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ABSTRACT 
In this paper, we study the simultaneous transistor and in- 

terconnect sizing (STIS)  problem. We define a class of opti- 
mization problems as CH-posynomial programs and reveal 
a general dominance property for all CH-posynomial pro- 
grams (Theorem 1). We show that the STIS problems un- 
der a number of transistor delay models arc CH-posynomial 
programs and propose an efficient and near-optimal STIS 
algorithm based on the dominance property. When used to 
solve the simultaneous driverlbuffer and wire sizing prob- 
lem for real designs, it reduces the maximum delay by up to 
16.1%, and more significantly, reduces the power consump- 
tion by a factor of 1.63x, when compared with the original 
designs. When used to solve the transistor sizing problem, 
it achieves a smooth area-delay trade-off. Moreover, the 
algorithm optimizes a clock net of 367 drivers/buffers and 
59304pm-long wire in 120 seconds, and a 32bit adder with 
1,026 transistors in 66 seconds on a SPARC-5 workstation. 

1. INTRODUCTION 

The interconnect delay has become the dominating factor 
in determining the circuit performance in deep submicron 
designs. We believe that the most effective approach to 
performance optimization in deep submicron designs is to 
consider both logic and interconnect designs throughout the 
entire design process (from RTL level to layout design). As 
part of our effort to develop a unified methodology and 
platform for simultaneous logic and interconnect design and 
optimization, we study the simultaneous transistor and in- 
terconnect sizing (STIS)  problem in this paper. 

Most previous works on layout optimization size transis- 
tor and interconnect separately, which may lead to subop- 
timal designs. The transistor sizing problem is to find the 
optimal width for each transistor under certain objective 
functions as studied in [14, 181, while the gate sizing prob- 
lem is to find the optimal width for each gate by assuming 
all transistor sizes within a gate increase or decrease by a 
uniform factor [I, 5 ,  21. The interconnect sizing problem, 
also called the wiresizing problem, was first introduced in 
[ lo ,  111 to determine the optimal width for each wire seg- 
ment in interconnects and the first polynomial-time optimal 
algorithm was developed. Later on, alternative wiresizing 
algorithms were proposed in [17, 23, 25, 6, 31. 

Recently, several studies considered simultaneous tran- 
sistor and interconnect sizing for some special cases. The 
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authors of [8] proposed an efficient algorithm for the simul- 
taneous driver and wire sizing problem. The authors of 
[16] solved the simultaneous buffer insertion and wire sizing 
problem by a dynamic programming approach. The authors 
of [19] studied the simultaneous gate and wire sizing prob- 
lem and solved it by the sequential quadratic programming 
technique. Most recently, the authors of [20] solved the 
simultaneous buffer insertion, wiresizing and tree construc- 
tion problem. Their gate sizing formulation, however, may 
lead to suboptimal designs, especially in the full-custom 
layout. In order to  achieve better designs, our STIS formu- 
lation is able to optimize the size of every transistor and the 
width of every wire segment (under a non-uniform wire seg- 
mentation). A very efficient algorithm has been developed 
based on the general dominance property. It can be used 
either as a global planning tool after initial floorplan, place- 
ment, and global routing to determine the sizes of global 
interconnects and inter-block driverslbuffers, or as a block- 
level optimization tool to compute the optimal sizes of all 
transistors, gates, and wires within a functional block. 

The remainder of this paper is organized as follows. In 
Section 2, we present the formulation of the STIS prob- 
lem. In Section 3, we reveal the dominance property for a 
class of optimization problems named CH-posynomial pro- 
grams and show that our STIS problems under a number of 
transistor models are CH-posynomial programs. In Section 
4, we propose a polynomial-time algorithm to  compute a 
set of lower and upper bounds of the optimal solution to  
the STIS problem. In Section 5, experimental results show 
the algorithm often achieves the identical lower and upper 
bounds, which lead to the optimal solution. Thus, it  is a 
near-optimal algorithm in practice. A novel contribution 
of our work is that  the algorithm is applicable to any opti- 
mization problem if it  is a CH-posynomial program. Proofs 
of theorems are given in a technical report [7]. 

