit-reduction based on
Gaussian variable-elimination is recently proposed as an alternative
to the projection-MOR. In [9], time-constant based criteria are used
for the first-order realizable circuit-reduction. Although those criteria
guarantee the realizability, the reduced model usually loses accuracy
when reduction ratio is beyond the criteria guaranteed region. To
obtain the higher order realizable circuit-reduction for a higher accu-
racy, a generalized ����� transformation based method is proposed
in [10], including two steps: (i) a general ����� transformation
by nodal-voltage variable elimination to obtain one-port admittance
rational function; and (ii) a circuit-synthesis of admittance function.
This method keeps terms of the rational function up to a desired
order, and finally realizes the rational function by Brune’s one-port
synthesis [11] via a geometrical programming process.

However, ����� transformation based circuit-reduction is restricted
to the nodal analysis (NA) formulation as it works on the circuit
topology directly. As a result, it needs to construct the nodal-
susceptance (instead of inductance). As will be shown in Section II,
susceptance under NA formulation creates unwanted ��� paths and
leads to wrong ��� values and inaccurate low-frequency responses. It
prevents this method from being applied to interconnects in wideband
applications, because the accurate ��� information is important to
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determine the operating point to further perform the correct and stable� � analysis [12]. Moreover, there are two types of numerical errors
in this method: (i) common factor cancellation; and (ii) truncation
of high-order terms. It can lead to the numerical instability for the
resulting admittance function. In this paper, we propose a novel
realizable circuit-reduction flow that can preserve the correct ���
information and enforce the passivity of the reduction. This macro-
modeling flow consists of following steps:

1) With the extracted PEEC model, we generate the sparsified
vector potential equivalent circuit (VPEC) model via window-
ing as: (i) VPEC model enables the passive sparsification and
hence accelerates the followed circuit-reduction; (ii) VPEC
model has the correct frequency response in the entire fre-
quency region compared to the PEEC model since it is derived
from first principles and is equivalent to the PEEC model;

2) We further apply the newly developed hierarchical circuit-
reduction method [13] with two enhancements: (i) the multi-
point expansion to obtain the accurate yet stable high-order
impedance function; and (ii) the convex programming to fur-
ther enforce the passivity of the resulting impedance function.

3) Finally, we show how this accurate and passive impedance
function can be expressed in the generalized Foster’s canon-
ical form and hence can be efficiently realized with RLCG
elements.

The rest part of this paper is organized below. In Section II, we
discuss the inductance formulation in circuit-reduction, and show
that nodal-susceptance formulation in ��� � based reduction leads
to inaccurate ��� and low-frequency response, but the VPEC based
formulation obtains frequency response as accurately as the PEEC
model. In Section III, we use an enhanced hierarchical circuit-
reduction to further reduce VPEC model, and present a generalized
Foster’s synthesis to realize the reduced impedance function. In Sec-
tion IV, we show experimental comparisons with the PEEC model,
time-constant based circuit-reduction, projection-based reduction by
PRIMA and our approach in terms of the accuracy and realized model
size. Finally, we conclude in Section V.

II. INDUCTANCE FORMULATION FOR CIRCUIT-REDUCTION

In this section, we first briefly review the circuit-reduction, and
then discuss the inductance formulation for circuit-reduction by
nodal-susceptance and by vector potential equivalent circuit, respec-
tively. We will show that the inductance formulation by nodal-
susceptance is not physically equivalent to inductance as unreal ���
paths are created.

For a RLCM circuit, when we assume independent current sources
at external ports, the circuit matrix by MNA (modified nodal analysis)
formulation in ! -domain is"$#&%('*)�#
+-,/.102'43*5 6708'93:+-,/;<#

(1)

where =�>*?@>4A are the state variable, output voltage and input current
vectors, and B/>DCE>4F are state and input-output matrices, respectively.
(1) can be further written as:GIH J ;KL J K MONQP 6SR. KUT %(' PWV MM '9X T P 6YR. KUT + P ,/.102'43M T 5 (2)

where Z and [ are admittance matrices for resistances and capaci-
tances,

�
is the inductance matrix, which includes mutual inductance,?]\ is a vector of nodal voltages , A_^ is a branch current vector of the

inductors, and `Q^ is the adjacency matrix for all inductors.
The circuit-reduction means applying the Gaussian elimination for

state variables like nodal voltage ?7\ and branch current A_^ . If we
initially reduce the branch current vector AD^ , we actually result in a
state equation only with nodal voltage variablesa H %(' V %Ub' J K8c J ;Ked a 6 R d + a ,/._02'93 d8f (3)

