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Abstract— This paper proposes a novel method to efficiently electrical characteristics are also similar in a well-gesd
reduce the terminal number of general linear interconnect V| S| system. For instance clock sinks in clock networks,
circuits with a large number of input and/or output terminal s substrate plane, critical interconnects in the memoryuiisc

considering delay variations. Our new algorithm is motivaed lik d bit Ii h int s R t
by the fact that VLSI interconnect circuits have many similar '€ WOrG Or DIL1ines are among those Interconnects. ~ecen

terminals in terms of their timing and delay metrics due to Studies [9], [10], [4], [3] show that there exists a large ey
their closeness in structure or due to mathematic approximteon  of correlation between the various input and output terisina

using mesh_ing in finite difference or finite element scheme ding  Therefore a low-rank approximation was performed on the
the extraction process. By allowing some delay tolerance or input and output mapping matrices before the model order

variations, we can reduce many similar terminals and keep ducti H the | K imation i
a small number of representative terminals. After terminal fEdUCUON Process. However, the low-rank approximation in

reduction, traditional model order reduction methods can achieve the existing methods are only based on the DC or a specific
more compact models and improve simulation efficiency. Theew order of moments of responses. So the port-reduced systems
method, TERMMERG, is based on the moments of the circuits as may not correlate well with the original systems in terms of
the metrics for the timing or delay. It then employs singularvalue timing or delay.

decomposition (SVD) method to determine the optimum number In thi t 't inal reducti thod
of clusters based on the low-rank approximation. After this the n this paper we present a novel terminal reduction metho
K-means clustering algorithm is used to cluster the momentsf called TERMMERG. The new terminal reduction method is
the terminals into different clusters. Experimental resukts on a based on the observation that if we allow some delay toleranc
number of real industry interconnect circuits demonstrate the  or variations, which actually can’t be avoided in today’s
effectiveness of the proposed method. VLSI chip manufacture and working environments, some of

I. INTRODUCTION the terminals with similar timing responses actually can be

past decade due to incre_asing s_ignal integrity effects aq proach use high order moments as timing and delay met-
rising electro and magnetic couplings modeled by parasi

. . . its. Specifically, given some delay tolerances or vanegjo
capacitors and inductors. Most of previous research wor: S RMMERG employs singular value decomposition (SVD)

mainly focus on the reduction of the internal circuitry b3fn thod to determine the number of clusters based on the low-

various reduction techniques. The most popular one is basgd, imation. Then the K- lusteri laorith
on subspace projection [11], [2], [12], [8], [5]. Projectio . approximation. then the B-means clustering aigorithm

X ! s used to cluster the moments of the terminals into differen
based method was pioneered by Asymptotic Waveform Eva@

. ) e . “Clusters. After the clustering, we pick one terminal thatldo
ation (AWE) algorithm [11] where explicit moment matching, represent other terminals for each cluster.

was used to compute dominant poles at low frequency. Laterro paper is organized as follows. In Section II, we first

more numen_cal _stat_)I(_e techniques are proposed [2], [1%1riefly reviews the concept of moments and then we present
[8], [5] by using implicit moment matching and CONGruenChoy the input and output moment matrices are constructed for
transformation. . . terminal reduction. Section Il presents a SVD-based nttho
_However, nearly all existing model order reduction techy, ,ptain the optimal number of clusters for the proposed
nigues are restricted to suppress the internal nodes ofaitcir terminal merging algorithm. In section IV, we describe the

Ter(rjnl?al re?gctlon, however, is less investigated f(t))r Caop \_means based clustering algorithm to find the represemtati
modeling of interconnect circuits. An Important obsemall o minais for each cluster. In section V, we present the whol

is that many interface terminals of interconnect ”etworliérminal reduction flow of ERMMERG and then discuss

modeled as RLCM circuits are functionally similar or €qUNVgome practical issues associated with the implementation.

alent. The reason is that those terminals are close 10 €§¢fy, experimental results and conclusions are presented in
other structurally or they are extracted by using mathamagection VI and section VI, respectively

approximation by volume or surface meshing in methods like
finite difference and finite element scheme. As a resulty thei Il. INPUT AND OUTPUT MOMENT MATRICES