2. F O R M U L A T I O N S  
2.1. Delay  model for Transistors and Intercon- 

We model a transistor by the source-drain effective resks- 
tance T d ,  and the gate, source and drain capacitances cg, c6 
and cd. Let 2: be the transistor width, rd,cS,cs and C d  can 
be written as the following: 

nects 

r d  = TdO/X (1) 
cg = cgo . 2: + C g l  (2) 
cs = cso . x + CS1 (3) 
Cd CdO .x + C d l  (4) 

where ego, cSo and C ~ O ,  as well as cgl, csl and C d l  are con- 
stants determined by the technology. In addition, rdo is the 
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uni t  effective resistance as defined in the following: assum- 
ing an n-type transistor is driven by a rising input. If the 
transistor size is x, the capacitance loading CL,  and the 
50% delay T ,  we define the effective resistance rd and the 
unit effective resistance Tdo of the transistor as: 

The unit effective resistance of a p-type transistor can 
be defined similarly under the falling input. Let X = 
( 5 1 ,  . . . , xn} denote the sizes for all transistors and wires. 
We point out tha t ,  in general, TdO is a function of X (i.e., 
the unit effective resistance of a transistor depends on the 
sizes of all transistors and wires in the design). We use ?'do 

instead of rdO(X) for the simplicity of presentation. 
We model a routing tree as a distributed RC tree, similar 

to [ll, 61. Each wire segment is divided into a sequence 
of uni-segments. A uni-segment is treated as a r-type RC 
circuit and the wire width is assumed uniform within a uni- 
segment. For simplicity, we assume that all uni-segments 
have the same wire length and the unit-width uni-segment 
has wire resistance T O ,  wire area capacitance CO and wire 
fringing capacitance c1. Then, the resistance r and the 
capacitance c for a uni-segment with width x are 

Our delay computation is similar to that in the switch 
level timing analysis tool Crystal [21]. The delay will be 
computed based on a stage, which is a DC-current path 
from a signal source (either the Vdd or the ground) to the 
gate of a transistor, including both transistors and wires. 
The delay of a stage P(N, ,  N t )  where N ,  is its source and 
N ,  is its sink can be written as Eqn. (9) according to the 
Elmore delay formulation in [24]. 

where x2 is the 

be determined 
fast, f?, gs;, 

width for either a transistor or a wire, and 
and hft are coefficient functions, which can 
in a similar way as in [Ill 61. We point 

out that  the unit effective resistance TdO for the transis- 
tor always appears as a multiplying factor in these coeffi- 
cient functions. Furthermore, rdo is multiplied by constants 
which can be determined before the sizing procedure. This 
fact is helpful t o  prove the dominance property for STIS 

sistors have been used in both [all and [14] except that  both 
model the interconnect as a lumped capacitance instead of 
a distributed RC tree model as used in our formulation. 
Note that the unit effective resistance TdO of a transistor in 
both our formulation and [21] is a function of X. However, 
it  was formulated as a constant independent of X in 1141. 

problems in Section 3 .  Similar delay formulations for tran- 

2.2. STIS Problem to Minimize Delay for Multiple 
Paths 

In order to  minimize delays along multiple critical paths in a 
circuit simultaneously, we propose to minimize the weighted 

delay t ( X )  of all stages in the set of critical paths, which is 
denoted as P:  

where the penalty weight A s t  indicates the criticality of 
stage P ( N , , N t ) ,  which can be provided either by the de- 
signer (after timing simulation) or computed iteratively us- 
ing the Lagrangian-relaxation method as in [3] to minimize 
the maximum delay. Note that although the number of crit- 
ical paths in a circuit may grow exponentially with respect 
to the number of logic gates, the number of critical stages 
grows almost linearly. Let 

G(i)  = . g s t ( i )  

and eliminate those terms independent of X, Eqn. 
becomes 

(10) 

With respect t o  Eqn. (15), we define the following STIS 
problem to minimize delay through multiple critical paths: 

Formulation 1 Given  a circuit and the lower and upper 
bounds fo r  the width of each transistor and wire, the STIS 
problem is to  determine the width f o r  each transistor and 
wire (or equivalently, a sizing solution X) such tha t  the 
weighted delay through mul t ip le  cr i t ical  paths given by E p .  
(15) is  minimized. 