This is exactly the nodal analysis (NA) formulation, where 	g
� ���
is the susceptance [16], and hi
 �j ` ^ 	k`�l^ is the admittance

form for the mutual inductance under NA. The circuit-reduction by
further eliminating the nodal voltage-variable ?m\ is exactly the �-�W�
transformation in [10]. However, the elimination of An^ (from (2) to
(3)) will create unreal ��� paths in the resulting nodal-susceptance
circuit as shown below.

1E-6s

0-7803-8736-8/05/$20.00 ©2005 IEEE. 111 ASP-DAC 2005



)
17
(
2
 W
w
R


)
1
.
22
(
2
 fF
sC
w


)
17
(
1
 W
w
R
 )
48
.
1
(
1
 nH
sL
w


)
1
.
22
(
1
 fF
sC
w
 )
10
(
1
 fF
sC
L


)
1
.
11
(
12
 fF
sC


)
1
(
 A
I
in


)
10
(
2
 fF
sC
L


)
100
(
1
 W
d
R


)
100
(
2
 W
d
R
 )
48
.
1
(
2
 nH
sL
w


)
18
.
1
(
12
 nH
M


)
17
(
2
 W
w
R


)
1
.
22
(
2
 fF
sC
w


)
17
(
1
 W
w
R
 )
85
.
1
(
 1
11
 -
GH

s


S


)
1
.
22
(
1
 fF
sC
w
 )
10
(
1
 fF
sC
L


)
1
.
11
(
12
 fF
sC


)
1
(
 A
I
in


)
10
(
2
 fF
sC
L


)
100
(
1
 W
d
R


)
100
(
2
 W
d
R


)
85
.
1
(
 1
22
 -
GH

s


S


)
48
.
1
(
 1
12
 -
GH

s


S


)
48
.
1
(
 1
12
 -
-
-
 GH

s


S


(
a
)
 
2
-
b
i
t
 
P
E
E
C
 
c
i
r
c
u
i
t
 (
b
)
 
2
-
b
i
t
 
n
o
d
a
l
-
s
u
s
c
e
p
t
a
n
c
e
 
c
i
r
c
u
i
t

(
n
o
d
a
l
 
s
u
s
c
e
p
t
a
n
c
e
 
c
a
n
 
b
e
 
r
e
a
l
i
z
e
d
 
b
y
 
i
n
d
u
c
t
o
r
)


Fig. 1. An example of coupled 2-bit RLCM circuit. (a) is the circuit under
PEEC model; (b) is the 6-nodal-susceptance circuit under NA.
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Fig. 2. Frequency responses of PEEC model in SPICE, susceptance under
NA and VPEC models for the 2-bit bus.

A. Inductance Formulation by Nodal-Susceptance
We use a 2-bit interconnect example shown in Fig. 1 for the

simplicity of illustration. The nodal-voltage equation of susceptance
(3) at four voltage nodes (A,B,C,D) is������ ���	� ������ ��
�� ��
��� ����� ��
��� ������� �� ������ ����� ������ ��
�� ����
� ����� ����
� ��������� �� ��
� ���	� � ��
� ��
�� � 
�
� ����� � 
�
� ������� 
� � ��
� � � � � ��
� � 
 � � 
�
� � � � � 
�
� � � ����� 


(4)

As shown Fig. 1 (b), it is mathematically equivalent to stamp six
individual self-susceptance elements into the admittance matrix [10].
Clearly, because 	 � !#"7! approaches to an infinite admittance value
(thus 0-impedance as short circuit) when ! 
%$ , there exist four
unreal ��� -paths between nodes (A,B,C,D), which do not exist before.
As a result, it leads to the inaccurate impedance function at ��� and
low-frequency region.