This work is funded by NSF CAREER Award CCF-0448534, UC Micro OUr task is to find the terminals with similar delay or timing
#04-088 via Cadence Design System Inc. behaviors such that they can be viewed as one terminal if some



delay variations are allowed. In this paper, we focus on theln order to perform terminal reduction for both inputs and
timing metric of terminals and look at their timing resposiseoutputs, different moment matrices are constructed. Fer th
due to step or impulse inputs. But our method can be appliedtput terminal reduction, we define thatput moment matrix

to other metrics of interest. Mo as:
Ideally, the delay or timing information should be repre- m]
sented by waveforms in the time domain . But this does m?
not give us the best representation for our terminal merging Mo = : (6)
method. Because all the waveforms have to be computed 7
first, it is also difficult to compare two waveforms in general my;_q

Instead, we use terminal response moments in frequeRgiere each column represents a moment series of output
domain to represent their time-domain response informationodej due to all input's stimuli. Notice that in this way, the

Our algorithm is based on the observation that if twgytput terminal’s responses are with respect to all thetspu
terminals have similar timing or delay, then they shouldenayo make sure they are similar under all the inputs.

the similar moments (vectors) numerically. Remember #h@t t  Similarly, for input terminal reduction, thenput moment
moments computed in Eq.(4) represent the impulse respong@grix 1/, is defined as:

of outputs due to inputs. It is well known that thé* moment

my represents the first-order delay approximation, or the mg

Elmore delay, of the corresponding output with respect to a m,

specific input. Higher order moments represent more detaile My = : Y

timing and delay information. Thus moment vector is an ideal '

expression of timing information for our terminal merging

algorithm. where each columh represents a moment series at all output’s
Since we need to merge both input and output terminalspdes due to an input node

we need to present the timing information for both input and To determine the order of momentswe use the following

output terminal. As a result, we have two moment matricegjle: the number of moments from all the inputs should be

the input moment matrix/; and output moment matri*/o. equal or larger than the number of terminals to be merged.
For a single-input and single-output (SISO) system, tl&he reason is that in the worst case where no terminals can

system’s transfer functiorf/(s) could be expanded into abe merged, we should be able to distinguish all the terminals

Taylor series around = 0. The coefficient ofs* in the series using the moment information. This will become more clear

expansion is thé!” moment of the transfer function: in the following section. As a result, we have

m;_j

H(s) =mgo+mis+mas?+mszsd+ ... (1) rp > ¢ for Mo (8)

_For a general linear (Iinearized) time-invari_ant _networit«hw p < rq for M; (9)
p input andg output terminals, we can describe it as follows.
Moments can be efficiently computed by recursively solving
(2) the given circuits using traditional SPICE-like simulatio
technique [11]. After we obtain the moment matrices as shown
Where x is n-dimensional state vecton is p-dimensional in Eq.(6) or Eq.(7), we proceed to find the optimum number

input vector, ang is g-dimensional output vector. The transfeof clusters using singular value decomposition method to be

X = Ax + Bu
y =Cx

function by Laplace transformation is shown in the next section.
—1
H(s)=C(sI - A)"'B ®3) I1l. DETERMINATION OF CLUSTERNUMBER BY SVD
If we expand the above equation in a Taylor's series at0, In this section, we present how to find the best number of
we get the moments at various terminals: independent clusters by using singular value decompasitio
my — —CA-1B on the mputt_and output moment matrices discussed in the
my = —CA—2B previous section.

If two terminals have similar timing responses, it means
: (4) that their moments have very similar values. If we have
m,_ =—-CA "B a number of terminals with similar timing behaviors, their
. moment matrix, where each moment series is a column or a
row, will be a low-rank matrix. Singular value decompositio
Each momentm; is a g x p matrix, where each colump is very efficient to deal with rank-deficient matrices andanc
in m; represents the moment vector of all output terminaféveal a great deal about the ranks and structure of a matrix,
due to the input termina) and each rowt in m; represents which motivate us to find the optimal number of clusters based
the moment vector at the output termirdaldue to all input on the moment matrices.
terminals. Then a moment matrix can be written as For am x n matrix A, the SVD decomposition ofl is
M=[my m ... m_; ...]| (5) A=UpymEZVE (10)

nxn



where Upx.» and V,x, are orthogonal matrices,pointsinsS;. It has wide applications in data mining and data

Ul Unxm = I and VL V.., = 1. ¥ = analysis.
diag(o1,02, ..., Omin(m.n)), oi IS called singular values However, the K-means clustering algorithm is very sensitiv
ando; > 02 > ... > Omin(m,n)- to the initial choice of cluster centers and the number o$-clu

Before we proceed to present our cluster number deterrrs [1]. Only the appropriate number of clusters produbes t
nation method, we review the important result from the SVBest approximation result. Fortunately in our method, telus

decomposition [6]. N o numberk can be first obtained from SVD decomposition on
For a SVD decomposition of a matrid, if £ < r = the moment matrix as mentioned above.
rank(4) and . For a general moment matri¥ (M = Mo, orM = M; for
_ T different terminal reductions), it hdserminals to be merged.
Ak = ;Uzuzvz ) (11) Let M = [(:17 C2,..., Cl]'