In practice, it is often the case that we want to size 
the transistors and wires without increase in the layout 
area (using the free space in the current layout) or with 
bounded increase in the layout area. Therefore, there is 
an upper bound associated with each transistor and wire 
during the optimization. On the other hand, there is a 
lower bound associated with each device and wire due to  
the technology feature sizes and reliability concerns (such 
as electro-migration). Thus, the lower and upper bounds 
(L  5 X 5 U) are used to handle these constraints. I t  will 
be seen later on that the lower and upper bounds are the 
starting point for our STIS algorithm. I t  is easy to see that 
the STIS problem is equivalent to the wiresizing problem 
when the identical lower and upper bounds are given for 
the widths of all transistors, or equivalent to the transistor 
sizing problem when identical lower and upper bounds are 
given for the wire widths of all wires. 
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3. THE DOMINANCE PROPERTY 
Instead of developing ad hoc heuristic methods for the STIS 
problem, we define a class of optimization problems named 
CH-posynomial programs and reveal the dominance prop- 
erty for all CH-posynomial programs. Then, we show that 
the STIS problems under several delay models are CH- 
posynomial programs and an efficient STIS algorithm will 
be developed based on the dominance property. 

3.1. Dominance Property for CH-posynomial Pro- 
grams 

First, we define the CH-posynomials as functions of form: 

Cp,t . xp 
P,; 

where  z j , x j  E x = (X1,...,Xn) 
L < X < U  
P,q  E (1 ,2 , . . . ,m)  
apq, t3 ,  bp,i and cp,i 2 0 

and the coefficients satisfy the following symmetric proper- 
ties: 

1. apv,i3 > 0 if and only if a,,ji > 0; 
2. bp,i > 0 only if cp,i > 0 or apq,13 > 0 for any p and j; 
3. cp,i > 0 only if bp,j  > 0 or apv,i3 > 0 for any p and j; 

When these coefficients are constants, this type of functions 
is a subset of posynomials defined in [13]. In this case, we 
call them simple CH-posynomials. Moreover, we define the 
following general CH-posynomials, which are actually no 
longer posynomials. 

Definition 1 Eqn. (16) is a general CH-posynomial if  co- 
e f ic ien ts  are funct ions of xi and x 3  satisfying the following 
conditions: aPq,r3 monotonically increases with respect to a n  
increase of xi and monotonically decreases with respect to 
a n  increase of xJ, and bp,z monotonically increases with re- 
spect t o  a n  increase of x; and cp,i monotonically decreases 
with respect t o  a n  increase of xi. 
We call an optimization problem to minimize a simple or 
general CH-posynomial subject to L 5 X 5 U as a simple 
or general CH-posynomial program, and introduce the fol- 
lowing concepts of dominance relation and local refinement 
opera tion. 

Definition 2 For two vectors X and X', we define that X 
dominates  X' (denoted as X 1 X') if xi 2 X I  f o r  all i. 

Definition 3 T h e  local refinement operation of a solution 
vector X, with respect t o  any  particular variable x; and 
funct ion f(X),  is t o  minimize f(X) subject to changing only 
xi while keeping the values of other x 3 ( j  # i) unchanged. 

We say that the resulting solution vector is the local re- 
f inement  of X (with respect to xi). For simplicity, we also 
use term solution instead of solution vector. Let X' be the 
optimal solution minimizing f (X). We say that the prob- 
lem of optimizing f ( X )  satisfies the dominance property if 
X dominates X* implies that  a local refinement of X still 
dominates X*, and X is dominated by X* implies that  a 
local refinement of X is still dominated by X' 

We showed the following important theorem which is the 
foundation of our STIS algorithm to be presented in Section 
4. 

Theorem 1 The dominance property holds fo r  both simple 
and genera 1 CH- po s y n  o m ial programs. 

The authors of [ll] first proposed the dominance property 
for the single-source wiresizing problem. Our results greatly 
generalize the concept of the dominance property and reveal 
that  the dominance property holds for a much larger class 
of optimization problems. One can show that the single- 
source wiresizing problem [Ill, the multi-source wiresizing 
problem [6] and the simultaneous driver and wire sizing 
problem [8] are instances of the simple CH-posynomial pro- 
gram. The dominance property will lead to  an efficient 
polynomial-time algorithm in Section 4. We will show that 
STIS problems are CH-posynomial programs in order to use 
the algorithm. 