We compute the exact driving-point impedance rational func-
tions (expanded at !'&($ ) using inductance under MNA and
nodal-susceptance under NA, respectively. As shown in Fig. 2,
the impedance function )+*-,/._!�0 gives the exact the response as
SPICE does. It becomes a capacitor with value about 1325476 when! approaches to zero, and becomes a resistor with value 8�$3$ ohms
when ! approaches to infinite. If we use the 6-nodal-susceptance in
NA, ) *+, ._!�0 gives the exact response as SPICE does in the high-
frequency range, but the response is incorrect in the low-frequency
range. When ! approaches zero, the actual driving-point impedance
in Fig.1 (a) should be dominated by three capacitor with total value1325476 . However, for Fig.1 (b) at ��� , the driving-point impedance
becomes a resistor with total value 9#2:1 ohms due to the unreal��� path. As a result, the circuit-reduction with nodal-susceptance
formulation can leads to incorrect low-frequency response in general.

B. Inductance Formulation by VPEC Model
Because the inductance formulation by the nodal-susceptance leads

to inaccurate low-frequency response, it is not suitable to generate
the reduced interconnect model for wideband applications. On the
other hand, directly handling dense mutual inductance in the MNA
formulation as in [9] will be computationally expensive. As shown
in [6], the inductive effects under the VPEC model (using effective
resistances) not only is physically equivalent to the PEEC model, but
also enables passive sparsification to accelerate the followed circuit-
reduction.

One significant difference between VPEC and nodal-susceptance
models for mutual inductance is that VPEC is a physically equivalent
circuit model that can exactly represent the original system. As shown
in Fig.3, this model consists of electrical circuit (PEEC resistance

Fig. 3. The VPEC model for the 2-bit example in Fig. 1.

and capacitance) and magnetic circuit (VPEC effective resistance and
controlled source), and includes following components: (1) the wire
resistance ( ;<� ) and capacitance ( [=� ) same as those in the PEEC
model; (2) a dummy voltage source to sense electrical current > � to
control ?>�� with coefficient equal to filament length @<
A8�$3$3$#B7C ; (3) a
voltage controlled current source to relate ?D � and ?>�� with gain E 
F8 ;
(4) an electrical voltage source

D � controlled by ?D � with coefficient
equal to filament length @ 
G8�$3$3$#B7C ; (5) effective resistances
including ground ?; �IH and coupling ?; � ! to consider the strength of
inductances; (6) a unit inductance

� � to: (i) take into account of the
time derivative of `<� ; and (ii) preserve the magnetic energy from the
electronic circuit. The effective resistances are determined from:JKMLON + L bP 
 X � �LON 5 JKMLIQ + bP 
 X � �LIL %�R N�S� L P 
 X � �LTN (5)

Clearly, this SPICE compatible implementation does not introduce
the unreal ��� paths at !�
U$ as does by the nodal-susceptance. Fig. 2
shows the response of VPEC model for the 2-bit circuit, which is
identical to SPICE for the entire frequency range.

To further improve the sparsified VPEC model extraction without
the full inversion as in [6], we extend a windowing technique [16].
It reduces the computation complexity to ( VW.�X�Y�Z�0 ), where b is the
size of the window. Note that although VPEC model enables efficient
inductance sparsification, the order of circuit matrix is still high.
Moreover, its SPICE compatible model contains controlled sources
such that: (1) the state matrix

J 02'43�+�'*) % " does not satisfy the
congrument transformation condition:

J ; % J\[ M
[7] and hence

PRIMA based model reduction can not reduce the VPEC model; (2)
the existing realizable circuit-reduction approaches [9], [10] can not
reduce VPEC model as well as they directly work on the circuit
topology. In the following, we present an improved hierarchical
circuit-reduction to further reduce the order of VPEC model.