The proposed clustering algorithm is shown in Fig. 1 based

then on K-means clustering scheme.
i A—B|lo=|| A - Ag ||2= 12
min A= B o=l A= A o= oper (12)
. . K-MEANSCLUSTER
Eq.(12) basically reflects the fact that the rankpproxima- CONSTRUCT.CLUSTER(E)
tion matrix Ag, is justox; away from original matrixA in 1 selectk_seed vectors out of c o as k
terms of norm-2 distance. centroids 1,C2,...,€

As a result, by just looking at the singular values and
selecting the sufficient small singular valag,,, we know
how close the corresponding rakkapproximation matrixAy
is to the original matrixA. So the selected rank numbgr
essentially can be viewed as the number of clusters we expgc recomputep; for each clusters;
as SVD decomposition essentially reveals the true rank of B until no changé inp J
matrix in a numerical way. Since the rank of matrix also 7 return S;. S SJ and
reflects the number of independent columns in the given ratri 122 2k P P2s- s Pk
A, so it is naturally for us to usk as the cluster number. We
set a threshold to denote the small singular valug,, ;.
Typically ¢ is set to10~2 in our experiments, which means : B . 9
we regardo,; as the sufficient small singular value only if g retljlrﬂd}?j = ¢; S0 thatmin{]|d; "}
k1 < C. 4 end

In our method, we select the approximation order not only
based on the absolute value of the sufficient small singular Fig. 1. K-means based clustering algorithm.
value, but also on the relative ratio between two adjacent

s!ngular values. .If the relative ratio between two _adjacer)t-rhere are two steps (algorithms) in our clustering method.
singular values is close to 1, that means there is no bige first step ©NSTRUCT.CLUSTER(K) clusters the giver
difference if the approximation order is increased by ome. | actors intok clusters { > k > 1). The second stepES

this condition, we will keep increasing the approximatiodey LECT_REP.VECTOR(S1, Ss,. .., S).)) takes the output of the
until the ratio becomes small enough..Thus we first def'necﬁlstering algorithm as the input and finds the represemtati
thresholde. Then we compare wo adjacent singular valuggcior for each cluster. The representative vecfoyswill be

k1 @ndoy. If oj1/0x < e and Th+1 < ¢, then thek i ent during the terminal reduction. All the other unseldcte
our choice. Typicallye is set to10~ in our experiments. vector will be suppressed.

2 put rest of unselected vectors into nearest cluSjef

3 compute the centroig; for each clusterS;

4 do re-cluster allc; into k clusters according tg;
f each cluster

SELECT_REP_VECTOR(S1, S, ..., Sk)
1 for i € S;, compute||d;||* = ||c; — ;]2

IV. K-M EANS BASED CLUSTERING ALGORITHM The basic idea of GNSTRUCT.CLUSTER(), is to dynam-

After we determine the number of clusters for the output(dﬁany find the k clusters so that all the vectors in a cluster

input) terminals, sayk, we proceed to group the output(orhave the closest distance to their geometric centroid vecto
input) terminals into thes clusters. @; of clusterS;. CONSTRUCT.CLUSTER() uses an iterative

In our approach, we apply a so-calldd-means algo- algorithm that minimizes the sum of distances from each
rithm [7] to determine each cluster. K-means is the widelyector to its cluster centroid vectar;, over all .clusters. This
used clustering algorithm for partitioning (or clusteniny algorithm moves vectors among clusters until the sum cannot

data points intd: disjoint S; subsets containingy; data points b€ decreased any more. In this sense this algorithm is algloba
to minimize the sum-of-squares criterion: optimization method. The result is a set of clusters thatare

compact and well-separated as possible.

k

_ 2 The second algorithm BB ECT_REP.VECTOR () finds the
7= Z Z i = @il (13) representative vector for each given clus$er This has been
achieved by calculating the distance between the centrald a
wherex; is a vector representing thé" data point, andp; each vector belonging to this cluster to find the terminahwit
is a vector, representing the geometric centroid of the ddte closest distance to the centroid.

j=14i€S;



V. TERMMERGALGORITHM cluster number. Then we perform K-means algorithm on the

In this section, we first present the whole terminal redurctid®P ©f those selected representative terminals to find thiee|

flow of the TERMMERG algorithm. Then we discuss somdepresentative terminals. We may have several hieraidchica
practical considerations of the algorithm. levels when the number of terminals to be merged is large.