3.2. Dominance Property for STIS Problems 
Recall that  the unit effective resistance rdo for the transis- 
tor is always a multiplying factor in coefficient functions 
Fo,Fl ,G and H I  in Eqn. (15). I t  in fact determines 
whether Eqn. (15) is a CH-posynomial. There are two 
types of models for the unit effective resistance rdo. The 
step model assumes that the input to the transistor is al- 
ways a step so that rdo is a constant independent of the 
sizing solution X. As a result, all coefficients of Eqn. (15) 
are positive constants independent of X. We have the fol- 
lowing theorem: 

Theorem 2 The S T I S  problem under the step model is a 
simple CH-posynomial program with the dominance prop- 
erty. 

The step model has been used in [14] for transistor sizing 
and in wiresizing works [ll, 17, 61 and Simultaneous driver 
and wire sizing work [8] to model the driver. However, the 
step input is just an ideal assumption. For an inverter, let 
TO be the delay under the step input and T the delay under 
the slope input whose transition time is s. The following 
relation was given in [15]: 

T =  P . s + r o  (17) 

where P is a constant determined by the technology. It 
shows that the delay is an increasing function of the in- 
put transition time. Recalling the definition of the effective 
resistance (Eqn. ( 5 ) ) ,  the larger the input transition time, 
the larger the effective resistance and the unit effective resis- 
tance. Furthermore, we associate the input transition time 
with the transistor size as the following: since increasing 
the size of a transistor M ,  always increases the gate capac- 
itance of M , ,  the output of the previous stage, which is the 
input to M e ,  will become slower because Mj contributes a 
larger loading capacitance. In turn, the slower input t o  Mi 
increases its unit effective resistance. To be more precise, 
we define the following DP-slope model  

Definition 4 The DP-slope model is a transistor model 
where the uni t  efiective resistance f o r  the transistor is a n  
increasing func t ion  of i ts  size. 

Given the definitions, we also have the following theorem: 

Theorem 3 The STIS problem under a DP-slope model 
is a general CH-posynomial program with the dominance 
property. 
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It worthwhile to mention that if Eqn. (17) is used to 
compute a gate delay by assuming that the input transition 
time is twice the Elmore delay of the previous stage as the 
transistor sizing formulation in [18], the path delay is a sim- 
ple CH-posynomial and the STIS problem under this delay 
model is a simple CH-posynomial program. Nevertheless, 
Theorem 3 is more general in the sense that it is applica- 
ble to the DP-slope model of any form or even without a 
closed form. A DP-slope model without a closed form will 
be discussed in Section 4. 

4. THE STIS ALGORITHM 
4.1. Optimization Using Dominance Property 
For a CH-posynomial f(X) where L 5 X 5 U, a local re- 
finement based algorithm (LRA algorithm) can be used to 
compute a set of lower and upper bounds for the optimal so- 
lution x* to minimize f(X). It is a greedy algorithm based 
on iterative local refinement operations. Beginning with a 
solution X = L, we traverse every zl in a specific order 
to perform a local refinement operation on it.  Because X 
is dominated by X*, its local refinement is still dominated 
by X*. This process is repeated and X becomes increas- 
ingly closer to  but always dominated by X*. This process 
produces a set of lower bounds of X* and is stopped when 
no improvement is achieved in the last round of traversal. 
Similarly, a set of upper bounds for X* can be obtained 
by performing local refinement operations beginning with 
x = u .  

In essence, the LRA algorithm generalizes the greedy 
wiresizing algorithm GWSA [ll]. We define that a lower or 
upper bound of X* is LR-tight if it can not be tightened by 
any local refinement operation. Then, the LRA algorithm 
computes the LR-tight lower and upper bounds of X* in the 
polynomial time O(r.n2 . l ) ’ ,  where T is the average number 
of the possible evaluations for all x,(z = (1,. . . , n } )  E .X, 
and 1 is the cost of a single local refinement operation, which 
be discussed in the next subsection. In practice, we usually 
find that the LR-tight lower and upper bounds meet, which 
leads to the optimal solution immediately. 