III. ENHANCED HIERARCHICAL CIRCUIT-REDUCTION
We discuss the recently developed ! -domain hierarchical circuit-

reduction algorithm (H-reduction) [13] to reduce the VPEC model in
this part . For (1), we define `�._!�0k
 !YC=](B , and assume the impulse
current source at one port. Hence (1) becomes `�=�
FY . We further
distinguish = into three types: =_^ for variables to be eliminated,=_` for variables to be preserved, and = a for boundary variables in
between =_^ and = ` . Then (1) is rewritten asb �dc7c �dc 
 Q� 
 c � 
e
 � 
efQ � fg
 � f7fih bkj cj 
j fih 
 b�l cl 
l fmh (6)

By applying the block-level Gaussian elimination [13] to eliminate
variables =_^ , we have the following reduced system equation:n � 
e
 � � 
 cpo � c7crq � � � c 
 � 
ef� fg
 � fdf_s n j 
j f s 
 n l 
 � � 
 cro � c7crq � � l cl�t s (7)

For simplicity of illustration, we define u= , u Y and u` for the reduced
system, i.e., (7) becomes u`vu=�
 u Y . Furthermore, the transfer function
of the reduced system isw 6702'93:+yx 02'93 w ._08'93*5 xk08'93:+yx Q %('zx_{ % w | ; wJ � � w |

(8)

where )}H , )+~ are the ��� and ultra-high frequency impedance. It
becomes the driving-point impedance function when only one port
is remained. For the multi-input multi-output system, the transfer
function becomes an impedance matrix:x 02'43<+�x Q %�'�x_{ % w, ; wJ � � w,
5

(9)

where u Y becomes the reduced input-output matrix uF .
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Fig. 4. Driving-point frequency response of a 2-bit bus with 5 segments.

Clearly, since this method directly operates on the MNA state
equation, the state variable in = can be easily eliminated even
when the state matrix ` contains controlled sources. Furthermore,
compared to the existing circuit-reduction algorithms [9], [10], this
method achieves two advantages: (1) the elimination is in a fashion
of divide-conquer and (2) multiple voltage variables and current
variables can be simultaneously eliminated. Therefore, the reduction
time is much reduced for large scale circuits as shown in [13];

By further applying the Y-DDD (Determinant Decision Diagram)
technique, H-reduction can find the cancellation-free impedance
function, which removes the common-factor cancellation introduced
numerical error. However, this method has the similar truncation error
as in [10], which prevents it from getting the high order terms. It can
be mitigated by following two enhancements: multi-point expansion
and passivity enforcement.

A. Multi-point Expansion and Explicit Waveform Matching
We obtain the impedance function (9) by multiple expansions

carried along either real axis or imaginary, where we use a novel
frequency-domain waveform matching algorithm to search for the
dominant poles at different expansion points instead of the binary
search in [14]. The new waveform matching algorithm explicitly
matches the frequency waveforms of the reduced rational functions
with the exact one in each frequency range starting from each
expansion point. This method takes the advantage of the fact that most
of dominant poles of high-frequency passive circuits are complex
poles. Therefore, the contributions of complex poles become the
largest at frequency 4#� when its imaginary part is 9��p4#� . As a
result, we only select all the poles whose imaginary part fall into� 9��p4��4>z9��r4#��� ��� , where in the frequency range

� 4:�*>�4���� �	� , both the
approximated and exact functions match to a user specified error
bound.

We find that with multi-point expansion in a desired frequency
range, it can capture the dominant poles that are near to each
expansion points. Its accuracy is much better than the single-point
expansion when the interested frequency range is wide such that lots
of poles are far away form the single expansion point !#H . Fig. 4
shows a frequency response of the driving-point impedance for 2-
bit bus with 5 segment on each bit. The scope of the frequency
range is from ��� to 30GHz. We compare the results by one-point
( !Q
F$ ), 6-point expansion and the exact response. Both impedance
functions have 10 poles, but the accuracy is quite different, where
6-point expansions can capture the high-frequency response much
better than the one-point expansion.

B. Passivity Enforcement
During the multi-point expansion, we can capture stable poles dur-

ing the pole searching. However, its passivity still needs guaranteed,
i.e. ) ._!�0 needs to be a positive real function. The necessary and
sufficient condition [17] for )�._!�0 to be positive real is when there
exists a symmetric positive definite (s.p.d.) matrix 
 such that:n L�� ;�
 L 
 � L 
�� % �L �<;�
 % �<; x7Q�%kx ;Q s�� $ (10)

where � 
�C ��� B , and � 
 C � � F . As shown in [18], to obtain a
passivity enforced )���._!�0 we can formulate a convex programming
problem to enforce the global passivity by optimizing matrices ( � ,
 , ) H , ) ~ ) at N frequency points !�� ( � 
F87>�9�>������ >�X )

� .�� �"!*0 � 5 
 5�x Q 5�x_{ 3'�# | �0 b 3 $&% f 0 b M 30�'Y3 
 5�x7Q�5�x {)( M
0�*Y3 +,

- � �/. -"0 LON�121 x43LTN 02' - 3 L x7LTN�02' - 3 121 

&5 !�LTN (11)

These constraint-formulations ensure the global positive-realness of) ._!�0 and are as restrictive as necessary.
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Fig. 5. Foster’s Canonical form based equivalent circuit synthesized.