VI. EXPERIMENTAL RESULTS

In this subsection, we present the flow of thekMMEerG | "€ proposed method has been implemented in MATLAB.
method. We tested our algorithm on a number of real industry inter-

TERMMERG ALGORITHM connect circuits from our industry partner, Cadence Design

i . System Inc.
1) Construct the input and/or the output moment matrlces..l.he first interconnect circuinetl026is an one-bit line

2) rzzrtfr?g;tthoefﬁl\élgthoen tt):(;tlg?uu;t:?ilgr;\ttt]:rgmpm mome&trcuit from a SRAM circuit in 160nm technology. This net-

; work contains 525 resistors, 772 capacitors, 6 drivers &td 2
3) Invoke K-MEANSCLUSTERto find the all the represen- . .
. . receivers. We perform K-means baseeRMM ERG algorithm
tative terminals for each cluster. . . .
to reduce both receiver (output) terminals and driver (ot)tp
B. Practical Implementation terminals. Since there are many outputs (256 receivers} com

We have mentioned that we determine the order of momeffd'"9 with a few inputs (6 drivers), we set effective thestiu
r based on the fact that the number of moments in the momé‘Hlmberqe = 30. Then we only need = ¢./6 = 5 orders of
series from all the inputs should be equal or large than RPments to construct the output matiko. . .
number of terminals to be merged as shown in Eq.(8) andBy using the smgular value decomposmon,_ the optimal
Eq.(9). In this way we can get the complete informatioﬂumber of clusters is found to be 5 if we define threshold

_ -3 ; ; : _
of the moment matrix after singular value decompositi(\)g__ 107°. The dominant singular values we find are=

A. TermMerg Algorithm Flow

6 3 —6
However, if we have many outputs and a few inputs, yag(1.2 x 10°,2.5 x 10°,27.4,1.63,0.12,5.47 x 1077, ....).
end up with larger. In other words, we have to use ver can be seen that there is a big magnitude drop between two

. s o
high order moments. But high order moments actually a§éngular values).12 and 5.47 x 107°. S0 it is naturally to

not very informative as they contain mainly the domina e_ll?r?t ? asl tTe t”“mber oflf[:qusters.T M h .
pole information numerically [11]. This is also the case fo € final clustering resufts TomERMMERG are shown in

interconnect circuits with many inputs and a few outputst B able |. The flrs_t column is the qluster |r_1dex number. The
on the other hand, large number of outputs or inputs do geond column IS the.representatlve terminal of gach clus_te
not imply that the circuit has more independent outputs a d all the terminals in each cluster are placed in the third

inputs, or clusters. Practically the final cluster numberyma?ommn'

be still very small compared to the number of outputs and TABLE |

inputs. In this case, we do not need many high order moment e ouTPUT CLUSTERING RESULTS FOR THE ONBIT LINES CIRCUIT
information to distinguish those terminals. This motigatke net1026

following schemes to solve this problem.

We pre-define an effective clus_ter number, which is [ Cluster #] Rep. Terminal| Clustered Terminals |
smaller than the number of terminalsto be merged but T Rcv206 RovIoL, Rovibz, .. Rov256
typically is larger than the resulting number of clusterer F 2 Rcv58 Rcv39, Rev40, . ., Rov77
example we may defing. = [¢/i],i = 2,3,... depending 3 Rev19 Revl, Rev2,.. ., Rev38

. . . . 4 Rcvo8 Rcv78, Rev79.. . ., Revl19
on circuits, where the functiofz] means rounding the to 5 Rovl44 Rev120, Revi2d, .., Rovi50