4.2. Computation of Coefficient Functions and Lo- 
cal Refinements 

In order to initialize the coefficient functions efficiently, 
all transistors and interconnects are pre-partitioned into 
DCCs. A DCC is a set of transistors and wires which are 
connected by DC-current paths containing only transistor 
channels or wires, and the DC current can not cross the 
boundary of a DCC. In most cases, a DCC is just a gate G 
and a routing tree connecting the output of G to the inputs 
of all gates driven by G. Since these coefficients defined in 
Eqn. (11)-(14) are computed basically within a DCC, the 
Computation can be finished in O(cf i=,  mp) time, where k 
is the total number of DCC’s in a circuit and m, is the to- 
tal number of transistors and wire uni-segments in the i-th 
DCC (roughly, E:=, m, = n, the total number of variables 
in X). 

The cost of the local refinement operation is related to  the 
delay model. We use both the step model and a table-based 
slope model for comparison. Since the STIS problem under 
the step model is a simple CH-posynomial program with 
constant coefficients in its objective function, the local re- 
finement operation can be finished in O(m,)  time, where m, 
is still the total number of transistors and wire uni-segments 

‘The complexity of brute-force enumeration is O(rn). 

in the i-th DCC. We assume a DP-slope model of the most 
general form; only unit effective resistance r d o  for each tran- 
sistor size is given. Since the STIS problem under this type 
of slope model is a general CH-posynomial program, the 
coefficients of Eqn. (15) in fact are functions of the siz- 
ing solution X. When there is no closed form to associate 
X with the unit effective resistance (in general, no closed 
form relation between the variables and the coefficients in 
the general CH-posynomial), the local refinement operation 
becomes very expensive or even impossible. We propose the 
following approach: if the starting solution is XO, we first 
update the the coefficient functions with respect to  XO and 
then compute “local refinement” with respect to  these co- 
efficient functions. A novel contribution of this work is that 
we proved that the dominance property still holds for a 
general CH-posynomial program with respect to  this type 
of “local refinement”. Since the update of coefficient func- 
tions before the local refinement operation can be finished 
in O(m, )  time, the local refinement operation for a general 
CH-posynomial program still can be finished in O(m,) time. 

Instead of the simple analytical model in Eqn. (17), a 
lookup table is pre-computed for values of the unit effective 
resistance TdO for a transistor. In general, r d o  of a transistor 
depends on its size, its input transition time and its capaci- 
tance loading so that a three-dimensional table is needed in 
a straightforward implementation. The three parameters, 
however, can be combined into one factor called the slope ra- 
t i o  to determine r d o  solely [22, 211. Thus, a one-dimensional 
table is used instead of a three-dimensional table and a ta- 
ble is built for every type of transistors based on SPICE 
simulations. 

4.3. 
The overall STIS algorithm includes three steps: (i) ini- 
tialization of the coefficient functions, (ii) computation of 
LR-tight lower and upper bounds of the optimal solution, 
and (iii) computation of the optimal solution between the 
LR-tight lower and upper bounds. Note that the coefficient 
functions will be updated during the sizing procedure be- 
cause the unit effective resistance T ~ O  under the DP-slope 
model depends on the sizing solution X. 

Furthermore, we proved that there exists an optimal STIS 
solution such that the optimal wire widths are monotonic 
within each wire segment, which enable us to generalize 
the concept of the bundled refinement operation and the 
bundled-refinement based wiresizing algorithm (OWBR al- 
gorithm) [6] to our STIS formulation. I t  was shown in [6] 
that the OWBR algorithm runs lOOx time faster than the 
local-refinement based wiresizing algorithm [Ill. 