C. Realization via Impedance Synthesis
With a order reduced and passivity enforced impedance function,

we further discuss how to generate realized macro-models for both
frequency/time domain simulation by a generalized Foster’s synthesis
[11]. We first show how to synthesize the one-port model from the
driving-point impedance rational function )�._!�0 , where ) ._!�0 can be
rewritten in the Foster’s canonical form, i.e., a partial fraction form
with X conjugate-poles 6 \ and 7 real-poles 6�8 :x 02'93<+yx Q %('zx_{ %:9,

; � �=<
;' L?> ; % +,R � � 0 < R' L?> R % <

@R' L?> @R 3 (12)

It can be synthesized as an equivalent circuit in Fig. 5 (a) with
following relations to determine R,L,C,G elements:KMQ + x Q 5 X Q +yx_{?A

V ; + b
<
; 5 K ; + L bV ; > ; AV R + b' KCB � < R � 5

H R + V R 0�D R L ' KCB � > R � 3EAX<R + bV R 1 > R 1 
 % H RFD R 5 K R + L X<RGD R f (13)

where H \ 
JI�KML	N R/O @RQPI�KML	N
R P .

Using an additional T-transformation, this one-port synthesis can
be easily extended to the multi-port synthesis. As shown in Fig. 5 (b)
for a two-port impedance matrix, each branch impedance is realized
according to (13). Further different from the approach in [15], (i) we
obtain a passive and accurate rational function without the vector-
fitting, where the vector-fitting can not guarantee the global passivity;
and (ii) we do not need over-constrained passivity conditions, where
over-constrained passivity conditions in [15] enforce the passivity,
but can lose the accuracy [18]. Therefore, our synthesized circuit is
passive and accurate.

IV. EXPERIMENTAL RESULTS

In this section, we compare our realizable circuit-reduction with
time-constant based circuit-reduction [9] and projection-based reduc-
tion PRIMA in both frequency and time domains, and study the
accuracy, realization efficiency and scalability of our approach. We
use coupled bus together with non-linear drivers as our examples.
We assume the copper ( R 
 8/� SUT 8�$ �WV�XZY C ) for metal and low- �
dielectric ( [�
i9G� $ ). The conductor is volume-discretized according
to the skin-depth and longitudinal segmented by one tenth of wave-
length. The capacitance is extracted by FastCap [2] and only adjacent
capacitive coupling. The partial inductance is extracted by FastHenry
at 30GHz [3]. The inductive coupling between any pair of segments
is considered. We then generate the distributed PEEC model by� -type of RLCM topology to connect each segment, and further
obtain the full VPEC model via LU-factorization based inversion
[6] or the sparse VPEC via a windowing. The reduction starts from
VPEC model for our method but from PEEC model for the other
two reductions. Moreover, the reduced state-matrix from PRIMA is
realized by controlled sources [19] for SPICE compatible simulation.
All circuits are simulated by SPICE3 on Linux workstation with
1GHz P-III dual-CPU and 2G memory.

A. Time and Frequency Domain Comparison
We first compare waveforms of models with different order at

the far-end of the driver-output by a 1V transient input for a 2-bit
bus with 20 segments connected to nonlinear drivers. The original
PEEC model contains 42 resistors, 63 capacitors, 40 self-inductors,
and 760 mutual-inductors. The reduced model is realized via a two-
port Foster’s synthesis. The waveform is compared in Fig. 6 for two
reduced models with different orders and the original PEEC model.
When we use 25 poles to generate the reduced model, we obtain
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TABLE I
SIMULATION EFFICIENCY COMPARISON BETWEEN ORIGINAL AND SYNTHESIZED MODEL.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Circuits #Elements #Poles Simu-time(s) Model-size(Kb) Delay-error (%)