the nearest larger integer. Then the order of momemisuld
be equal or larger thag./p. If the cluster number is qual to
q. after SVD method at some threshold, that means the pre+ig. 2 plots the distribution of terminals (x-axis) with pext
defined number of clusters is too small to find the optimab the cluster index number(y-axis).
cluster number at this threshold. We then either increase th Then we go back to time domain to validate the effective-
threshold value (at cost of more approximation errors) oress of our method. We add a voltage source to a driver input
increase the pre-defined cluster numigerto re-select the to view the step responses at other receivers. Fig. 3 shows
optimum cluster number by SVD. If we already have hathe responses of five representative terminals. If we coenpar
some pre-knowledge about the circuit terminals, it will leeyw the 50% delay time, the delay time difference among them is
helpful to choice the effective cluster numhgt approximately 10-20ps, which is quite different. The egéat
Another way is using a hierarchical terminal reductiofocal waveforms are shown in Fig. 4.
method, which is suitable for large number of resulting €lus If we plot more responses for all the suppressed terminals
ters. First we partition the merging terminals into a nundfer in one cluster, for instanceeceiver97and receiver99 whose
groups so that their corresponding moment matdixwill not  representative terminal is theceiver98 we can not tell the
need to use the higher moments. After this we perform SVdfference in responses between these reduced termindls an
on each group and find several representative terminals frémeir representative terminakceiver98 for the delay time as
each group by K-means clustering method. Then we perfoshown in Fig. 5. Detailed analysis shows that the delay time
SVD on all the representative terminals to find the best dlobdifferences among these terminals are only about 1-2pghwhi
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is clearly shown in Fig. 6. In other words, if we allow 1-2ps
delay variations, those terminals can be viewed as the same
terminal.
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At this point, we can say that it is reasonable using
the response ateceiver98to represent the responses at the
suppressed terminals in its cluster such raseiver97 and
receiver99 Considering the process variations and other envi-
ronmental variations, it is possible that we can combinenthe
into one terminal. Also we can improve the accuracy of this
method by relaxing the thresholdto generate more number
of clusters.

For the input terminal merging, we need to cluster the 6
input (6 drivers) terminals. By using the same threshol@llev
e = 1073, the cluster number is 5. Only the terminals at
driver3 anddriver4 could be merged together.

The second exampleet27 is a clock tree circuit also in
160nm technology. It contains 167 resistors, 654 capagitor



TABLE I

14 drivers and 118 receivers. For the OUtpUt I’eductlon, Wq-HEIUPUT CLUSTERING RESULTS FOR THE CLOCK NETWORK CIRCUIT

set the effective cluster numbet 118/2 = 59. Then
we only needr = ¢./14 =~ 4 orders of moments to
format the output matrixi/. After the SVD step, the output

net27AT DIFFERENT THRESHOLDS

moment matrixMo has the following singular valueg: =

diag(52.58,16.85,3.41,0.48,0.024,5.70 x 1075, ...). Since
there is a big magnitude drop between two singular values
0.024 and5.70 x 1079, it is obvious to select cluster number
ask =5 at the givere =1 x 1073,

We also present its distribution of terminals for different
clusters in Fig. 7 when we select cluster numlaer= 5.
The representative terminals areceiver98 eceiverl re-

ceiver110 receive36 receiver84corresponding to the cluster
from 1 to 5.

Cluster Number

(1]
(2]

o

20 40 60

Receiver Number

80 100 118

3]
Fig. 7. Output terminal distribution for each cluster fogt27 circuit.
[4]
As for the input terminal reduction, the input moment
matrix M; has the following singular values after the SVD:[5]
by diag(55.32,0.091,1.54 x 10~%,8.89 x 10-%,8.05 x
107%,6.55 x 107%,6.33 x 107%,6.03 x 107%,5.80 x
1075,6.56 x 10~15,...). If we set the threshold = 1 x 1073,
the number of clusters is = 10. However we notice that there [7]
is a big drop betwee.091 and1.54 x 10~%. If we relax the
threshold tos = 2 x 103, the cluster number will be only 2. [g]
The reduction results will be more efficient but less accyrac
Table Il shows the terminal assignment for each cluster when
we cluster terminals at = 10 and k& = 2. [9]

(6]

VIl. CONCLUSION

In this paper, we have proposed a novel method named
TermMerg to efficiently reduce the terminal number of gehera
linear interconnect circuits considering delay variasioihe [11]
new method is based on the high order moment responses of
terminals in frequency domain as the metrics for the timing Q2]
delay. We first applied singular value decomposition metiood
determine the best number of clusters based on the low-rank
approximation. After this, the K-means clustering alduorit
was used to cluster the moments of the terminals into the
different clusters. Experimental results on a number of rea
industry interconnect circuits demonstrated the effectass
of the proposed method.

Threshold | Cluster #] Rep. Terminal| Clustered Terminals
e =0.001 1 Drv2 Drv2, Drv4
2 Drvll Drvl1l
3 Drv13 Drv13
4 Drv10 Drv10
5 Drv8 Drv8, Drv9
6 Drv6 Drv6, Drv7
7 Drv14 Drv14
8 Drvl Drv1, Drv3
9 Drv5 Drv5
10 Drv12 Drv12
e = 0.002 1 Drv2 Drv2, Drv4, Drv6,
Drv7, Drv8, Drv9
2 Drv12 Drv1, Drv3, Drv5,
Drv10, Drv11, Drv12,
Drv13, Dvrl4
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