Finally, if the LR-tight lower and upper bounds are iden- 
tical for every transistor and wire, the optimal solution is 
achieved immediately. We observed that the identical LR- 
tight lower and upper bounds are often achieved in our ex- 
periments. In this case, since the coefficients and the LR- 
tight lower and upper bounds are computed in polynomial 
times O(Ek=’ mp) and O(r.nz .Er=l m), respectively, the 
optimal S T k  solution is achieved in the polynomial-time. 
Moreover, when the LR-tight lower and upper bounds do 
not meet, the gap between them is very small, often just 
of one discrete width in our experiments, and the percent 
of non-identical lower and upper bounds is also very small, 
thus enumeration can be carried out in reasonable time. 
During the enumeration of the width for a transistor or 
wire between its LR-tight lower and upper bounds, widths 
of other transistors and wires can be determined by local 
refinement operations rather than enumeration. Thus, the 

Overview of Near-Optimal STIS Algorithm 
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optimal solution can be achieved efficiently in practice. It 
is worthwhile to mention that an LR-tight lower or up- 
per bound has zero sensitivity, thus the sensitivity based 
method can not be used to obtain a solution better than an 
LR-tight lower or upper bound. 

5. EXPERIMENTAL RESULTS 

5.1. Simultaneous Qriver/Buffer and Wire Sizing 
We have implemented the near-optimal STIS algorithm in 
a SUN SPARC-5 workstation and tested the algorithm on a 
number of examples for advanced IC technologies. First, we 
use the STIS algorithm to solve the simultaneous driver and 
wire sizing (SDWS) problem for multi-source nets.’ These 
nets are extracted from an Intel high-performance micro- 
processor design and were used in [ l a ,  61 for topology con- 
struction and wiresizing optimization. We assume that a 
chain of cascade drivers is used for each source and the first 
stage is a minimum-size ( lx)  driver. We compare our STIS 
method with the CDWS method. The CDWS method uses 
a constant stage ratio cr = (CL/CO)~” where CO is the 
gate capacitance of the Ix  driver, and Cr, the total loading 
capacitance when the wires have the minimum width. The 
stage number N is chosen such that (Y is around e ,  the base 
of natural logarithms, for performance optimization. Then, 
the CDWS method applies the OWBR algorithm [6] to ob- 
tain the optimal wiresizing solution. The STIS method uses 
the same stage number N and assumes the first stage is also 
a I x  driver, but the sizes of both wires and transistors in 
other stages are determined by the STIS algorithm. We use 
parameters of MCNC 0.5pm CMOS technology, the same as 
was used in [6]. We assume the nets are driven by a clock of 
20MHz  and report the HSPICE simulation results in Table 
1. Even though the OWBR algorithm achieves the optimal 
wiresizing solutions under the given driver sizing solutions, 
the STIS formulation consistently outperforms CDWS: the 
maximum delay is reduced by up to 17.7%, and more sig- 
nificantly, the total device area, the total wire area and the 
total power dissipation are reduced by factors of 2.3x, 1 . 2 ~  
and 2.6x, respectively. Although we compute the optimal 
width for every transistor and every 10pm-long wire, the 
total runtime of the STIS algorithm is just 7.18 seconds. 

Then, we use the STIS algorithm to solve the simultane- 
ous buffer and wire sizing (SBWS) problem. A spread spec- 
trum IF transceiver chip is designed recently [4] and the 1.2 
p m  2-layer metal SCMOS technology is used. There are two 
clock nets, named DCLK and CLK. Each uses a chain of 4 
cascade drivers in the clock signal source and uses a chain of 
4 cascade buffers in order t o  drive the register file. All clock 
source drivers and buffers are tuned manually in the original 
design. We retain the sizes for both the first stage drivers 
and the input ports for the register files, and apply the STIS 
algorithm to  optimize the sizes for every O.6pm-long wire 
and every transistor in other drivers/buffers. The STIS al- 
gorithm optimizes the two designs in 61.24 and 120.79 sec- 
onds, respectively. We report HSPICE simulation results 
in Table 2. When compared with the original designs for 
the two clock nets, the STIS designs reduce the maximum 
delay by 16.1% and 14.5%, respectively, and more signifi- 
cantly, reduce the power consumption by factors of 1 . 6 3 ~  
and 1.55x, respectively. Moreover, we compare our results 
with those in a recent work [9], where the SBWS problem 
is studied based on the gate sizing formulation and the step 

2The SDWS formulation in [SI is applicable only to single- 
source nets. 

model for transistors. For comparison, the STIS algorithm 
uses the step model in this experiment. The STIS algorithm 
achieves more delay reduction (see Table 2), mainly since it 
uses the transistor sizing formulation. The designs given by 
the STIS algorithm, however, consumes more power for ex- 
tra delay reductions, when compared with the designs in [9]. 
We will show a STIS formulation for area-delay trade-off, 
which can be extended for power-delay trade-off. 