H-redu time-const. Prima Original H-redu time-const. Prima Original H-redu time-const. Prima
ckt1 84 10 0.15 0.12 0.50 0.51 0.85 0.86 3.51 3.52 -0.16% -0.86% -0.15%
ckt2 258 10 0.15 0.15 0.92 5.31 0.85 0.86 3.51 11.23 -0.24% -1.12% -0.22%
ckt3 905 25 0.32 0.43 2.25 19.51 1.68 1.70 19.8 41.1 -0.41% -4.43% -0.37%
ckt4 5255 30 0.52 0.89 3.13 661.46 1.92 2.23 28.2 243.6 -0.62% -6.83% -0.58%
ckt5 20505 30 0.52 1.08 5.98 1356.66 1.92 2.53 28.2 957.9 -1.04% -12.91% -0.83%

a realized model with 12-stage RLCG elements (total 45 circuit-
elements) and 61X (19.51s vs. 0.32s) transient simulation speedup,
where the two waveforms are visually identical. When using 10 poles,
we obtain total 25-elements in the reduced model but 130X simulation
speedup, where the waveform error is 0.3ns in terms of delay but
0.1mV in terms of slew rate. Clearly, the waveform with 25th-order
macro-model is the choice in terms of both accuracy and speedup,
and such a high-order model is enabled by the multi-point expansion.

Fig. 7 further shows the driving-point responses in frequency-
domain for the above example. When we also use 25 poles to generate
reduced model by PRIMA, we find that accuracies of two reduced
models are very close to the original circuit up to 40GHz, but the
size of the compatible one-port model from PRIMA by controlled
sources is 12X larger in terms of model size than our realized model
and 8X slower in terms of simulation time (2.4s vs 0.3s). On the
other hand, under the same reduction-ratio, we find the time-constant
based reduction is not accurate beyond 5GHz.

B. Scalability of Reduced Models
We further present the scalability of our reduced model in Table

I by time-domain transient simulations for following aspects: (i)
runtime of simulation; (ii) realization efficiency (realized model size);
and (iii) accuracy in terms of delay. We compare reduced circuits
from H-reduction and PRIMA by the same reduction order, i.e. the
same number of poles for approximation. The reduced model using
time-constant based reduction is obtained with similar model size
as H-reduction. Firstly, we find our realized RLCG circuit model
size is 10X smaller on average than the SPICE compatible circuit
from PRIMA. Therefore, similar simulation speedup (8X) is observed
when we run both circuits in SPICE3. When we further compare the
simulation time of our reduced models with the PEEC circuits, a
significant speedup (up to 2712X for ckt5) is obtained. Furthermore,
the waveform accuracy in terms of delay is given in Column 12-
14. The reduced models are very accurate with worst case delay
error being -1.04% even with 478X (957.9Kb vs. 1.92Kb) reduction
ratio in terms of model size. But for the same reduction ratio as our
reduction, we find the time-constant based reduction introduces large
errors (up to 8�9G� � 8�� ) because too many nodes are eliminated and
the reduction criteria cannot be satisfied.

Note that the sparsification in VPEC model can dramatically
reduce the number of mutual inductive couplings, and maintain the
similar accuracy [6]. As a result, it reduces the reduction cost for
the large circuit. For example, in the case of ckt5 (the largest one) in
Table I, we obtain a 97.5% sparsification from 19,900 to 498 mutual-
inductors. Due to this sparsification, it reduces the H-reduction time
by 10X (365.4s to 47.8s), and is much smaller than the reduction
time (512.5s) of time-constant based reduction.

V. CONCLUSIONS AND DISCUSSIONS
In this paper, we present a novel circuit-reduction flow via phys-

ical VPEC model for inductance, an enhanced hierarchical circuit-
reduction to generate high-order accurate and passive impedance
function, and an efficient Foster’s canonical synthesis. Our exper-
iment results show that the new circuit-reduction flow has more
accurate low-frequency response than the ��� � transformation [10],
and also has the better accuracy in the high-frequency range than
the time-constant based reductions [9]. Furthermore, it has similar
accuracy as projection based model order reduction (PRIMA), but
with a much smaller realized RLCM circuit.
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