5.2. 

In order to achieve the area-delay trade-off, we introduce 
the following objective function: 

Area-Delay Trade-off for Transistor Sizing 

It is the scaled weighted sum of area and delays, and y 
(0 5 y 5 1) can be adjusted for area-delay trade-off. One 
can easily verify that Eqn. (18) is still a CH-posynomial. 
Again, we can apply the STIS algorithm efficiently. 

We use the STIS algorithm to solve the transistor siz- 
ing problem for area-delay trade-off3. We sized bbit, 16bit 
and 32 bit ripple-adders, respectively, and report the to- 
tal device areas and the maximum delays in Table 3. We 
still use parameters of MCNC 0.5pm CMOS technology, 
and assume that each primary input t o  these adders comes 
from a 2x inverter and each primary output drives a 2x 
inverter. The STIS algorithm optimizes the 32bit adder 
with 1,026 transistors in 66 seconds. A smooth delay-area 
trade-off is observed and the maximum delay is reduced 
by up to 30.8% with about 2x times area when compared 
with the minimum-size design. We point out that these 
adders are implemented in CMOS complex gates and we 
simply assume that every transistor has the same timing 
criticality and the same weight penalty. We plan to  use 
the Lagrangian relaxation method [3] to obtain the optimal 
weight penalty assignment and study the impact of weight 
penalty assignment, Comparison with previous transistor 
sizing works [14, 181 is also planned. 

6. CONCLUSIONS 

The major contribution of this work is t o  reveal the domi- 
nance property for all CH-posynomial programs and show 
that the STIS problems under a number of delay models are 
CH-posynomial programs. Based on the dominance prop- 
erty, a polynomial time algorithm is proposed to  compute 
the lower and upper bounds of the optimal solution to CH- 
posynomial programs. The  algorithm often achieves identi- 
cal lower and upper bounds, which leads to the optimal so- 
lution of the STIS problems. It is a near-optimal algorithm 
in practice and is observed to  achieve large delay and power 
reductions when applied to  real designs. Furthermore, the 
algorithm is applicable to  any optimization problem that 
can be formulated as a CH-posynomial program. 
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used only for the optimal wiresizing problemin the past [ll, 8,6]. 
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I I f of I length I max delav Ins) I device area (um2) I wire area (~lm’) I average Dower [mWl I runtime I 
net1 
net2 

” 
drivers ( p m )  CDWS “ STIS CDWS ” STIS CDWS ‘’ STIS C D W ~  STIS’ 

15  3600 1.063 0.876(-17.7%) 563.0 188.6 4320 3240 31.9 2.17 0.08 
24 6600 1.064 0.928(-12.3%) 4232.4 734.8 19923 7953 31.6 7.02 0.18 

net3 
net4 
net5 
total 

36 10070 1.326 1.225(-7.6%) 8773.2 3222.4 23967 19242 45.8 14.2 0.77 
24 10570 1.197 1.120(-6.4%) 6071.4 1331.7 40041 22725 47.9 11.4 0.33 
30 31980 1.868 1.808(-3.2%) 8406.8 6456.8 139410 139410 53.2 45.8 5.82 
129 179800 28046.8(2.3x) 11934.3 227661(1.2x) 192570 210.4(2.6x) 80.59 7.18 

Table 2. Comparison of buffer and wire sizing for clock nets. 

net # of wire length 
drivers ( p m )  

dclk 154 41518.2 
clk 367 59304.0 

max delay (ns) average power (mW) runtime 
original SBWS STIS original SBWS STIS (s) 
4.6183 4.1897(-10.2%) 3.8718(-16.1%) 25.9(1.63~) 15.5(0.98~) 15.8 61.34 
5.9030 5.1813(-12.2%) 5.0452(-14.5%) 294.7(1.55~) 127.2(0.67~) 189.8 120.79 
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